JPH0243838B2 - - Google Patents

Info

Publication number
JPH0243838B2
JPH0243838B2 JP60017575A JP1757585A JPH0243838B2 JP H0243838 B2 JPH0243838 B2 JP H0243838B2 JP 60017575 A JP60017575 A JP 60017575A JP 1757585 A JP1757585 A JP 1757585A JP H0243838 B2 JPH0243838 B2 JP H0243838B2
Authority
JP
Japan
Prior art keywords
wear
test
weight
volume
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60017575A
Other languages
Japanese (ja)
Other versions
JPS61177400A (en
Inventor
Manabu Shinada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP1757585A priority Critical patent/JPS61177400A/en
Priority to DE19853545826 priority patent/DE3545826A1/en
Priority to US06/812,124 priority patent/US4681817A/en
Publication of JPS61177400A publication Critical patent/JPS61177400A/en
Publication of JPH0243838B2 publication Critical patent/JPH0243838B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Sliding-Contact Bearings (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 発明の技術分野 本発明は分散めつき層を有するピストンリング
に関する。 ロ 従来技術と問題点 例えば、高速で摺動するピストンリングは耐摩
耗性を高めるため硬質クロムめつきを施したもの
が広く使用されているが、このめつきは、処理に
かなりの長時間を要する上に、高鉛ガソリンを燃
料とするエンジンや、高負液のエンジンに使用し
た場合耐摩耗性、耐焼付性、耐蝕性などに問題が
あつた。 上記問題点を解決するために、例えばニツケル
−燐などの合金マトリクス中に窒化物、炭化物、
酸化物などの耐摩耗粒子を分散させる複合めつき
方法が注目されている。これは、複合めつき又は
分散めつきと呼ばれていて、分散される粒子の種
類、大きさ、分散量を適当に選ぶことによつて耐
摩耗性、耐焼付性、耐蝕性に優れた皮膜を形成す
ることができ、既にシリンダや、ピストンリング
のような摺動部材などに使用され始めている。し
かしそれ自身の耐摩耗性は優れているものの、対
相手材の摩耗についても改善する必要があつた。 ハ 発明の目的 本発明は従来の複合めつきの問題点を解消し、
耐摩耗性、耐焼付性、耐蝕性に優れた皮膜相を摺
動面に有するピストンリングを提供するものであ
る。 ニ 発明の構成 本発明は第1図に示すごとくピストンリング1
の摺動面にコバルト10〜40重量%、燐2〜15重量
%、ニツケル50〜88重量%を成分組成とする合金
基地3中に、粒径10μm以下の耐摩耗性粒子4を
5〜30容量%および粒径20μm以下の潤滑性粒子
5を5〜35容量%分散させた複合めつき層を有す
るピストンリングに係る。 ホ 作用効果 合金基地中に含まれる燐は熱硬化処理を行うと
該合金基地の硬度を増大させ、耐摩耗性、耐蝕性
の改善に優れた効果を示す。合金基地中に含まれ
る燐の含有量は2%以下ではその効果は少なく、
また15%を越すと基地を脆弱させ、皮膜の衝撃強
度、密着性を悪くさせる。燐の含有量は2〜15重
量%が望ましい。 コバルトの添加は合金基地の耐焼付性、耐蝕性
を改善させると共に圧壊疲労強度も向上させる。 合金基地中に含まれるコバルトの量が10重量%
より少ないと上記の効果が顕著に得られず、また
40重量%を越えてその効果に著しい変化は無い。
従つてコバルトの量は10〜40重量%が良い。 合金基地中に分散される耐摩耗性粒子として
は、アルミナ、窒化珪素、炭化珪素ジルコニア、
炭化チタンなどの金属窒化物、金属炭化物、金属
酸化物などが用いられる。 基地中に分散される耐摩耗性粒子の粒径が0.3μ
m以下、分散量が5容量%以下では耐摩耗性改善
の効果は少ない。一方耐粒径が10μm、分散量が
30容量%を越えると、皮膜の強度が低下するよう
になる。従つて耐摩耗粒子の平均粒径は0.3〜10μ
m、分散量は5〜30容量%が良く、望ましくは平
均粒径0.5〜5μm、分散量は15〜25容量%が良い。 耐摩耗性粒子として上記のごとく硬質粒子を分
散させることによりピストンリングの耐摩耗性、
耐焼付性の改善がなされる。 本発明では合金基地中に上記の耐摩耗性粒子の
他に、潤滑性粒子をも分散させている。ここで潤
滑粒子としては、例えばへき開性のある低摩擦係
数の固体潤滑剤がもちいられる。代表的な例とし
て二硫化モリブデン、フツ化黒鉛、窒化硼素、グ
ラフアイト、雲母、テフロンなどの粒子が用いら
れ、本発明に係るピストンリングはこの潤滑粒子
を分散させることによつて相手材の摩耗をも極め
て少なくしている。 基地中に分散される潤滑粒子の粒径は使用する
潤滑材にもよるが0.5μm以下、分散量が5容量%
以下では潤滑剤としての効果は少ない。また粒径
が20μm、分散量が35容量%を越えると、基地の
強度は低下し、運転中に皮膜が剥離する原因とな
る。 従つて潤滑粒子の粒径は0.5〜20μm、分散量は
5〜35容量%が良く、望ましくは粒径は1〜10μ
m、分散量は10〜30容量%が良い。 合金基地中に分散される耐摩耗粒子と潤滑粒子
の合計は皮膜の強度から40容量%以下が望まし
い。 ヘ 実施例 ピストンリング用鋼材(SKD−61)でなる先
端端面が5mm×5mmの鋼製試験片に、まず第一工
程としてその先端摺動面側に通例のニツケルスト
ライクめつき方法で厚さ5μのニツケルめつきを
形成しておき、次に第二工程として第1表の電気
めつき法の条件により厚さ120μmの窒化珪素お
よび窒化硼素を分散させたニツケルーコバルトー
燐めつき層を形成させた。 またこれとは別に上記電気めつき法と同じ材質
の試験片に第1表の無電解めつき法の条件で厚さ
100μmの窒化珪素よび窒化硼素を分散させたニ
ツケルーコバルトー燐めつき層を形成させた。
尚、無電解ニツケルめつきは、めつき層の密着性
が良好なのでニツケルストライクめつき工程を省
略した。 第三工程としては、前記各方法で得た各試験片
を370℃で1時間加熱硬化処理をした。 得られた試験片について、その試験片のめつき
層の組成とマイクロビツカース硬度計で測定した
結果を第2表にしめす。
