JPH024355B2 - - Google Patents

Info

Publication number
JPH024355B2
JPH024355B2 JP6032783A JP6032783A JPH024355B2 JP H024355 B2 JPH024355 B2 JP H024355B2 JP 6032783 A JP6032783 A JP 6032783A JP 6032783 A JP6032783 A JP 6032783A JP H024355 B2 JPH024355 B2 JP H024355B2
Authority
JP
Japan
Prior art keywords
wastewater
cobalt
flocculant
added
containing cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6032783A
Other languages
Japanese (ja)
Other versions
JPS59186692A (en
Inventor
Sakuma Fujoshi
Minoru Ikeda
Toshio Sofue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP6032783A priority Critical patent/JPS59186692A/en
Publication of JPS59186692A publication Critical patent/JPS59186692A/en
Publication of JPH024355B2 publication Critical patent/JPH024355B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はコバルト塩を溶解した酸性排水中か
ら、コバルト成分を分離回収する方法に関するも
のである。より詳しくは、該酸性排水をアルカリ
で所定のPHに調整した後、水酸化コバルト塩とし
て析出せしめ、一定の温度を保つた状態で凝集剤
を添加して水酸化コバルトを安定なフロツクにま
で成長させ、これを空気の吹き込みで浮上させて
固液を分離し、コバルト塩を効率よく捕集回収す
ると共に、回収後の該排水中のコバルト塩の濃度
を可能な限り低減せしめることを特徴とする。 近年、コバルトが触媒として、オレフインのオ
キソ化反応に利用されていることは周知の事実で
ある。しかしながら、触媒として使用する以上、
その使用過程で失活することは免れない。しかも
工業プロセスでは、これらの失活したコバルト塩
は、この大部分がなんらかの形で排水に混入して
系外へ排出される。それ故、工業プロセスの経済
性を追求する以上、排水中に含まれるコバルト塩
の効率的な回収は急務とされていた。さらに、公
害防止上の要請から排水中に、コバルトの如き重
金属成分を極力減少せしめる必要があつた。従つ
て、排水中のコバルト塩の捕集回収の技術の確立
はオキソ反応工業プロセスの経済性と公害防止の
両面から注目されていたものである。 従来、この種の酸性排水は、まず、アルカリで
中和して後、これを沈澱池に導き長時間静置し、
沈降した固体成分を捕集する方法が最も安価とさ
れていた。固液分離が可能になつた状態で排水は
オーバフローによつて防出され、沈澱池底に集め
られたコバルト塩を含すスラリーは別途、濾過し
て回収するものである。 この方法は一つには、排水は中和されているけ
れども、なお多量のコバルト塩を含み排水中の重
金属濃度が排水の放出規制値をみたしていない欠
点を有していた。また、一つには沈澱池よりスラ
リーをくみ上げて濾過にかけるのに多大の労力を
要し沈澱池の運転管理に難点があつた。 この他の手段として、過酸化物による分解法、
燃焼回収法などの提案もあるが、コバルト塩の回
収の経済性と排水の公害防止の二つの要件を満た
すものではなかつた。 本発明者らは、酸性排水の性状を種々検討した
後、該酸性排水を中和し、極めて簡便な手法でコ
バルト塩を高率で回収するとともに、該水相中の
コバルト濃度を極少に抑える方法を確立して本発
明を完成させるに至つた。 本発明の着眼点は、以下に詳細に説明する通り
である。 対象とする出発物質は強酸性で数百ppmのコバ
ルト塩を含する排水である。性状は、ほとんど浮
遊物を含まないが、やや褐色をおびている。この
排水にアルカリ水溶液を添加しPHを調整する。こ
こに用いるアルカリはアルカリ金属、又はアルカ
リ土類金属の水溶化物などをあげることができる
が、安価な点で水酸化ナトウムがよいと思われ
る。純品である必要はなくアルカリ性プロセス排
水でもよい。PHは、かなり微妙に影響するため
に、その調整は最初に高濃度のアルカリで行い、
次ぎに、低濃度のアルカリで微小の調整を行うべ
きである。PHが高まればコバルト塩が微小の粒子
となつて析出してくることが分かる。 ここで、固液分離に当たつては、長時間静置し
て沈降させる方法と、強制的に濾過する方法とが
あるが、実験段階では後者の方法で条件の探索を
行つた。沈澱物を濾過により除去した後、濾液中
のコバルト塩の濃度を追跡するとPHが9以上にな
るとコバルト濃度は激減するが、とりわけ10.0〜
12.0では、その減少が著しい。従つて、PHをこの
範囲に設定すれば溶解していたコバルト塩の大部
分が微粒子として析出し固液分離が可能となる。
PHが12.0よりも高い値であつても同様の現象がみ
られるが、実際のプロセスの運転管理上はPHをこ
れより高く設定することは意味がないので、好ま
しい条件として10.0〜12.0を選ぶべきである。 生成粒子の挙動をみると常温においては、生成
粒子径が、微小のため、沈澱に時間がかかる。か
つまた、この状態で濾過しても粒子が微小のため
濾過が困難である。固液分離を効率的に行うため
には、粒子径の成長をなんかの方法ぇ助長する要
がある。この目的を達成するため高分子系凝集剤
の添加に着目した。凝集剤は、生成した微小粒子
を複数個結束させて安定なフロツクを生成させる
作用を持つており、見掛け上、大きい粒子を生成
させたのと同じ効果がある。このため沈澱速度が
高まり固液分離の効率が向上し、水相が急速に清
澄化することが観察される。 次ぎに、凝集剤の種類と効果を比較した所、該
排水についてはカチオン系、ノニオン系の凝集剤
より、アニオン系のものが一層効果的であつた。
即ち、同一排水を用い、1〜50ppmの範囲で各種
凝集剤を添加し水相の清燈化速度を測定したとこ
ろアニオン系で1ppm以上の添加であれば顕著な
効果があつた。実質的に効果をみると〜20ppmで
充分目的を達することができる。これ以上添加す
ることは経済的にみて効果は薄いと考えられる。 次ぎに、凝集剤添加時の雰囲気として温度の影
響を調べたところ、常温よりも30℃以上の方が沈
降速度が速いことが明らかとなつた。現実のプロ
セでは、高温度排水を利用して所定温度に調整す
ることも考えられるし、廃スチームの吹き込みに
よる方法も可能である。いずれにしても、常温で
処理するより積極的に昇温状態で処理した方がよ
いと思われる。 さらに、本発明者らは、固液分離の手法につい
て検討した。従来行つていたごとく固液分離にあ
たり、固形分を沈澱せしめてから、回収すること
は多大な労力を要し現実に応用するに当つては得
策ではない。もし浮上分離で生成粒子を液面上で
捕集できるものであればプロセス管理が容易にな
る。上記の実験では安定した粒子を沈降によつて
固液分離を行つたのであるが、これの浮上性つい
て検討を続けた。 排水のPHを調整した後、空気を容器の底部から
径1mm以下の泡として送入し、該排水がゆるやか
に撹拌されている状態で温度を30〜50℃の維持す
る。この状態で凝集剤を所定濃度まで添加した
所、水酸化コバルトの粒子が凝集剤で結束し、よ
り大きなフロツクに成長すると同時にフロツクが
空気泡を含み、その浮上でフロツクが浮上すると
いう現象が観察された。空気泡を含んだフロツク
は、極めて安定で機械的外力による撹拌がなけれ
ば、基底の沈降とすることなく、確実に浮上する
ことが明らかとなつた。しかも基底部の水相中の
コバルト濃度は該排水の濾過分離後の濾液の場合
と大差なく、固液分離が浮上法によつて実現して
いることを確かめた。 以上詳説したところから、本発明に従い、酸性
排水中のコバルト分を効率的に回収し、かつ、固
液分離後の該排水中の重金属濃度を極小にするこ
とに成功したわけである。 次ぎに、本発明の実施例を示す。 以下の実施例では、出発原料として強酸性(PH
=1以下)で、コバルト分240ppmを含む浮遊物
のない水溶液(以下、原排水と略記する)を選ん
だ。 溶解コバルト塩の濃度はコバルトランプを使用
する原子吸光法で測定した。 使用した凝集剤はいずれも入手容易なものを選
んだ。 アニオン系:ダイヤフロツク株式会社製AP−120 カチオン系:同社製KP−201A ノニオン系:同社製NP−800 実施例 1 PHの影響 原排水を500ml(85mm径、高さ120mm)のビーカ
ーにとり、磁気スターラーでゆるやかに撹拌しな
がら、所定のPHの値に調整後、5分間撹拌を続け
てから撹拌を止めて静置する。PHの調整のつど、
5〜10μmのガラスフイルターで濾別し、濾液中
に残留しているコバルト濃度を測定した。結果は
表1に示した通り、PH=10.0〜12.0の範囲でか濾
液中にコバルトはほとんど残存していないことが
分かつた。
The present invention relates to a method for separating and recovering cobalt components from acidic wastewater in which cobalt salts are dissolved. More specifically, after adjusting the acidic wastewater to a specified pH with an alkali, it is precipitated as a cobalt hydroxide salt, and a flocculant is added while maintaining a constant temperature to grow the cobalt hydroxide into a stable floc. The cobalt salts are efficiently collected and recovered by floating the wastewater by blowing air to separate solid and liquid, and the concentration of cobalt salts in the wastewater after recovery is reduced as much as possible. . It is a well-known fact that in recent years, cobalt has been used as a catalyst in olefin oxation reactions. However, since it is used as a catalyst,
