JPH0243536B2 - - Google Patents

Info

Publication number
JPH0243536B2
JPH0243536B2 JP56046019A JP4601981A JPH0243536B2 JP H0243536 B2 JPH0243536 B2 JP H0243536B2 JP 56046019 A JP56046019 A JP 56046019A JP 4601981 A JP4601981 A JP 4601981A JP H0243536 B2 JPH0243536 B2 JP H0243536B2
Authority
JP
Japan
Prior art keywords
toluene
xylene
catalyst
oxide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56046019A
Other languages
Japanese (ja)
Other versions
JPS57159541A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56046019A priority Critical patent/JPS57159541A/en
Priority to US06/358,214 priority patent/US4438021A/en
Priority to DE3210709A priority patent/DE3210709C2/en
Priority to GB8208995A priority patent/GB2097278B/en
Publication of JPS57159541A publication Critical patent/JPS57159541A/en
Publication of JPH0243536B2 publication Critical patent/JPH0243536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はトルエン又はキシレンを酸化的脱水素
による二量化反応により二量化するための触媒に
関する。 従来、トルエン又はキシレンを脱水素により
1,2−ジフエニルエタン類又は1,2−ジフエ
ニルエチレン類等を製造する方法は多く知られて
いる。例えば、この脱水素反応における水素容体
としてハロゲン、イオウ、二硫化炭素などを用い
る方法が古くより知られているが、この方法では
水素受容体が高価であり、腐蝕性物質を生成する
こと、又、目的生成物中にハロゲン化物や硫酸物
が混入してくるなどの不都合がみられる。 上記脱水素反応による欠点を解消する方法とし
て酸素を水素受容体とする方法が提案されてお
り、この水素受容体となる酸素として酸化鉛のよ
う金属酸化物が反応中の酸素源となることは、特
開昭50−105602号に開示されている。即ち、この
方法はプロピン、トルエンおよび酢酸その他の化
合物を酸素含有の再生しうる試剤の存在下に遊離
の分子酸素を存在させることなく酸化的カツプリ
ングによつて夫々の脱水素二量化生成物に転換せ
しめうる方法である。ここで“酸素含有の再生し
うる試剤”とは特定の金属酸化物であり、上記特
開昭50−105602号には三酸化ビスマスの他に三酸
化タリウムがあげられている。このような金属酸
化物を触媒とする二量化方法については多数の提
案がなされており、種々の金属酸化物が二量化触
媒として効果のあることが知られている。 また、上記金属酸化物としては酸化鉛、酸化タ
リウム及び酸化ビスマス等が知られているが、こ
れら金属酸化物はそれ自体では二量化用触媒とし
ての効果は格別なものではなく、したがつて特開
昭50−105602号では酸化タリウム、酸化ビスマス
を表面積が20m2/g以上である塩基性担体材料上
に担持させることによりその触媒活性を増大させ
ることを提案している。 本発明者等はトルエン又はキシレンを二量化し
て1,2−ジフエニルエタン類、1,2−ジフエ
ニルエチレン類又は1,2−ジトリルエタン類、
1,2−ジトリエチレン類の製造についてその収
率を向上させるべく研究した結果、酸化タリウム
を酸化亜鉛で活性したとき、これら金属酸化物の
トルエン又はキシレンの転化率を著しく向上させ
得ることを見出し、本発明に至つた。すなわち、
本発明はトルエン又はキシレンを有利に二量化す
るための触媒を提供すること、及び該触媒を用い
てトルエン又はキシレンを有利に二量化する方法
を提供することを目的とする。 以下本発明を詳しく説明する。 本発明に係る触媒は酸化亜鉛で活性化された酸
化タリウムであつて、その組成比が式 TlaZnbOc (式中、aは0.2〜4.0、bは1を表わし、cは上
記組成物中の酸化状態におけるTl及びZnの平均
原子価をみたすために必要な数を表す) の関係にあることにより特徴付けられるトルエン
又はキシレンを酸化的脱水素反応により二量化す
るための触媒である。 又本発明に係る二量化方法はトルエン又はキシ
レンを含む気体を上記触媒の存在下で加熱するこ
とを特徴とする。 本発明の触媒は酸化タリウムに酸化亜鉛を所望
の組成比になるごとく混合し、この混合物を成
型、乾燥後、600乃至800℃の温度で焼成すること
により調製し得る。 すなわち、上記混合物の焼成により酸化タリウ
ム酸化亜鉛により活性化される。このようにして
得られる金属酸化物は下記式の組成比を有する。 TlaZnbOc (式中、a、b及びcは前記と同じ意味を表わ
す)ここで使用する酸化亜鉛はそれ自体触媒活性
の低いものであることを考慮すると、酸化タイウ
ムが酸化亜鉛により活性化されてトルエン又はキ
シレンの高い転化率を示す触媒活性を呈するよう
になることは驚くべきことと言えよう。 本発明の触媒はトルエン並びにキシレンに対し
て不活性な担体、例えばシリカ、アルミナ、シリ
カーアルミナ等に担持させてもよい。 なお、本発明の触媒は上記一般式においてaが
0.4〜1.7及びbが1である組成比を有するものが
トルエン又はキシレンの転化率を著しく高めるの