B. Technical Field of the Invention The present invention relates to a piston ring having a dispersed plating layer. B. Prior art and problems For example, piston rings that slide at high speed are widely used with hard chrome plating to increase wear resistance, but this plating takes a considerable amount of time to process. In addition, there were problems with wear resistance, seizure resistance, corrosion resistance, etc. when used in engines using high lead gasoline as fuel or engines with high negative liquid. In order to solve the above problems, nitrides, carbides,
Composite plating methods that disperse wear-resistant particles such as oxides are attracting attention. This is called composite plating or dispersion plating, and by appropriately selecting the type, size, and amount of dispersed particles, a coating with excellent wear resistance, seizure resistance, and corrosion resistance can be created. It has already begun to be used in cylinders and sliding members such as piston rings. However, although the material itself has excellent wear resistance, there was a need to improve the wear resistance of the opposing material. C. Purpose of the invention The present invention solves the problems of conventional composite plating,
The present invention provides a piston ring having a coating phase on its sliding surface that has excellent wear resistance, seizure resistance, and corrosion resistance. D. Structure of the Invention The present invention provides a piston ring 1 as shown in FIG.
5 to 30 wear-resistant particles 4 with a particle size of 10 μm or less are added to the sliding surface of the alloy base 3, which has a composition of 10 to 40% by weight of cobalt, 2 to 15% by weight of phosphorus, and 50 to 88% by weight of nickel. The present invention relates to a piston ring having a composite plated layer in which 5 to 35% by volume of lubricating particles 5 having a particle size of 20 μm or less are dispersed. E. Functions and Effects Phosphorus contained in the alloy base increases the hardness of the alloy base when subjected to thermosetting treatment, and exhibits excellent effects in improving wear resistance and corrosion resistance. If the phosphorus content in the alloy matrix is less than 2%, the effect will be small;
Moreover, if it exceeds 15%, the base becomes brittle and the impact strength and adhesion of the film deteriorate. The phosphorus content is preferably 2 to 15% by weight. Addition of cobalt improves the seizure resistance and corrosion resistance of the alloy matrix, as well as the crushing fatigue strength. The amount of cobalt contained in the alloy matrix is 10% by weight
If the amount is less, the above effect will not be obtained significantly, and
There is no significant change in the effect beyond 40% by weight.
Therefore, the amount of cobalt is preferably 10 to 40% by weight. Wear-resistant particles dispersed in the alloy matrix include alumina, silicon nitride, silicon carbide zirconia,
Metal nitrides, metal carbides, metal oxides, etc. such as titanium carbide are used. The particle size of wear-resistant particles dispersed in the base is 0.3μ