It is inevitable that it will become deactivated during its use. Moreover, in industrial processes, most of these deactivated cobalt salts are mixed into waste water in some form and discharged out of the system. Therefore, in pursuit of economic efficiency in industrial processes, efficient recovery of cobalt salts contained in wastewater has been an urgent need. Furthermore, in order to prevent pollution, it was necessary to reduce the amount of heavy metal components such as cobalt in the waste water as much as possible. Therefore, the establishment of a technology for collecting and recovering cobalt salts in wastewater has been attracting attention from both the economic efficiency of the oxo reaction industrial process and the prevention of pollution. Conventionally, this type of acidic wastewater is first neutralized with alkali, then led to a settling tank and left to stand for a long time.
The method of collecting settled solid components was thought to be the cheapest. In a state where solid-liquid separation is possible, wastewater is prevented by an overflow, and the slurry containing cobalt salt collected at the bottom of the sedimentation tank is separately filtered and recovered. One drawback of this method is that although the wastewater is neutralized, it still contains a large amount of cobalt salt and the concentration of heavy metals in the wastewater does not meet the emission regulation value for wastewater. Another problem is that it takes a lot of effort to pump up the slurry from the sedimentation tank and filter it, making it difficult to manage the operation of the sedimentation tank. Other methods include peroxide decomposition,
There have been proposals for combustion recovery methods, but none of them satisfy the two requirements of economical recovery of cobalt salts and prevention of wastewater pollution. After various studies on the properties of acidic wastewater, the present inventors neutralized the acidic wastewater, recovered cobalt salt at a high rate using an extremely simple method, and minimized the cobalt concentration in the aqueous phase. The method was established and the present invention was completed. The focus of the present invention is as explained in detail below. The starting material of interest is strongly acidic wastewater containing hundreds of ppm of cobalt salts. Although it contains almost no suspended matter, it has a slightly brownish color. Add an alkaline aqueous solution to this wastewater to adjust the pH. Examples of the alkali used here include water-solubilized products of alkali metals and alkaline earth metals, but sodium hydroxide is considered to be preferable because it is inexpensive. It does not have to be a pure product, and alkaline process wastewater may be used. Since PH has a very subtle effect, its adjustment is first done with a highly concentrated alkali.
Next, minor adjustments should be made with low concentrations of alkali. It can be seen that as the pH increases, cobalt salts begin to precipitate in the form of fine particles. Here, for solid-liquid separation, there are two methods: allowing it to settle for a long time and forcing it through filtration. At the experimental stage, we searched for conditions using the latter method. After removing the precipitate by filtration, we tracked the concentration of cobalt salt in the filtrate. When the pH reached 9 or higher, the cobalt concentration decreased sharply, but especially when the pH reached 9.
In 12.0, the decrease is significant. Therefore, if the pH is set within this range, most of the dissolved cobalt salt will precipitate as fine particles, making solid-liquid separation possible.
