JPH0243699B2 - - Google Patents

Info

Publication number
JPH0243699B2
JPH0243699B2 JP56118239A JP11823981A JPH0243699B2 JP H0243699 B2 JPH0243699 B2 JP H0243699B2 JP 56118239 A JP56118239 A JP 56118239A JP 11823981 A JP11823981 A JP 11823981A JP H0243699 B2 JPH0243699 B2 JP H0243699B2
Authority
JP
Japan
Prior art keywords
weight
sintered body
electrical conductivity
silicon nitride
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56118239A
Other languages
Japanese (ja)
Other versions
JPS5820782A (en
Inventor
Masaaki Honda
Matsuo Higuchi
Hiroshi Tsukada
Tatsuya Nishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56118239A priority Critical patent/JPS5820782A/en
Publication of JPS5820782A publication Critical patent/JPS5820782A/en
Publication of JPH0243699B2 publication Critical patent/JPH0243699B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は電気伝導性にすぐれ、かつ放電加工
が可能な導電性窒化けい素焼結体およびその製造
方法に関するものである。 <従来の技術> 窒化けい素焼結体(以下、これをSi3N4焼結体
と略記する)は耐酸化性にすぐれ、熱膨脹率が小
さくかつ高温強度が高い材料として注目されてお
り、近年このSi3N4焼結体をタービンエンジンの
ブレードやノズルあるいは熱交換器部材などの高
温構造材料として使用するための研究開発が活発
に行なわれている。 しかしながら、このSi3N4焼結体は通常粉末冶
金法によつて製造されるために、焼結体として複
雑な形状を得ることはむづかしく、また寸法や面
精度も精密なものは得られにくい。 従つて、研削等の機械加工を加えて製品として
いるのが現状である。 <発明が解決しようとする問題点> ところが周知のように、Si3N4焼結体は高硬度
物質であるから、機械加工が困難であり、この加
工を行なつたとしても多大の時間と労力を要する
こと、さらに比較的単純な形状にしか加工できな
いこと、特にタービンブレードのような薄肉の部
品を得ることは不可能であること、などSi3N4
結体の加工技術上の種々の制約が該焼結体の応用
面における開発の妨げとなつているのである。 一般に焼結体を用いて複雑な形状の部品を製造
するための1つの手段として放電加工があること
は知られているが、従来からSi3N4焼結体は完全
な絶縁体であつて、放電加工は行なえないものと
考えられたきたのである。 本発明者らは上記のような従来の考えを打破し
て、Si3N4に対する放電加工を可能にするための
方法につき種々検討を行なつた。 もちろんSi3N4に電気伝導性の物質を多量に添
加すれば放電加工が可能になることは容易に推考
しうることである。しかし、この場合添加する物
質およびその添加量によつてはSi3N4焼結体の性
質に大きな影響を与えてしまうのである。 例えば、電気伝導度のよいCuやNiなどの金属
を添加した場合、これら金属とSi3N4との濡れ性
が悪いために焼結が十分に行なえず、従つて満足
する強度が得られない。 また一方、Al2O3、Y2O3、MgOなどの酸化物
を焼結助剤としてSi3N4に加えた場合には、添加
物質の電気伝導度が低いため、電気伝導度の向上
はみられず、また放電加工は不可能である。 そこで本発明者らは、Si3N4の性質に大きな変
化を与えることなく電気伝導度を向上せしめる添
加物質について検討を行なつた結果、4a、5a、
6a族元素の炭化物、窒化物、硼化物およびB4Cよ
り選んだ1種以上を添加物質として加えればよい
ことを見出した。 これら4a、5a、6a族元素の炭化物、窒化物や
硼化物は、周知のように高硬度物質で高温での強
度低下も少ない物質であり、互いに広い組成範囲
の固溶体を作り、その固溶体の性質も個々の性質
と大差がない。B4Cも高温での強度低下が少な
い。 しかし、これらの物質は高温強度が高いとはい
えSi3N4に比べると、低レベルにあり耐酸化性が
劣り、またSi3N4粉末との混合粉末は焼結性が悪
い。 <問題点を解決するための手段> 本発明者らは、問題点を解決するべく、種々検
討を行なつた結果、Si3N4粉末に上記した4a、
5a、6a族の炭化物、窒化物、硼化物およびB4Cの
うちの1種以上の粉末を加える場合にはその量を
10〜20重量%とし、これに周知の焼結助剤のうち
Y2O3、Sc2O3、La2O3、Ce2O3、Al2O3、Cr2O3
MgOの少なくとも1種以上の酸化物粉末を2〜
20重量%加えた混合粉末を用いて焼結を行なつた
Si3N4焼結体は密度が90%以上であり、かつ電気
伝導性が良くて放電加工が可能であることを見出
したのである。 <作用> 上記使用する各粉末のうち焼結助剤としての酸
化物粉末は、Si3N4の焼結性向上をはかるもので
あり、その使用量を2〜20重量%と限定したの
は、2重量%以下では焼結性を向上せしめる効果
がなく、90重量%以上の密度を有する焼結体が得
られないためであり、また20重量%以上を用いる
と、Si3N4の有する特徴である高硬度、低熱膨脹
率、高熱伝導などの特性を失なうためである。 また、4a、5a、6a族元素の炭化物、窒化物等
はSi3N4焼結体に電気伝導性を付与するためのも
のであつて、それら自身も電気伝導性の高い化合
物である。 そのような化合物の使用量を10〜20重量%とす
るのは、10重量%以下では充分なる電気伝導性の
付与に欠け、その値が10-3Ω-1cm-1以下となるた
めであり、また20重量%以上を用いると、Si3N4
の有する高硬度などさきにのべた特性を失なうか
らである。 しかしながら、本発明の焼結体において放電加
工のみを単に向上させるだけであれば、上述の電
気伝導性を付与する物質は20重量%より多量に添
