JPH0243769B2 - SENIKYOKAFUKUGOZAIRYONOTAMENOICHIJIKOSEIBUZAI - Google Patents

SENIKYOKAFUKUGOZAIRYONOTAMENOICHIJIKOSEIBUZAI

Info

Publication number
JPH0243769B2
JPH0243769B2 JP7921982A JP7921982A JPH0243769B2 JP H0243769 B2 JPH0243769 B2 JP H0243769B2 JP 7921982 A JP7921982 A JP 7921982A JP 7921982 A JP7921982 A JP 7921982A JP H0243769 B2 JPH0243769 B2 JP H0243769B2
Authority
JP
Japan
Prior art keywords
metal
fiber
materials
base
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7921982A
Other languages
Japanese (ja)
Other versions
JPS58197046A (en
Inventor
Ayao Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7921982A priority Critical patent/JPH0243769B2/en
Publication of JPS58197046A publication Critical patent/JPS58197046A/en
Publication of JPH0243769B2 publication Critical patent/JPH0243769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、各種の繊維強化複合材料の製造に際
し添加するための繊維素材を所望特性に改変した
一次構成部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a primary structural member in which a fiber material is modified to have desired properties to be added during the production of various fiber reinforced composite materials.

金属、プラスチツク等の基材と各種繊維素材で
ある一次構成部材とを適宜混合して得られる繊維
強化複合材料は、基材単体では得られない特殊な
性質を付与することが可能であることから幅広い
需要がある。繊維素材としては、炭素、炭化ケイ
素、ガラス、アルミナ、シリカ等の無機素材をは
じめケプラー、耐熱ナイロン等の有機素材および
金属素材等があり、これら素材を目的に応じて適
宜加工したものが使用される。これら繊維素材を
包含すべき基材としては金属、金属粉末入りプラ
スチツク、またはプラスチツク等が使用される。
Fiber-reinforced composite materials, which are obtained by suitably mixing base materials such as metals and plastics with primary components made of various fiber materials, can provide special properties that cannot be obtained from the base materials alone. There is a wide range of demand. Fiber materials include inorganic materials such as carbon, silicon carbide, glass, alumina, and silica, as well as organic materials such as Kepler and heat-resistant nylon, and metal materials, and these materials are processed appropriately depending on the purpose. Ru. As the base material to contain these fiber materials, metal, plastic containing metal powder, plastic, etc. are used.

このような基材単独の性質に対して、例えば、
強度増加、軽量化、耐疲労性または耐熱性の向
上、導電性または透磁性を付与すること等が可能
である。そのため、多種多様の基材および繊維素
材の組合せから成る複合材料の研究開発が行なわ
れている。
Regarding the properties of such a base material alone, for example,
It is possible to increase strength, reduce weight, improve fatigue resistance or heat resistance, and impart electrical conductivity or magnetic permeability. For this reason, research and development are being conducted on composite materials made of combinations of a wide variety of base materials and fiber materials.

このような複合材料はその基材の種類によつ
て、金属系とプラスチツク系に大別される。
Such composite materials are broadly classified into metal-based and plastic-based based on the type of base material.

金属を基材とする金属複合材料は、極めて多種
類であり、加工性をはじめとする特性の相違によ
り、極く限定された例を除き複合加工工程に難が
ある。例えば、ボロン繊維をチタン箔の間に並べ
てロールを通過させた後高温炉で拡散接合させ、
又は直接ホツトロールで接合させる高温拡散接合
法や、あるいは整列させた繊維を溶融金属中を通
して引上げると同時に急速に冷却凝固させる溶融
浸透法等が試みられ、かなりの成果を収めてい
る。しかしながら、価格、加工性等の点で最も普
及しているアルミ系合金を炭素系繊維で強化する
ことは従来殆んど不可能であつた。
There are an extremely wide variety of metal composite materials that use metal as a base material, and due to differences in properties such as workability, there are difficulties in composite processing except in very limited cases. For example, boron fibers are lined up between titanium foils, passed through a roll, and then diffusion bonded in a high-temperature furnace.
Other methods have been tried, such as a high-temperature diffusion bonding method in which the fibers are directly bonded using hot rolls, or a melt infiltration method in which aligned fibers are drawn through molten metal and simultaneously cooled and solidified rapidly, with considerable success. However, in terms of cost, workability, etc., it has been almost impossible to strengthen aluminum alloys, which are the most popular, with carbon fibers.