A similar phenomenon can be seen even if the PH is higher than 12.0, but in terms of actual process operation management, it is meaningless to set the PH higher than this, so 10.0 to 12.0 should be selected as the preferred condition. It is. Looking at the behavior of the produced particles, at room temperature, the diameter of the produced particles is minute, so it takes time for precipitation. Moreover, even if it is filtered in this state, it is difficult to filter because the particles are so small. In order to perform solid-liquid separation efficiently, it is necessary to promote particle size growth in some way. To achieve this objective, we focused on adding a polymer flocculant. The flocculant has the effect of binding multiple microparticles together to form a stable floc, which apparently has the same effect as creating large particles. Therefore, it is observed that the precipitation rate increases, the efficiency of solid-liquid separation improves, and the aqueous phase is rapidly clarified. Next, when the types and effects of flocculants were compared, it was found that anionic flocculants were more effective than cationic and nonionic flocculants for the wastewater.
That is, when using the same wastewater and measuring the clearing rate of the aqueous phase by adding various flocculants in the range of 1 to 50 ppm, it was found that addition of 1 ppm or more of anionic agents had a significant effect. When looking at the actual effect, ~20ppm is sufficient to achieve the purpose. Adding more than this is considered to be economically ineffective. Next, we investigated the effect of temperature on the atmosphere when adding the flocculant, and found that the sedimentation rate was faster at 30°C or higher than at room temperature. In actual processes, it is conceivable to adjust the temperature to a predetermined level using high-temperature waste water, or it is also possible to use waste steam blowing. In any case, it seems better to actively process at an elevated temperature than to process at room temperature. Furthermore, the present inventors investigated solid-liquid separation techniques. It is not advisable to precipitate the solid content and then recover it in solid-liquid separation, as has been done in the past, as it requires a great deal of labor and is not suitable for practical application. If particles produced by flotation separation can be collected on the liquid surface, process management will be easier. In the above experiment, solid-liquid separation of stable particles was performed by sedimentation, but we continued to investigate the floating properties of these particles. After adjusting the pH of the waste water, air is introduced from the bottom of the container as bubbles with a diameter of 1 mm or less, and the temperature is maintained at 30 to 50°C while the waste water is gently stirred. When flocculant was added to a predetermined concentration in this state, a phenomenon was observed in which cobalt hydroxide particles were bound together by the flocculant and grew into larger flocs, and at the same time the flocs contained air bubbles, causing the flocs to float up. It was done. It has become clear that flocs containing air bubbles are extremely stable and will reliably float to the surface without settling to the bottom unless agitated by an external mechanical force. Moreover, the cobalt concentration in the aqueous phase at the base was not much different from that in the filtrate after filtration of the wastewater, confirming that solid-liquid separation was achieved by the flotation method. From what has been explained in detail above, according to the present invention, it has been possible to efficiently recover the cobalt content in acidic wastewater and to minimize the heavy metal concentration in the wastewater after solid-liquid separation. Next, examples of the present invention will be shown. In the following examples, the starting material is strongly acidic (PH
= 1 or less), and an aqueous solution (hereinafter abbreviated as raw wastewater) containing 240 ppm of cobalt and free of suspended solids was selected. The concentration of dissolved cobalt salts was measured by atomic absorption spectrometry using a cobalt lamp. The flocculants used were all easily available. Anionic type: AP-120 manufactured by Diafloc Co., Ltd. Cationic type: KP-201A manufactured by Diafloc Co., Ltd. Nonionic type: NP-800 manufactured by Diafloc Co., Ltd. Example 1 Effect of PH Place the raw wastewater in a 500 ml beaker (85 mm diameter, 120 mm height) and place it in a magnetic stirrer. After adjusting the pH to the desired value while stirring gently, continue stirring for 5 minutes, then stop stirring and let stand. Each time you adjust the pH,
The cobalt concentration remaining in the filtrate was measured after filtering through a 5-10 μm glass filter. As shown in Table 1, it was found that almost no cobalt remained in the filtrate in the pH range of 10.0 to 12.0.