加することもでき、その量としては50重量%程度
まで可能である。 この4a、5a、6a族元素の炭化物、窒化物、硼
化物としては、多くの化合物が存在するが、この
発明ではそれら多くの化合物のなかでも特に
TaN、TaC、TiC、TiN、TiB2、HfC、ZrN、
WCが電気伝導度、焼結体の高温強度、耐熱疲
労、耐食性などの向上に大きく寄与するのであ
り、このような化合物が10重量%以下の添加で
Si3N4焼結体の電気伝導度が急激に上昇して10-3
Ω-1cm-1以上の値を示し、かつ放電加工が可能と
なるということは響くべき知見である。 図面はSi3N4にTaNを添加した場合における
TaNの添加量と電気伝導度の関係を示したもの
である。 なお図中の理論値は、 σtotal=σSi3N4×σTaN+2σSi3N4−2VTaN(σ
Si3N4−σTaN)/σTaN−2σSi3N4+VTaN(σSi3N4−σ
TaN) (但し、σSi3N4はSi3N4の電気伝導度、σTaNはTaN
の電気伝導度、VTaNはTaNの容積比を示す。) で表わされるMaxwellの方程式に基づいて計算
したものである。 この発明におけるSi3N4焼結体において、添加
物質は焼結後も第2相として分散した組織となる
が、このようにSi3N4焼結体の電気伝導度が理論
値に比べて極めてすぐれているのは、Si3N4マト
リツクス中に分散された第2相がSi3N4粒子周囲
に拡散および反応して導電性のよい複合相が形成
され、この複合相が連続することにより、Si3N4
焼結体の導電性が向上するためであると考えられ
る。 この第2相形成時に初期Si3N4に含有される酸
素量の効果が大きく、5重量%以上の酸素を含む
場合には前記した焼結助剤としての酸化物の添加
量の僅かな変動で電気特性が大幅に変化して製造
工程の不安定要因となるのである。 また、この放電加工可能なSi3N4焼結体を製造
するに当り、Si3N4および添加物質の平均粒子径
は、1μ以下であり、焼結温度は1700〜2000℃が
適当である。 これは、平均粒子径が1μ以上ではSi3N4と添加
物質が均一に分散しにくく、かつ焼結温度が1700
℃以下では添加物質がSi3N4粒子周囲に拡散およ
び反応しにくく、かつ90%以上の密度を有する焼
結体が得られないためであり、従つて導電性のあ
る複合相が充分に形成されないためである。 また焼結温度が2000℃以上になると、Si3N4
分解が起こり、密度が90%の強度、耐食性にすぐ
れている焼結体を得ることができないためであ
る。 上記したこの発明における焼結はその雰囲気と
して、N2、NH3、He、Ar、Ne、H2、COの1
種以上よりなるガス雰囲気がよく、これは混合ガ
スまたは焼結過程に応じてガスの種類を変えるこ
とによつても可能である。 なお、この発明においてSi3N4に添加する焼結
助剤としての酸化物粉末と4a、5a、6a族元素の
炭化物、窒化物、硼化物にあつてはその範畴に同
一の物質も含まれているが、実際の使用に当つて
は同一物質の使用は避けることが好ましい。 <実施例> 次にこの発明を実施例により詳細に説明する。 実施例 1 Si3N4粉末に5重量%のMgOを添加し、これに
さらにTaNあるいはTiCを第1表に示すような
種々の量比で添加して混合したのち、1700℃で30
分間200Kg/cm2の条件下で加圧焼結を行なつて
Si3N4焼結体を得た。 夫々のSi3N4焼結体について電気伝導度の測定
を行ない、かつ放電加工の可否について判定を行
なつたところ第1表に示す結果が得られた。
<Industrial Application Field> The present invention relates to a conductive silicon nitride sintered body that has excellent electrical conductivity and can be subjected to electrical discharge machining, and a method for manufacturing the same. <Conventional technology> Silicon nitride sintered bodies (hereinafter abbreviated as Si 3 N 4 sintered bodies) have attracted attention as a material with excellent oxidation resistance, low coefficient of thermal expansion, and high high-temperature strength, and have been gaining attention in recent years. Research and development efforts are being actively conducted to use this Si 3 N 4 sintered body as a high-temperature structural material for turbine engine blades, nozzles, heat exchanger components, and the like. However, since this Si 3 N 4 sintered body is usually manufactured by powder metallurgy, it is difficult to obtain a complex shape as a sintered body, and it is difficult to obtain one with precise dimensions and surface accuracy. Hateful. Therefore, at present, products are manufactured by adding machining processes such as grinding. <Problems to be solved by the invention> However, as is well known, since Si 3 N 4 sintered bodies are highly hard materials, machining is difficult, and even if this process were performed, it would take a lot of time. There are various processing techniques