If the amount of dispersion is less than m or less than 5% by volume, the effect of improving wear resistance will be small. On the other hand, the particle size resistance is 10μm, and the amount of dispersion is
If it exceeds 30% by volume, the strength of the film will decrease. Therefore, the average particle size of wear-resistant particles is 0.3 to 10μ.
m, the amount of dispersion is preferably 5 to 30% by volume, preferably the average particle diameter is 0.5 to 5 μm, and the amount of dispersion is preferably 15 to 25% by volume. By dispersing hard particles as described above as wear-resistant particles, the wear resistance of piston rings can be improved.
Seizure resistance is improved. In the present invention, in addition to the wear-resistant particles described above, lubricating particles are also dispersed in the alloy matrix. Here, as the lubricant particles, for example, a solid lubricant having a cleavage property and a low coefficient of friction is used. As typical examples, particles of molybdenum disulfide, graphite fluoride, boron nitride, graphite, mica, Teflon, etc. are used, and the piston ring according to the present invention reduces wear of the mating material by dispersing these lubricating particles. is also extremely small. The particle size of the lubricating particles dispersed in the base is 0.5 μm or less, depending on the lubricant used, and the amount of dispersion is 5% by volume.
Below that, the effect as a lubricant is low. If the particle size exceeds 20 μm and the amount of dispersion exceeds 35% by volume, the strength of the base will decrease, causing the film to peel off during operation. Therefore, the particle size of the lubricating particles is preferably 0.5 to 20 μm, and the dispersion amount is preferably 5 to 35% by volume, and preferably the particle size is 1 to 10 μm.
m, the amount of dispersion is preferably 10 to 30% by volume. The total amount of wear-resistant particles and lubricating particles dispersed in the alloy base is preferably 40% by volume or less in view of the strength of the coating. Example: As a first step, a steel specimen made of piston ring steel material (SKD-61) with a tip end surface of 5 mm x 5 mm was plated with a nickel strike plating method to a thickness of 5 μm on the sliding surface side of the tip using the usual nickel strike plating method. As a second step, a 120 μm thick nickel-cobalt phosphorus plating layer containing dispersed silicon nitride and boron nitride was formed using the electroplating conditions shown in Table 1. Ta. Separately, the thickness was measured using the electroless plating conditions shown in Table 1 on a test piece made of the same material as in the electroplating method above.
A nickel-cobalt-phosphorus plating layer containing 100 μm of silicon nitride and boron nitride was formed.
In addition, in electroless nickel plating, the adhesion of the plating layer is good, so the nickel strike plating step was omitted. In the third step, each test piece obtained by each of the above methods was heat-cured at 370° C. for 1 hour. Table 2 shows the composition of the plating layer of the obtained test piece and the results measured with a micro-Vickers hardness meter.