【表】 実施例 2 凝集剤の添加効果 前記実施例1にならい原排水をPH=10.0に調整
した後、アニオン系、カチオン系、及びノニオン
系の三種の凝集剤を磁気スターラーでゆるやかに
撹拌しつつ、それぞれ10ppm滴下した。その後1
分してから撹拌を中止し静置する。静置直後から
水相の清燈化により固形物の沈降を遅速を観察し
た。静置時間10分をとり、その後、液面の水相を
サンプリングしてコバルト濃度を測定した。結果
は表2に示した如くアニオン系が沈降を促進して
いることが明確になつた。
[Table] Example 2 Effect of adding flocculant After adjusting the raw wastewater to pH = 10.0 according to Example 1, three types of flocculants, anionic, cationic, and nonionic, were gently stirred with a magnetic stirrer. 10 ppm of each was added dropwise. then 1
After separating, stop stirring and let stand. Immediately after standing, the slow settling of solids was observed as the aqueous phase became clearer. After allowing the solution to stand for 10 minutes, the aqueous phase at the liquid surface was sampled to measure the cobalt concentration. As shown in Table 2, the results clearly show that anion systems promote sedimentation.

【表】 次ぎに、アニオン系のみについて添加すべき濃
度の効果を比較した。実験は濃度1〜50ppmの範
囲を選んだが得られた結果は表3にしめした通り
1ppm以上であれば沈降速度は差がないことが分
かつた。また、静置後10分したから液面からサン
プリングして水相中のコバルト濃度を測定した
が、1〜20ppmならば問題はないといえる。
[Table] Next, we compared the effect of the concentration to be added only for anionic compounds. The experiment was conducted at a concentration range of 1 to 50 ppm, and the results obtained are shown in Table 3.
It was found that there was no difference in sedimentation rate if it was 1 ppm or more. Furthermore, after 10 minutes of standing still, samples were taken from the liquid surface to measure the cobalt concentration in the aqueous phase, and it can be said that there is no problem if it is 1 to 20 ppm.