for Si 3 N 4 sintered bodies, such as the fact that it requires labor, that it can only be processed into relatively simple shapes, and that it is especially impossible to obtain thin-walled parts such as turbine blades. These limitations are hindering the development of applications for the sintered body. It is generally known that electric discharge machining is one way to manufacture parts with complex shapes using sintered bodies, but Si 3 N 4 sintered bodies have traditionally been completely insulating. It was thought that electrical discharge machining could not be performed. The inventors of the present invention broke away from the conventional thinking as described above and conducted various studies on methods to enable electrical discharge machining of Si 3 N 4 . Of course, it is easy to infer that electrical discharge machining becomes possible if a large amount of electrically conductive substance is added to Si 3 N 4 . However, in this case, the properties of the Si 3 N 4 sintered body are greatly affected depending on the substance added and the amount added. For example, when metals such as Cu and Ni, which have good electrical conductivity, are added, sintering cannot be performed sufficiently due to poor wettability between these metals and Si 3 N 4 , and therefore, satisfactory strength cannot be obtained. . On the other hand, when oxides such as Al 2 O 3 , Y 2 O 3 , MgO, etc. are added to Si 3 N 4 as sintering aids, the electrical conductivity is improved because the electrical conductivity of the additive material is low. is not visible, and electrical discharge machining is not possible. Therefore, the present inventors investigated additive substances that improve the electrical conductivity without significantly changing the properties of Si 3 N 4 , and found that 4a, 5a,
It has been found that one or more selected from group 6a elements carbides, nitrides, borides, and B 4 C can be added as an additive. As is well known, these carbides, nitrides, and borides of group 4a, 5a, and 6a elements are highly hard materials and have little strength loss at high temperatures.They form solid solutions with each other in a wide composition range, and the properties of these solid solutions are not much different from individual characteristics. B 4 C also has little strength loss at high temperatures. However, although these materials have high high-temperature strength, they have a low level of oxidation resistance compared to Si 3 N 4 and have poor oxidation resistance, and mixed powders with Si 3 N 4 powder have poor sinterability. <Means for Solving the Problems> In order to solve the problems, the present inventors conducted various studies and found that the above - mentioned 4a ,
When adding powder of one or more of group 5a, 6a carbides, nitrides, borides, and B 4 C, the amount should be
10 to 20% by weight, including well-known sintering aids.