このように繊維強化金属複合材料(FRM)が
優れた特性を認識されながら広く実用化されない
理由は主として以下の点にある。
Although fiber-reinforced metal composite materials (FRM) are recognized for their excellent properties, they are not widely put into practical use mainly for the following reasons.

1 繊維素材の複合化に要する温度が比較的高い
のに対して基材金属の融点が低いため、接合過
程中に基材金属の炭化物が繊維素材表面に生成
し、両者間の接合が不可能となる。
1 The temperature required to composite the fiber material is relatively high, but the melting point of the base metal is low, so carbides of the base metal are generated on the surface of the fiber material during the joining process, making it impossible to join the two. becomes.

2 繊維素材表面が容易に酸化し、酸化被膜が生
成するので、繊維材と基材との剥離が発生す
る。
2. Since the surface of the fiber material is easily oxidized and an oxide film is formed, peeling between the fiber material and the base material occurs.

一方、プラスチツクを基材とする繊維強化プラ
スチツク複合材料(FRP)は、早くから研究が
進み、加工工程も順次開発されている。その結
果、プラスチツクの本質的弱点である低強度、非
剛性等が改良され、その用途も拡大しつゝある。
すなわち、強度的に十分に改良された繊維強化プ
ラスチツク複合材料は、さらに金属材料と代替す
る用途も考慮されつつある。この場合、材料全体
として電気的および磁気的特性等は、金属に類似
することが要求されるが、実際はプラスチツク基
材の特性によつて左右され、絶縁性を呈する。例
えば、電磁波遮蔽材等としてFRPを使用する場
合は高導電率、高透磁率を付与しなければならな
い。従来は炭素粉末等の導電粒子又は第1図aの
ように導電ガラス等の繊維1をプラスチツク基材
2に混入する方法が試みられているが、同図bに
示すように金属と比較した電気抵抗率において満
足すべきものは得られていない。また、FRPに
対して金属材料との代替性を付与するためには、
その表面に電着塗装等の加工を可能にしなければ
ならない。
On the other hand, research into fiber-reinforced plastic composites (FRP), which uses plastic as a base material, has been progressing from an early stage, and processing processes are being developed one after another. As a result, the essential weaknesses of plastics, such as low strength and non-rigidity, have been improved, and their uses are expanding.
In other words, fiber-reinforced plastic composite materials whose strength has been sufficiently improved are being considered for use as a substitute for metal materials. In this case, the electrical and magnetic properties of the material as a whole are required to be similar to those of metal, but in reality it depends on the properties of the plastic base material and exhibits insulating properties. For example, when FRP is used as an electromagnetic wave shielding material, it must be given high electrical conductivity and high magnetic permeability. Conventionally, attempts have been made to mix conductive particles such as carbon powder or fibers 1 such as conductive glass into the plastic base material 2 as shown in Figure 1a, but as shown in Figure 1b, the electrical A satisfactory resistivity was not obtained. In addition, in order to provide FRP with substitutability with metal materials,
It must be possible to process the surface by electrodeposition coating or the like.

本発明の目的は、表面特性が繊維強化複合材料
を構成するために適合するように改変された一次
構成部材を提供することである。
It is an object of the invention to provide a primary component whose surface properties are adapted to constitute a fiber-reinforced composite material.

この目的は、その表面に所望種類の金属アモル
フアス薄膜が形成された繊維素材から成る一次構
成部材によつて達成される。この場合、繊維強化
複合材料用の一次構成部材においては、繊維素材
表面が主として基材金属に対して親和接合性を有
するように改変され、また繊維強化プラスチツク
複合材料用の一次構成部材においては、繊維素材
自体が主として金属に類似する電気的磁気特性を
呈するように改変される。しかしながら、薄膜形
成金属の選定により、上記以外の特性も付与し得
るものである。
This object is achieved by a primary component made of a fibrous material on whose surface a metal amorphous film of the desired type is formed. In this case, in the primary constituent member for the fiber-reinforced composite material, the surface of the fiber material is modified so as to mainly have affinity bonding to the base metal, and in the primary constituent member for the fiber-reinforced plastic composite material, The fiber material itself is modified to exhibit electrical and magnetic properties primarily similar to metals. However, properties other than those described above can be imparted by selecting the thin film-forming metal.