【表】【table】

【表】 実施例 3 温度の影響 上記実施例1にならい、原排水を予め所定の温
度に設定しておき、磁気スターラーで撹拌しつ
つ、アルカリを添加してPH=10.0とし、かつアニ
オン系凝集剤を10ppmまで滴下した。。滴下終了
後、1分したから撹拌を中止し、その後沈降速度
を観察した。表4に示した如く、30℃以上の場合
は静置後わずか30秒以内で全体が清燈化したのち
に対し、常温(15度)の場合は30秒以上を要し
た。これにより加温の影響は明瞭となつた。
[Table] Example 3 Effect of temperature Following Example 1 above, the raw wastewater was set at a predetermined temperature in advance, and while stirring with a magnetic stirrer, alkali was added to adjust the pH to 10.0, and anionic coagulation was performed. The agent was added dropwise to a concentration of 10 ppm. . After 1 minute had passed after the completion of the dropwise addition, stirring was stopped, and the sedimentation rate was then observed. As shown in Table 4, when the temperature was 30°C or higher, the entire body became clear within just 30 seconds after being left to stand, whereas when it was at room temperature (15°C), it took more than 30 seconds. This made the influence of heating clear.

【表】 実施例 4 浮上の効果 原排水を内径100mm、高さ800mmの円筒ガラス管
のほぼ満杯に入れる。管全体を40℃に保ち円筒部
むり空気を1mm径以下の小泡として50ml/minの
速度で圧入する。そこで円筒内は空気泡により常
時ゆるやかに撹拌された状態となつている。次ぎ
に、アルカリを円筒下部から注入しPH=10.0と
し、アニオン系凝集剤を20ppm添加した。凝集剤
添加後、そのまま空気圧入を続けて約1分してか
ら円筒下部の水相をサンプリングしてコバルト濃
度を測定した所、コバルト濃度は1〜3ppm前後
であつた。これにより析した固形分は浮上法によ
り確実に分離されていることが分かつた。
[Table] Example 4 Effect of flotation Raw wastewater is poured into a cylindrical glass tube with an inner diameter of 100 mm and a height of 800 mm, almost full. The entire tube is kept at 40°C, and air is forced into the cylindrical part as small bubbles with a diameter of 1 mm or less at a rate of 50 ml/min. Therefore, the inside of the cylinder is constantly gently stirred by air bubbles. Next, alkali was injected from the bottom of the cylinder to adjust the pH to 10.0, and 20 ppm of anionic flocculant was added. After adding the flocculant, air was continued to be injected for about 1 minute, and then the aqueous phase at the bottom of the cylinder was sampled to measure the cobalt concentration, and the cobalt concentration was approximately 1 to 3 ppm. This revealed that the analyzed solid content was reliably separated by the flotation method.