Y 2 O 3 , Sc 2 O 3 , La 2 O 3 , Ce 2 O 3 , Al 2 O 3 , Cr 2 O 3 ,
At least one oxide powder of MgO
Sintering was carried out using a mixed powder containing 20% by weight.
They discovered that the Si 3 N 4 sintered body has a density of 90% or more, has good electrical conductivity, and can be subjected to electrical discharge machining. <Function> Among the powders used above, the oxide powder as a sintering aid is intended to improve the sinterability of Si 3 N 4 , and the reason why the amount used is limited to 2 to 20% by weight is that This is because if the amount is less than 2% by weight, there is no effect of improving sinterability and a sintered body having a density of 90% by weight or more cannot be obtained. This is because the characteristics such as high hardness, low coefficient of thermal expansion, and high thermal conductivity are lost. Furthermore, carbides, nitrides, and the like of group 4a, 5a, and 6a elements are used to impart electrical conductivity to the Si 3 N 4 sintered body, and are themselves compounds with high electrical conductivity. The amount of such compounds used is 10 to 20% by weight because if it is less than 10% by weight, it will not provide sufficient electrical conductivity, and its value will be less than 10 -3 Ω -1 cm -1 . Yes, and if more than 20% by weight is used, Si 3 N 4
This is because the properties mentioned above, such as the high hardness possessed by the steel, are lost. However, if only the electric discharge machining is to be improved in the sintered body of the present invention, the above-mentioned substance imparting electrical conductivity can be added in an amount greater than 20% by weight, and the amount is 50% by weight. It is possible to some extent. There are many compounds as carbides, nitrides, and borides of these Group 4a, 5a, and 6a elements.
TaN, TaC, TiC, TiN, TiB2 , HfC, ZrN,
WC greatly contributes to improving electrical conductivity, high-temperature strength, thermal fatigue resistance, corrosion resistance, etc. of sintered bodies, and when such compounds are added at 10% by weight or less,
The electrical conductivity of the Si 3 N 4 sintered body increases rapidly to 10 -3
The fact that it exhibits a value of Ω -1 cm -1 or more and that electrical discharge machining is possible is an important finding. The drawing shows the case when TaN is added to Si 3 N 4
This figure shows the relationship between the amount of TaN added and electrical conductivity. The theoretical value in the figure is σtotal=σ Si3N4 ×σTaN+2σ Si3N4 −2V TaN
Si3N4 −σ TaN )/σTaN−2σ Si3N4 +V TaNSi3N4 −σ
TaN ) (However, σ Si3N4 is the electrical conductivity of Si 3 N 4 , σ TaN is TaN
The electrical conductivity of V TaN indicates the volume ratio of TaN. ) is calculated based on Maxwell's equation expressed as In the Si 3 N 4 sintered body in this invention, the additive substance remains in a dispersed structure as a second phase even after sintering, but the electrical conductivity of the Si 3 N 4 sintered body is lower than the theoretical value. The outstanding feature is that the second phase dispersed in the Si 3 N 4 matrix diffuses and reacts around the Si 3 N 4 particles to form a highly conductive composite phase, and this composite phase is continuous. By Si 3 N 4
This is thought to be because the conductivity of the sintered body is improved. During the formation of this second phase, the effect of the amount of oxygen contained in the initial Si 3 N 4 is large, and if it contains 5% by weight or more of oxygen, a slight change in the amount of the oxide added as the sintering aid described above will occur. This causes a significant change in the electrical properties and causes instability in the manufacturing process. In addition, in producing this Si 3 N 4 sintered body that can be electrically discharged, the average particle size of Si 3 N 4 and additives is 1μ or less, and the sintering temperature is preferably 1700 to 2000 °C. . This is because Si 3 N 4 and additives are difficult to disperse uniformly when the average particle size is 1μ or more, and the sintering temperature is 1700
This is because it is difficult for additive substances to diffuse and react around Si 3 N 4 particles at temperatures below ℃, and it is not possible to obtain a sintered body with a density of 90% or more, so that a conductive composite phase is not sufficiently formed. This is so that it will not happen. Furthermore, if the sintering temperature exceeds 2000°C, Si 3 N 4 decomposes, making it impossible to obtain a sintered body with a density of 90%, excellent strength, and corrosion resistance. The sintering in this invention described above uses an atmosphere of 1 of N 2 , NH 3 , He, Ar, Ne, H 2 , and CO.