【表】【table】

【表】 次に本発明に係る摺動面の耐摩耗試験および焼
付試験について説明する。試験は第3図および第
4図に示すライダー方式摩耗試験機によつて行つ
た。その概要はステータホルダ1にシリンダー材
などとして使用される鋳鉄材FC25製で摺動面2
がホーニング仕上げされた円板3が取外し可能に
取り付けられており、その中央には裏側から注油
孔4を通して潤滑油が注油されるようにしてあ
り、図示しない油圧装置によつてステータホルダ
1には図において右方へ向けて所定圧力で押圧力
がかかるようにしてある。円板3に対向してロー
タ5上に取付けられた試験片保持具6の回転軸と
同心の円周上に等間隔に刻設された4個の取付孔
にそれぞれ試験片7が取付けられ、それぞれ所定
の表面処理が施された試験片の5×5mm角の先端
端面が円板3の摺動面2に接触し、図示しない駆
動装置によつて所定速度で回転する。試験はステ
ータ側の注油孔4から一定油温の潤滑油を摺動面
に供給しながら行なう。 摩耗試験は一定の押圧力の下でロータ5を回転
させ、試験片7が所定の摺動距離だけ円板3上を
摺動したときの試験片7とステータ円板3の摩耗
量によつて耐摩耗性を評価する。 またロータ5を回転させると試験片7と円板3
との摩耗によつてステータホルダ1には図示のよ
うにトルクFを生ずるので、このトルクFをスピ
ンドル8を介してロードセル9に作用させ、押圧
力の変化によるトルクFの変化を動歪計10で読
みトルクFが急激に上昇したときに焼付けが生じ
たとして、そのときの押圧力をもつて耐焼付き性
を評価する。 試験片7には、前記実施例で得られた試験片の
他に比較のため一般に耐摩耗性表面処理に用いら
れる硬質クロムめつき、耐摩耗性耐スカツフ性に
優れているモリブデン溶射、および本実施例の電
気めつき法浴組成から潤滑粒子を除いた窒化珪素
分散ニツケルーコバルトー燐めつきについても同
様の試験を行つた。 a 摩耗試験 潤滑油として加鉛ガソリンを燃料とする実機テ
ストに使用後のエンジンオイルSAE No.30にダ
スト(JIS2種)を0.2g/1添加した温度80℃の
油を用いて、注油孔4から供給しステータホルダ
1にはロータ側に向けて油圧100Kg/cm2の押圧力
を加えながら、試験片7の摩擦速度を3〜5m/
secとし、摺動距離が100Kmとなるまでロータ5を
回転させた。 試験結果を次の表3に示す。
[Table] Next, the wear resistance test and seizure test of the sliding surface according to the present invention will be explained. The test was conducted using a lidar type abrasion tester shown in FIGS. 3 and 4. The outline is that the stator holder 1 is made of cast iron FC25, which is used as a cylinder material, etc., and the sliding surface 2 is
A disc 3 with a honed finish is removably attached, and lubricating oil is supplied to the center of the disc through an oil fill hole 4 from the back side. In the figure, a predetermined pressing force is applied toward the right side. A test piece 7 is attached to each of four attachment holes carved at equal intervals on a circumference concentric with the rotation axis of a test piece holder 6 attached to the rotor 5 facing the disk 3, The 5 x 5 mm square tip ends of the test pieces each having been subjected to a predetermined surface treatment come into contact with the sliding surface 2 of the disk 3, and are rotated at a predetermined speed by a drive device (not shown). The test is conducted while lubricating oil at a constant temperature is supplied to the sliding surface from the oiling hole 4 on the stator side. In the wear test, the rotor 5 is rotated under a constant pressing force, and the amount of wear between the test piece 7 and the stator disk 3 is measured when the test piece 7 slides on the disk 3 by a predetermined sliding distance. Evaluate wear resistance. Also, when the rotor 5 is rotated, the test piece 7 and the disk 3
Torque F is generated in the stator holder 1 as shown in the figure due to wear between the stator holder 1 and the load cell 9. This torque F is applied to the load cell 9 through the spindle 8, and the change in torque F due to the change in pressing force is measured by the dynamic strain meter 10. Assuming that seizure occurred when the reading torque F suddenly increased, the seizure resistance was evaluated using the pressing force at that time. In addition to the test piece obtained in the above example, test piece 7 also included hard chrome plating, which is generally used for abrasion-resistant surface treatment, molybdenum spraying, which has excellent abrasion resistance and scuff resistance, and this material. Similar tests were conducted on silicon nitride-dispersed nickel-cobalt phosphorus plating in which the lubricating particles were removed from the electroplating bath composition of the example. a Wear test Using engine oil SAE No. 30 after use in an actual machine test using leaded gasoline as a lubricant and adding 0.2 g/l of dust (JIS type 2) to oil at a temperature of 80°C, While applying a hydraulic pressure of 100 kg/cm 2 to the stator holder 1 toward the rotor, the friction speed of the test piece 7 was increased from 3 to 5 m/cm2.
sec, and the rotor 5 was rotated until the sliding distance reached 100 km. The test results are shown in Table 3 below.