このようなアモルフアス金属薄膜を繊維素材表
面に形成するには、同一出願人にかかる特許出願
昭和56−172122号(特開昭58−73765号公報参照)
に開示する技術、すなわち、処理室を減圧して真
空状態にし、付着素材(所望金属)を処理室内に
おいて蒸発せしめ、基板(繊維素材)および蒸発
源に無線周波電界を印加して蒸発せしめられてい
る付着素材を陽イオン化し、基板に直流負バイア
スを印加して、陽イオン化付着素材を基板表面に
誘引すると同時に、蒸発源に直流正バイアスを印
加して陽イオンの基板への衝突を加速せしめ、基
板表面に付着素材である金属又は金属化合物によ
るアモルフアス薄膜を形成させる、一連の工程よ
り成る技術が適用し得る。
In order to form such an amorphous metal thin film on the surface of a fiber material, patent application No. 172122, Showa 56-1972 (refer to Japanese Patent Application Laid-open No. 73765, Showa 58) filed by the same applicant is required.
In other words, the process chamber is depressurized to a vacuum state, the deposited material (desired metal) is evaporated in the process chamber, and a radio frequency electric field is applied to the substrate (textile material) and the evaporation source to evaporate it. At the same time, applying a DC negative bias to the substrate to attract the cationized adhesion material to the substrate surface, and applying a DC positive bias to the evaporation source to accelerate the collision of the cations with the substrate. , a technique consisting of a series of steps can be applied to form an amorphous thin film of a metal or metal compound as an adhesion material on the surface of the substrate.

本発明にかかる、繊維素材表面に各種金属のア
モルフアス薄膜が形成された一次構成部材によつ
て、任意特性が得られ、従来困難視された繊維強
化複合材料が容易に得られ、従来不可能とされた
用途にも適用可能となる利点が得られる。
By using the primary component of the present invention in which an amorphous thin film of various metals is formed on the surface of a fiber material, arbitrary properties can be obtained, and fiber-reinforced composite materials, which were considered difficult in the past, can be easily obtained, which is impossible in the past. This has the advantage that it can be applied to other applications.

以下添付図を参照して本発明を詳述する。 The present invention will be described in detail below with reference to the accompanying drawings.

第2図は炭素繊維11の表面にサフアイヤ
(Al2O3)のアモルフアス薄膜12を約300Å、さ
らにアルミニウムのアモルフアス薄膜13を約
500Åの膜厚となるように形成した繊維強化金属
複合材料用の一次構成部材の実施例のモデル図で
ある。この実施例にかかる一次構成部材は特にア
ルミニウム基材を使用する複合材料用として適
し、以下のような特徴を有する。
FIG. 2 shows an amorphous thin film 12 of sapphire (Al 2 O 3 ) of about 300 Å on the surface of a carbon fiber 11, and an amorphous thin film 13 of aluminum of about 300 Å.
FIG. 2 is a model diagram of an example of a primary structural member for a fiber-reinforced metal composite material formed to have a film thickness of 500 Å. The primary structural member according to this embodiment is particularly suitable for use in composite materials using an aluminum base material, and has the following characteristics.

1 親和接合性が良好であり、薄板状、球状、棒
状等多様な形状の複合材料の加工が容易であ
る。
1. It has good affinity bonding properties, and it is easy to process composite materials in various shapes such as thin plate, spherical, and rod shapes.

2 金属酸化物(Al2O3)および金属(Al)から
なるアモルフアス薄膜がガラス状であり、表面
が容易に酸化されず、部材および基材金属間の
剥離が生じない。
2. The amorphous thin film made of metal oxide (Al 2 O 3 ) and metal (Al) is glass-like, the surface is not easily oxidized, and peeling between the member and the base metal does not occur.