A gas atmosphere consisting of more than one species is preferred, and this is also possible by changing the gas mixture or the type of gas depending on the sintering process. In addition, in this invention, in the case of oxide powder as a sintering aid added to Si 3 N 4 and carbides, nitrides, and borides of group 4a, 5a, and 6a elements, the same substances are included in the scope. However, in actual use, it is preferable to avoid using the same substances. <Examples> Next, the present invention will be explained in detail with reference to Examples. Example 1 5% by weight of MgO was added to Si 3 N 4 powder, and then TaN or TiC was added in various ratios as shown in Table 1 and mixed.
Pressure sintering was carried out under conditions of 200Kg/ cm2 per minute.
A Si 3 N 4 sintered body was obtained. The electrical conductivity of each Si 3 N 4 sintered body was measured and the suitability of electrical discharge machining was determined, and the results shown in Table 1 were obtained.

【表】 実施例 2 Si3N4粉末に5重量%のY2O3を焼結体助剤とし
て加え、さらに0.5μ粒子径のHfNまたはTaCを
第2表に示す種々の量比にて添加して充分に混合
したのち、窒素雰囲気中に1700℃で30分間焼結を
行なつてSi3N4焼結体を得た。 得られた夫々のSi3N4焼結体について20mmスパ
ン、荷重速度0.5mm/minの条件下で1000℃にお
ける抗折強度を測定したところ第2表の結果を得
た。
[Table] Example 2 5% by weight of Y 2 O 3 was added to Si 3 N 4 powder as a sintering agent, and HfN or TaC with a particle size of 0.5μ was added at various ratios shown in Table 2. After adding and thoroughly mixing, sintering was performed at 1700° C. for 30 minutes in a nitrogen atmosphere to obtain a Si 3 N 4 sintered body. The bending strength of each of the obtained Si 3 N 4 sintered bodies at 1000° C. was measured under the conditions of a 20 mm span and a loading rate of 0.5 mm/min, and the results shown in Table 2 were obtained.

【表】 実施例 3 Si3N4粉末に5重量%のAl2O3を添加し、さら
に第3表に示す各種添加物を容積比にして13%加
えて混合したのち、1700℃で30分間、200Kg/cm2
の条件下で加圧焼結を行なつてSi3N4焼結体を得
た。 このSi3N4焼結体各々について電気伝導度の測
定および放電加工性の可否を判定した結果は第3
表の通りであつた。
[Table] Example 3 5% by weight of Al 2 O 3 was added to Si 3 N 4 powder, and 13% by volume of the various additives shown in Table 3 were added and mixed. Minute, 200Kg/ cm2
Pressure sintering was performed under these conditions to obtain a Si 3 N 4 sintered body. The results of measuring the electrical conductivity and determining the electrical discharge machinability of each of these Si 3 N 4 sintered bodies are shown in the third section.
It was as shown in the table.