【表】 b 焼付試験 潤滑油は摩耗試験のものと同じものを使用し、
ステータホルダ1にはロータ側に向けてまず油圧
40Kg/cm2の押圧力を加え摩擦速度8m/secでロ
ータ5を3分間回転させ、次に押圧力を50Kg/cm2
として3分間回転させ、このようにして順次押圧
力を10Kg/cm2づつ段階的に増加して各々33分間保
持し、ロードセル9を介して動歪計10でトルク
Fの変化を記録し、急激にトルクの増加したとき
の押圧力から接触面圧を求めて焼付発生面圧とし
た。 試験結果を次の表4に示す。
[Table] b Seizure test Use the same lubricant as that for the wear test.
Stator holder 1 has hydraulic pressure first toward the rotor side.
Apply a pressing force of 40 kg/cm 2 and rotate the rotor 5 for 3 minutes at a friction speed of 8 m/sec, then increase the pressing force to 50 kg/cm 2
In this way, the pressing force was increased in steps of 10 kg/cm 2 and held for 33 minutes each, and the change in torque F was recorded with the dynamic strain meter 10 via the load cell 9. The contact surface pressure was determined from the pressing force when the torque increased and was used as the surface pressure at which seizure occurred. The test results are shown in Table 4 below.

【表】 実機試験 次に呼び径×巾×厚さが、86×1.5×3.3mm鋼製
第一圧力リングに本発明複合めつきを施し、ボア
径86mm、4気筒の水冷エンジンに組みつけて、高
鉛ガソリンを燃料とし6200rpm、全負荷で100時
間の高速耐久試験を行い、第一圧力リング摺動面
および鋳鉄(FC25)製シリンダライナ内周面の
摩耗を測定した。この第一圧力リングに施した複
合めつき層組成はコバルト25重量%、燐7.5重量
%、残ニツケルのニツケルーコバルトー燐合金基
地中に、平均粒径0.8μmの窒化珪素を20容量%、
平均粒径3μmの窒化硼素を15容量%分散させた
ものを使用した。 尚、比較例として前記実施例で使用したものと
同様の硬質クロムめつき、モリブデン溶射および
潤滑粒子を除いた窒化珪素分散ニツケルーコバル
トー燐めつき層をそれぞれ摺動面に形成させた第
一圧力リングについても試験を行つた。試験結果
は第2図に示す通りである。 表3、表4および第2図により本発明のニツケ
ルーコバルトー燐複合めつき層は従来のめつき層
に比べて、耐摩耗性、耐焼付性に優れているうえ
に、相手材を摩耗させることも少なくピストンリ
ングの表面処理層として好適であることが理解さ
れる。
[Table] Actual machine test Next, the composite plating of the present invention was applied to the steel first pressure ring with a nominal diameter x width x 3.3 mm, and it was assembled into a 4-cylinder water-cooled engine with a bore diameter of 86 mm. A high-speed durability test was conducted for 100 hours at 6200 rpm and full load using high-lead gasoline as fuel, and the wear on the first pressure ring sliding surface and the inner peripheral surface of the cast iron (FC25) cylinder liner was measured. The composition of the composite plating layer applied to this first pressure ring is 25% by weight of cobalt, 7.5% by weight of phosphorus, and 20% by volume of silicon nitride with an average grain size of 0.8 μm in a base of nickel-cobalt-phosphorus alloy with the remainder being nickel.