ここに開示された実施例のアモルフアス金属薄
膜は、基材金属がアルミニウムであることを考慮
し、サフアイヤ(Al2O3)およびアルミニウム
(Al)が採用された。その他の基材金属が使用さ
れる場合は、それに合わせてルビー(Al2O3)、
SiO2等の金属酸化物、モネル、ガーネツト、ト
リバロイ等の金属化合物、またはAl,Ti,Cr,
Ni,Cu等の単一金属を適宜使用し、これらを単
層または適宜組合わせた複合層とすることができ
る。例えば基材金属としてTi合金の場合は繊維
素材にTi薄膜を被層し、あるいはCr合金を基材
金属とする場合はCr薄膜を被層した繊維素材を
使用すると都合がよい。
For the amorphous metal thin film of the example disclosed herein, sapphire (Al 2 O 3 ) and aluminum (Al) were used in consideration of the fact that the base metal is aluminum. If other base metals are used, ruby (Al 2 O 3 ),
Metal oxides such as SiO 2 , metal compounds such as monel, garnet, tribaloy, or Al, Ti, Cr,
A single metal such as Ni or Cu may be appropriately used to form a single layer or a composite layer formed by appropriately combining these metals. For example, when the base metal is a Ti alloy, it is convenient to use a fiber material coated with a Ti thin film, or when a Cr alloy is used as the base metal, it is convenient to use a fiber material coated with a Cr thin film.

一方、一次構成部材が繊維強化プラスチツク複
合材料(FRP)に使用される場合は、比較的早
くから研究開発が進み、親和接合性には殆んど問
題がなく、前述の如く、完成材料の電気的または
磁気的特性を改変する点に重点が置かれる。この
場合、例えば導電性を付与するためには、繊維素
材表面にアルミニウムのアモルフアス薄膜の被層
された一次構成部材を使用すると好都合である。
金属アルミニウムに加えて金属酸化物であるサフ
アイヤ(Al2O3)のガラス状アモルフアス薄膜が
施されると、その表面は容易に酸化しない部材と
なる。したがつて、基材プラスチツクとの剥離が
防止され、完成材料の強度低下を防止することが
できる。
On the other hand, when the primary component is used for fiber-reinforced plastic composites (FRP), research and development has progressed relatively early, there are almost no problems with affinity bonding, and as mentioned above, the electrical Or the emphasis is on modifying magnetic properties. In this case, for example, in order to impart electrical conductivity, it is advantageous to use a primary component whose surface is coated with an amorphous aluminum film.
When a glassy amorphous thin film of saphire (Al 2 O 3 ), which is a metal oxide, is applied in addition to metallic aluminum, the surface becomes a member that does not easily oxidize. Therefore, peeling from the base plastic is prevented, and a decrease in strength of the finished material can be prevented.

第3図aは本発明にかかる、導電性の付与され
た一次構成部材31を格子状になるように基材プ
ラスチツク32中に混入したFRPの拡大図であ
り、同図bのようにほぼ金属に匹敵する電気抵抗
率が得られる。
FIG. 3a is an enlarged view of FRP according to the present invention, in which a primary structural member 31 imparted with conductivity is mixed into a base plastic 32 in a lattice shape, and as shown in FIG. An electrical resistivity comparable to that obtained can be obtained.

導電性以外の磁気特性その他の特性が要求され
る場合は、前述の金属複合材料における一次構成
部材と同様に、各種の金属酸化物、金属化合物ま
たは単一金属を採用し、また単層被膜ないしは多
層被膜とすることも任意である。
If magnetic properties or other properties other than conductivity are required, various metal oxides, metal compounds, or single metals may be used, as well as single-layer coatings or A multilayer coating is also optional.