【表】 実施例 4 第4表に示すように平均粒子径の異なるSi3N4
粉末に2重量%のY2O3と5重量%のAl2O3、さら
に第4表に示す各種平均粒子径の添加物質を容積
比で13%加えて混合物を用いて1700℃で30分、
200Kg/cm2の条件で焼結を行なつた。 得られたSi3N4焼結体について電気伝導度、放
電加工性の可否を調べたところ第4表の結果を得
た。
[Table] Example 4 Si 3 N 4 with different average particle diameters as shown in Table 4
2% by weight of Y 2 O 3 and 5% by weight of Al 2 O 3 and 13% by volume of additives with various average particle sizes shown in Table 4 were added to the powder, and the mixture was heated at 1700°C for 30 minutes. ,
Sintering was carried out under the condition of 200Kg/cm 2 . The obtained Si 3 N 4 sintered body was examined for electrical conductivity and electrical discharge machinability, and the results shown in Table 4 were obtained.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図面はTaNを添加したSi3N4焼結体における
TaN添加量と電気伝導度の関係を示すグラフで
ある。
The drawing shows a Si 3 N 4 sintered body with TaN added.
3 is a graph showing the relationship between the amount of TaN added and electrical conductivity.

Claims (1)

【特許請求の範囲】 1 (a) α型窒化けい素が80重量%以上であり、
かつ酸素含有量が5重量%以下である窒化けい
素粉末95〜70重量% (b) Y2O3、Sc2O3、La2O3、Ce2O3、Al2O3
Cr2O3、MgOなどの酸化物粉末の少なくとも1
種以上を2〜20重量% (c) 元素の周期律4a、5a、6a族元素の窒化物、
炭化物、硼化物およびB4Cより選ばれた粉末の
1種以上を10〜20重量% の混合粉末を用いて焼結し、得られた焼結体の密
度が90%以上であり、電気伝導度が10-3Ω-1cm-1
以上であることを特徴とする導電性窒化けい素焼
結体。 2 (a) α型窒化けい素が80重量%以上であり、
かつ酸素含有量が5重量%以下である窒化けい
素粉末95〜70重量% (b) Y2O3、Sc2O3、La2O3、Ce2O3、Al2O3
Cr2O3、MgOなどの酸化物粉末の少なくとも1
種以上を2〜20重量% (c) 元素の周期律4a、5a、6a族元素の窒化物、
炭化物、硼化物およびB4Cより選ばれた粉末の
1種以上を10〜20重量% の混合粉末を用い、該粉末の平均粒子径を1μ以
下とし、1700〜2000℃にて焼結し、得られた焼結
体の密度が90%以上であり、電気伝導度が10-3Ω
-1cm-1以上であることを特徴とする導電性窒化け
い素焼結体の製造方法。 3 焼結時の雰囲気をCO、N2、NH3、He、Ar、
Ne、H2の1種以上よりなるガス雰囲気とするこ
とを特徴とする特許請求の範囲第2項記載の導電
性窒化けい素焼結体の製造方法。
[Claims] 1 (a) α-type silicon nitride is 80% by weight or more,
and silicon nitride powder with an oxygen content of 5% by weight or less (b) Y 2 O 3 , Sc 2 O 3 , La 2 O 3 , Ce 2 O 3 , Al 2 O 3 ,
At least one of oxide powders such as Cr 2 O 3 and MgO
2 to 20% by weight of species or more (c) Nitride of elements of groups 4a, 5a, and 6a of the periodic law of the elements,
One or more powders selected from carbides, borides, and B 4 C are sintered using a mixed powder of 10 to 20% by weight, and the density of the obtained sintered body is 90% or more and has electrical conductivity. degree is 10 -3 Ω -1 cm -1
A conductive silicon nitride sintered body characterized by the above. 2 (a) α-type silicon nitride is 80% by weight or more,
and silicon nitride powder with an oxygen content of 5% by weight or less (b) Y 2 O 3 , Sc 2 O 3 , La 2 O 3 , Ce 2 O 3 , Al 2 O 3 ,
At least one of oxide powders such as Cr 2 O 3 and MgO
2 to 20% by weight of species or more (c) Nitride of elements of groups 4a, 5a, and 6a of the periodic law of the elements,
Using a mixed powder of 10 to 20% by weight of one or more powders selected from carbides, borides, and B 4 C, the average particle size of the powder is 1 μ or less, and sintered at 1700 to 2000 ° C. The density of the obtained sintered body is 90% or more, and the electrical conductivity is 10 -3 Ω.