A dispersion of 15% by volume of boron nitride with an average particle size of 3 μm was used. As a comparative example, the same hard chromium plating, molybdenum thermal spraying, and silicon nitride dispersed nickel-cobalt-phosphorus plating layer excluding lubricating particles as used in the above examples were formed on the sliding surface at the first pressure. Rings were also tested. The test results are shown in Figure 2. Table 3, Table 4, and Figure 2 show that the Nikkei-cobalt-phosphorus composite plating layer of the present invention has superior abrasion resistance and seizure resistance compared to conventional plating layers, and also does not wear the mating material. It is understood that it is suitable as a surface treatment layer for piston rings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電気めつき法により得られた本発明
実施例を示す第一圧力リングのめつき層断面図
で、図中2はニツケルストライクめつき層、4は
硬質粒子、5は潤滑粒子を示す。第2図は、実機
試験の摩耗結果を示す図、第3図、第4図はライ
ダー摩耗試験機で、 図中1はステータホルダ、2は、摺動面、3
は、円板、4は、注油孔、5は、ロータ、6は、
試験片保持具、7は、試験片、8は、スピンド
ル、9は、ロードセル、10は、動歪計を示す
図。
FIG. 1 is a cross-sectional view of the plating layer of a first pressure ring showing an example of the present invention obtained by electroplating, in which 2 is a nickel strike plating layer, 4 is a hard particle, and 5 is a lubricant particle. shows. Figure 2 is a diagram showing the wear results of the actual machine test, Figures 3 and 4 are the lidar wear test machine, where 1 is the stator holder, 2 is the sliding surface, and 3 is the lidar wear test machine.
is a disc, 4 is a lubrication hole, 5 is a rotor, 6 is a
The figure shows a test piece holder, 7 is a test piece, 8 is a spindle, 9 is a load cell, and 10 is a dynamic strain meter.

Claims (1)

【特許請求の範囲】[Claims] 1 摺動面に複合めつき層を形成したピストンリ
ングであつて、該複合めつき層がコバルト10〜40
重量%、燐2〜15重量%、ニツケル50〜88重量%
の合金基地中に粒径0.3〜10μmの金属窒化物、金
属炭化物、金属酸化物等の耐摩耗性粒子を5〜30
容量%および二硫化モリブデン、フツ化黒鉛、窒
化硼素、グラフアイト、テフロンなどの固体潤滑
剤の粒径0.5〜20μmの潤滑性粒子を5〜35容量%
分散させたピストンリング。
1 A piston ring with a composite plating layer formed on the sliding surface, the composite plating layer containing cobalt 10 to 40
Weight%, Phosphorus 2-15% by weight, Nickel 50-88% by weight
5 to 30 wear-resistant particles such as metal nitride, metal carbide, metal oxide, etc. with a particle size of 0.3 to 10 μm are added to the alloy matrix.
Volume % and 5 to 35 volume % of lubricating particles with a particle size of 0.5 to 20 μm of solid lubricants such as molybdenum disulfide, graphite fluoride, boron nitride, graphite, Teflon, etc.
Dispersed piston rings.
JP1757585A 1984-12-24 1985-01-31 Wear resistant sliding member Granted JPS61177400A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1757585A JPS61177400A (en) 1985-01-31 1985-01-31 Wear resistant sliding member
DE19853545826 DE3545826A1 (en) 1984-12-24 1985-12-23 PISTON RING
US06/812,124 US4681817A (en) 1984-12-24 1985-12-23 Piston ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1757585A JPS61177400A (en) 1985-01-31 1985-01-31 Wear resistant sliding member