その他本発明の範囲内において各種の変更また
は変形が可能であることは明らかであろう。
It will be obvious that various other changes and modifications can be made within the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来技術にかかる繊維強化プラ
スチツク複合材料のモデル図および電気抵抗率を
示す図表である。第2図は本発明にかかる一次構
成部材の実施例を示す拡大図である。第3図a,
bは本発明にかかる繊維強化プラスチツク複合材
料のモデル図および電気抵抗率を示す図表であ
る。 1,31:一次構成部材、2,32:プラスチ
ツク基材、11:繊維素材、12:a−Al2O3
膜、13:a−Al薄膜。
FIGS. 1a and 1b are a model diagram and a chart showing electrical resistivity of a fiber-reinforced plastic composite material according to the prior art. FIG. 2 is an enlarged view showing an embodiment of the primary component according to the present invention. Figure 3a,
b is a model diagram and a chart showing electrical resistivity of the fiber-reinforced plastic composite material according to the present invention. 1, 31: Primary structural member, 2, 32: Plastic base material, 11: Fiber material, 12: a-Al 2 O 3 thin film, 13: a-Al thin film.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維強化複合材料のための一次構成部材であ
つて、繊維素材の表面上の特性を改変するため
に、金属、金属化合物、金属酸化物等のアモルフ
アス薄膜が繊維素材表面に被着せしめられたこと
を特徴とする一次構成部材。
1 A primary component for fiber-reinforced composite materials, in which an amorphous thin film of metal, metal compound, metal oxide, etc. is deposited on the surface of the fiber material in order to modify the surface properties of the fiber material. A primary structural member characterized by:
JP7921982A 1982-05-13 1982-05-13 SENIKYOKAFUKUGOZAIRYONOTAMENOICHIJIKOSEIBUZAI Expired - Lifetime JPH0243769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7921982A JPH0243769B2 (en) 1982-05-13 1982-05-13 SENIKYOKAFUKUGOZAIRYONOTAMENOICHIJIKOSEIBUZAI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7921982A JPH0243769B2 (en) 1982-05-13 1982-05-13 SENIKYOKAFUKUGOZAIRYONOTAMENOICHIJIKOSEIBUZAI

Publications (2)

Publication Number Publication Date
JPS58197046A JPS58197046A (en) 1983-11-16
JPH0243769B2 true JPH0243769B2 (en) 1990-10-01

Family

ID=13683807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7921982A Expired - Lifetime JPH0243769B2 (en) 1982-05-13 1982-05-13 SENIKYOKAFUKUGOZAIRYONOTAMENOICHIJIKOSEIBUZAI

Country Status (1)

Country Link
JP (1) JPH0243769B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668578A (en) * 1984-11-13 1987-05-26 American Cyanamid Company Surface treated metallic filaments
JPS6233870A (en) * 1985-08-06 1987-02-13 日本エステル株式会社 Reinforcing fiber material

Also Published As

Publication number Publication date
JPS58197046A (en) 1983-11-16

Similar Documents

Publication Publication Date Title
US4911987A (en) Metal/ceramic or ceramic/ceramic bonded structure
US5653856A (en) Methods of bonding targets to backing plate members using gallium based solder pastes and target/backing plate assemblies bonded thereby
US3721534A (en) Method of forming protective coatings on ferrous metal and the resulting article
US3001269A (en) Composite material, brazing alloys and process of manufacture
EP0533105B1 (en) Carbon member having a metal spray coating
JPS62182287A (en) Method for coating substrate
US2966423A (en) Method of producing metal deposits
US6607787B2 (en) Process for producing a coating on a refractory structural member
US4562090A (en) Method for improving the density, strength and bonding of coatings
CN110438457A (en) A kind of modified diamond particles, method of modifying, the application as reinforced phase and obtained metal-base composites
JPH0243769B2 (en) SENIKYOKAFUKUGOZAIRYONOTAMENOICHIJIKOSEIBUZAI
US2361962A (en) Method of metal-clading
US5229165A (en) Plasma sprayed continuously reinforced aluminum base composites
US3460971A (en) Method for the production of composite materials and articles produced thereby
US3446643A (en) Method of coating articles with titanium and related metals and the article produced
US5750202A (en) Preparation of gold-coated molybdenum articles and articles prepared thereby
JPH07126827A (en) Composite film of metallic surface and its formation
JPH02232326A (en) Copper material having good joinability with ceramic
JPS5942064B2 (en) Manufacturing method of fiber reinforced composite material
Akhil et al. Squeeze infiltration processing and structural characteristics of lightweight aluminum-carbon metal matrix composites
JPH01207994A (en) Base material for electromagnetic wave shielding
JPH0258347B2 (en)
JPS60145980A (en) Ceramic sintered body with metallized coating and manufacture
JPH02263735A (en) Crystallized glass coated with metal or the like by thermal spraying
JPH04110402A (en) Manufacture of capillary material