A method for producing a conductive silicon nitride sintered body, characterized in that the electrical conductivity is -1 cm -1 or more. 3 The atmosphere during sintering was CO, N 2 , NH 3 , He, Ar,
3. The method for producing a conductive silicon nitride sintered body according to claim 2, wherein the gas atmosphere is made of one or more of Ne and H2 .
JP56118239A 1981-07-27 1981-07-27 Silicon nitride sintered body and manufacture Granted JPS5820782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56118239A JPS5820782A (en) 1981-07-27 1981-07-27 Silicon nitride sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118239A JPS5820782A (en) 1981-07-27 1981-07-27 Silicon nitride sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS5820782A JPS5820782A (en) 1983-02-07
JPH0243699B2 true JPH0243699B2 (en) 1990-10-01

Family

ID=14731674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118239A Granted JPS5820782A (en) 1981-07-27 1981-07-27 Silicon nitride sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS5820782A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860675A (en) * 1981-09-30 1983-04-11 日本特殊陶業株式会社 Silicon nitride sintered body and manufacture
JPS5895652A (en) * 1981-11-30 1983-06-07 トヨタ自動車株式会社 Raw material composition for silicon nitride sintered body
JPS58161975A (en) * 1982-03-16 1983-09-26 日本特殊陶業株式会社 Manufacture of silicon nitride sintered body
JPS59207880A (en) * 1983-05-13 1984-11-26 工業技術院長 Manufacture of silicon nitride sintered body
JPS605078A (en) * 1983-06-21 1985-01-11 株式会社クボタ Manufacture of silicon nitride sintered body
JPS6033265A (en) * 1983-07-27 1985-02-20 株式会社日立製作所 Silicon carbide electroconductive ceramics
JPS6197167A (en) * 1984-10-17 1986-05-15 住友電気工業株式会社 Silicon nitride sintered body and manufacture
JPS61111969A (en) * 1984-11-05 1986-05-30 住友電気工業株式会社 Discharge-processable electroconductive silicon nitride sintered body and manufacture
JPS62275070A (en) * 1984-11-09 1987-11-30 日立金属株式会社 Electroconductive sialon sintered body and manufacture
JPS62153169A (en) * 1985-12-25 1987-07-08 株式会社東芝 Silicon nitride ceramic sintered body
DE3709137A1 (en) * 1986-03-28 1987-10-15 Ngk Insulators Ltd SILICON NITRIDE SINTER BODY, METHOD FOR THEIR PRODUCTION AND SILICON NITRIDE POWDER
US5215947A (en) * 1990-10-11 1993-06-01 Savoie Refractaires Refractory parts for devices for regulation or interruption of a jet of steel, made of refractory material
JPH05279129A (en) * 1992-03-31 1993-10-26 Isuzu Motors Ltd Low-thermally conductive ceramic and its production
US7132061B2 (en) 2001-01-22 2006-11-07 Sumitomo Electric Industries, Ltd. Electroconductive silicon nitride based composite sintered body and method for preparation thereof
JP5673157B2 (en) * 2010-02-08 2015-02-18 日本軽金属株式会社 Ultrasonic horn and method for producing aluminum alloy using the same
CN113121245A (en) * 2019-12-31 2021-07-16 辽宁省轻工科学研究院有限公司 Silicon nitride-based composite conductive ceramic capable of being subjected to discharge machining and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231910A (en) * 1975-09-08 1977-03-10 Toshiba Corp Cutting tool
JPS5388011A (en) * 1977-01-13 1978-08-03 Tokyo Shibaura Electric Co Pulverized ceramic material and method of its manufacture
JPS5434311A (en) * 1977-08-22 1979-03-13 Ngk Spark Plug Co Method of making highhdesity siliconn nitride porcelain