Publications (2)

Publication Number Publication Date
JPS61177400A JPS61177400A (en) 1986-08-09
JPH0243838B2 true JPH0243838B2 (en) 1990-10-01

Family

ID=11947707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1757585A Granted JPS61177400A (en) 1984-12-24 1985-01-31 Wear resistant sliding member

Country Status (1)

Country Link
JP (1) JPS61177400A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH677934A5 (en) * 1988-08-25 1991-07-15 Fluehmann Ag Werner
JPH0288736A (en) * 1988-09-22 1990-03-28 Riken Corp Cylinder
JP2704792B2 (en) * 1990-03-22 1998-01-26 日信工業株式会社 Cylinder device
JPH0525690A (en) * 1991-07-18 1993-02-02 Honda Motor Co Ltd Sliding member
DE59506236D1 (en) * 1995-02-02 1999-07-22 Sulzer Innotec Ag Non-slip composite coating
JP2002313138A (en) * 2001-04-18 2002-10-25 Furukawa Electric Co Ltd:The Aluminum alloy conductor for electric vehicle
JP2003078318A (en) * 2001-09-03 2003-03-14 Anten Corp Antenna
NL1025088C2 (en) * 2003-12-19 2005-06-28 Skf Ab Roller bearing with nickel-phosphorus coating.
US7897265B2 (en) * 2006-01-26 2011-03-01 Hamilton Sundstrand Corporation Low cost, environmentally favorable, chromium plate replacement coating for improved wear performance
JP6278652B2 (en) * 2013-10-02 2018-02-14 株式会社シマノ Sliding member, bicycle component using sliding member, fishing tackle component using sliding member, and manufacturing method of sliding member
JP6209418B2 (en) * 2013-10-02 2017-10-04 株式会社シマノ Sliding member, bicycle component using sliding member, and fishing tackle component using sliding member
KR20150039548A (en) 2013-10-02 2015-04-10 가부시키가이샤 시마노 Slide member, bicycle component using slide member, fishing tackle component using slide member, and method of manufacturing slide member
US11274260B2 (en) * 2013-10-02 2022-03-15 Shimano Inc. Slide member, bicycle component using slide member, and fishing tackle component using slide member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496019A (en) * 1972-04-21 1974-01-19
JPS5383938A (en) * 1976-12-29 1978-07-24 Suzuki Motor Co Complex alloy plating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496019A (en) * 1972-04-21 1974-01-19
JPS5383938A (en) * 1976-12-29 1978-07-24 Suzuki Motor Co Complex alloy plating method

Also Published As

Publication number Publication date
JPS61177400A (en) 1986-08-09

Similar Documents

Publication Publication Date Title
US4681817A (en) Piston ring
JPH0243838B2 (en)
JPS6045717B2 (en) Piston rings for internal combustion engines
JPH0231219B2 (en) PISUTONRINGU
JPS63282295A (en) Wear resistant surface layer
JPS61246400A (en) Wear resistant sliding member
JP2552638B2 (en) piston ring
JPS6316478B2 (en)
JPH0239584B2 (en)
JPH0289874A (en) Piston ring
JPH06100283B2 (en) piston ring
JP3059793B2 (en) piston ring
JPH0413897A (en) Piston ring
JP2865419B2 (en) piston ring
JPH03134373A (en) Piston ring
JPH0389077A (en) Cylinder
JPH0288736A (en) Cylinder
JPH0697067B2 (en) piston
JPH0413898A (en) Piston ring
JPS63297598A (en) Wear-resistant sliding member
JPH0552263A (en) Piston ring
JPH03134374A (en) Piston ring
JPH0285571A (en) Steel piston ring for internal combustion engine
JPH0374680A (en) Piston ring
JPH01182668A (en) Piston ring