Claims (1)

【特許請求の範囲】 1 コバルトを含有する酸性排水にアルカリを添
加し、該排水のPHを調整したのち、これを所定の
温度で凝集剤を添加して、生成したコバルト塩を
含む固体成分を、浮上分離することを特徴とす
る、排水中からコバルト成分を分離回収する方
法。 2 コバルトを含有する酸性排水にアルカリを添
加し、該排水のPHを10.0〜12.0に調整することを
特徴とする、特許請求の範囲第一項に記載の方
法。 3 コバルトを含有する酸性排水のPHを調整した
のち、これを温度30℃以上において凝集剤を添加
することを特徴とする、特許請求の範囲第一項に
記載の方法。 4 添加すべき凝集剤がアニオン系であつて、か
つ、添加量が該排水に対し1〜20ppmであること
を特徴とする、特許請求の範囲第一項に記載の方
法。 5 凝集剤の添加によつて生成したコバルト塩を
含む固体成分を、加圧空気を該排水中に同時に吹
き込むことにより、浮上分離することを特徴とす
る、特許請求の範囲第一項に記載の方法。
[Claims] 1. After adding an alkali to acidic wastewater containing cobalt and adjusting the pH of the wastewater, a flocculant is added to the wastewater at a predetermined temperature to remove the solid components containing cobalt salts. A method for separating and recovering cobalt components from wastewater, which is characterized by flotation separation. 2. The method according to claim 1, which comprises adding an alkali to acidic wastewater containing cobalt to adjust the pH of the wastewater to 10.0 to 12.0. 3. The method according to claim 1, characterized in that after adjusting the pH of the acidic wastewater containing cobalt, a flocculant is added thereto at a temperature of 30°C or higher. 4. The method according to claim 1, wherein the flocculant to be added is anionic and the amount added is 1 to 20 ppm based on the wastewater. 5. The solid component containing cobalt salt produced by the addition of a coagulant is floated and separated by simultaneously blowing pressurized air into the waste water, as set forth in claim 1. Method.
JP6032783A 1983-04-06 1983-04-06 Process for separating and recovering cobalt component from waste water Granted JPS59186692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6032783A JPS59186692A (en) 1983-04-06 1983-04-06 Process for separating and recovering cobalt component from waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6032783A JPS59186692A (en) 1983-04-06 1983-04-06 Process for separating and recovering cobalt component from waste water

Publications (2)

Publication Number Publication Date
JPS59186692A JPS59186692A (en) 1984-10-23
JPH024355B2 true JPH024355B2 (en) 1990-01-26

Family

ID=13138959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6032783A Granted JPS59186692A (en) 1983-04-06 1983-04-06 Process for separating and recovering cobalt component from waste water

Country Status (1)

Country Link
JP (1) JPS59186692A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053914Y2 (en) * 1986-04-14 1993-01-29

Also Published As

Publication number Publication date
JPS59186692A (en) 1984-10-23

Similar Documents

Publication Publication Date Title
EP0377603B1 (en) Clarification process
US4422943A (en) Method for precipitation of heavy metal sulfides
CN104936907B (en) The technique for reducing sulfate concentration in waste water stream by using regeneration gibbsite
JP3340029B2 (en) Method of treating wastewater containing SiO2
EP0467887A4 (en) Clarification process
KR20040002594A (en) Liquid treatment method and apparatus
US6936177B2 (en) Method for removing metal from wastewater
JPH024355B2 (en)
AU2012295876B2 (en) Method for separating out and recovering microalgae
JPS61101416A (en) Purification of saline water
JP3496773B2 (en) Advanced treatment method and apparatus for organic wastewater
JP2007083179A (en) Treatment method and apparatus for copper particle-containing water
JPH03137987A (en) Treatment of waste water
AU2009101351A4 (en) Treatment of hydrometallurgical process streams for removal of suspended fine particles
JPH10235373A (en) Water treatment
RU2019521C1 (en) Method of water purification
RU2281911C2 (en) Method of removing phosphorus from slime
AU633305B2 (en) Clarification liquors
AU658875B2 (en) Clarification process
JPH10290986A (en) Treatment of antimony-containing waste water
JPH04176383A (en) Treatment of drainage
JP4122207B2 (en) Method for removing metal from wastewater
SU1158498A1 (en) Method of extracting platinum from aqueous-salt solutions
JP3014614B2 (en) Method for recovering Ni or Zn and their salts from Ni-containing waste liquid
JP2003001012A (en) Flocculating and settling method and method of treating settled sludge