JPS5551766A (en) * 1978-10-06 1980-04-15 Tokyo Shibaura Electric Co Manufacture of silicon nitride sintered body
JPS5595679A (en) * 1979-01-16 1980-07-21 Asahi Glass Co Ltd Silicon nitride sintered body
JPS55109274A (en) * 1979-02-13 1980-08-22 Asahi Glass Co Ltd Manufacture of silicon nitride sintered body
JPS55109276A (en) * 1979-02-12 1980-08-22 Ngk Spark Plug Co Manufacture of silicon nitride sintered body
JPS55116677A (en) * 1979-02-27 1980-09-08 Ngk Insulators Ltd Manufacture of silicon nitride sintered body
JPS5632377A (en) * 1979-08-20 1981-04-01 Mitsubishi Metal Corp Silicon nitride base sintered material for cutting tool
JPS5673670A (en) * 1979-11-14 1981-06-18 Ford Motor Co Manufacture of high effeciency cutting tool

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231910A (en) * 1975-09-08 1977-03-10 Toshiba Corp Cutting tool
JPS5388011A (en) * 1977-01-13 1978-08-03 Tokyo Shibaura Electric Co Pulverized ceramic material and method of its manufacture
JPS5434311A (en) * 1977-08-22 1979-03-13 Ngk Spark Plug Co Method of making highhdesity siliconn nitride porcelain
JPS5551766A (en) * 1978-10-06 1980-04-15 Tokyo Shibaura Electric Co Manufacture of silicon nitride sintered body
JPS5595679A (en) * 1979-01-16 1980-07-21 Asahi Glass Co Ltd Silicon nitride sintered body
JPS55109276A (en) * 1979-02-12 1980-08-22 Ngk Spark Plug Co Manufacture of silicon nitride sintered body
JPS55109274A (en) * 1979-02-13 1980-08-22 Asahi Glass Co Ltd Manufacture of silicon nitride sintered body
JPS55116677A (en) * 1979-02-27 1980-09-08 Ngk Insulators Ltd Manufacture of silicon nitride sintered body
JPS5632377A (en) * 1979-08-20 1981-04-01 Mitsubishi Metal Corp Silicon nitride base sintered material for cutting tool
JPS5673670A (en) * 1979-11-14 1981-06-18 Ford Motor Co Manufacture of high effeciency cutting tool

Also Published As

Publication number Publication date
JPS5820782A (en) 1983-02-07

Similar Documents

Publication Publication Date Title
JPH0243699B2 (en)
JPS5824496B2 (en) Lubricating sintered body containing silicon nitride
JPH0244786B2 (en)
CA2052727A1 (en) Wear resistant ceramic with a high alpha-content silicon nitride phase
KR890002888B1 (en) Sliding materials
JP2004091272A (en) beta-SIALON SINTERED COMPACT
JPS6152111B2 (en)
JPS6138149B2 (en)
JPS5918349B2 (en) Titanium carbonitride-metal boride ceramic materials
JPH09268072A (en) Production of silicon nitride sintered compact
JPH0116791B2 (en)
JPS61111969A (en) Discharge-processable electroconductive silicon nitride sintered body and manufacture
JPS631271B2 (en)
JPS59207881A (en) Ceramic sintered body and manufacture
US4107392A (en) High temperature abrasion-resistant material and method of producing same
EP0187539B1 (en) Sintered ceramic articles and method for production thereof
JPS631272B2 (en)
US5545362A (en) Production method of sintered silicon nitride
CN111455253A (en) Titanium carbide-based metal ceramic thermal spraying powder and preparation method thereof
JPS6212663A (en) Method of sintering b4c base fine body
JPS61101465A (en) Manufacture of silicon nitride bonded silicon carbide sintered body
JPH04144968A (en) High hardness titanium boride-based ceramics
JP2805969B2 (en) Aluminum oxide based ceramics with high toughness and high strength
JP2647135B2 (en) Method for producing silicon carbide ceramics
CA2500351A1 (en) Electrode material for electric discharge machining and method for production thereof