で特に好ましい。 次に、上記触媒を用いてのトルエン又はキシレ
ンの二量化方法について説明する。 本発明においてはトルエン又はキシレンは気相
で用いられるが、それらは単独でもよく、又窒素
やヘリウムのごとき反応上不活性な気体と混合し
て用いてもよい。又トルエン又はキシレンを水蒸
気と混合して用いることもでき、この場合には水
蒸気は反応に際しトルエン又はキシレンの完全酸
化(完全酸化によりCO2を生成する)を抑制する
ので本発明の方法の実施上好ましい。水蒸気の混
合割合は水とトルエン又はキシレンとのモル比が
0.5〜3である範囲が適当である。 トルエン又はキシレンの二量化反応は、本発明
に係る触媒の層を設けた反応器へトルエン又はキ
シレンを気相で供給し加熱することによつて行な
われる。この際の加熱温度は500〜650℃、好まし
くは550〜630℃である。反応は気圧下、減圧下又
は加圧下でも行ないえる。 上記反応に際してのトルエン又はキシレンと触
媒との接触時間は0.1〜2秒、好ましくは0.3〜1
秒である。 また、トルエン又はキシレンは通常予め加熱し
て気相として反応器へ供給されるが、液相で反応
器へ供給し、反応器内へ加熱して気相にしてもよ
い。 本発明の方法では、触媒を流動床又は移動床と
して用いて触媒の還元−酸化を連続的に繰返し行
なつてトルエン又はキシレンを連続的に脱水素二
量化することができ、又触媒を固定床として用い
て上記二量化を断続的に行なうことも可能であ
る。又反応後の触媒の再生は粒径及び還元度に応
じて空気或は酸素中で400〜600℃の温度で10分〜
1時間処理することにより行ない得る。 本発明の方法によるトルエン又はキシレンの転
化率の向上は後記実施例から明らかになるであろ
う。 以下に実施例を示す。 実施例 1 本例は本発明の触媒の調整を例示したものであ
る。 Tl2O3237.6gとZnO166.0gとを秤量、混合し
た。この混合物に水110gを加え十分混合した後、
加熱して水を蒸発させた。さらに、この混合物を
150℃で10時間乾燥した後700℃で3時間焼成し、
得られた酸化物を13〜30メツシユに粉砕した。こ
のようにして得られた触媒は組成比がTl/Zn=
1/2の原子比を有する。 実施例 2 本例は実施例1で得られた触媒を用いてトルエ
ンを二量化する方法を例示したものである。 直径25mm、長さ100mmのステンレス鋼管を反応
器として用い、この反応器に実施例1で得られた
触媒50mlを充填し、次いで反応器をその内壁に取
付けたヒーターで所定温度(後記第1表参照)に
加熱した後、これにトルエン及び水を気体状態で
トルエン150ml/hr、水53ml/hrの割合で導入し、
10分間加熱下で反応を行なつた。得られた反応生
成物を反応器出口に取付けた捕集器に通し、ガス
クロマトグフイーにて分析した。 反応したトルエンの割合を表わした転化率と生
成物における二量体、ベンゼン及び炭酸ガスの割
合を表わした選択率とを第1表に示す。 ここに二量体とは反応により生成した1,2−
ジフエニルエタンと1,2−ジフエニルエチレン
の和を表わす。 比較例 本例は酸化亜鉛で活性化されていない酸化タリ
ウム自体及び酸化亜鉛自体をそれぞれ触媒として
用いて実施例2と同様の手順でトルエンの二量化
を行なつた結果を示したものである。結果は第1
表に示すとおりである。
The present invention relates to a catalyst for dimerizing toluene or xylene by a dimerization reaction by oxidative dehydrogenation. Conventionally, many methods are known for producing 1,2-diphenylethanes or 1,2-diphenylethylenes by dehydrogenating toluene or xylene. For example, a method using halogen, sulfur, carbon disulfide, etc. as a hydrogen acceptor in this dehydrogenation reaction has been known for a long time, but in this method, the hydrogen acceptor is expensive, corrosive substances are generated, and However, there are disadvantages such as halides and sulfates being mixed into the desired product. A method of using oxygen as a hydrogen acceptor has been proposed as a method to eliminate the drawbacks caused by the above dehydrogenation reaction, and metal oxides such as lead oxide can be used as the oxygen source during the reaction. , disclosed in Japanese Patent Application Laid-open No. 105602/1983. That is, the process converts propyne, toluene, acetic acid, and other compounds into their respective dehydrogenated dimerization products by oxidative coupling in the presence of an oxygen-containing regenerable agent in the absence of free molecular oxygen. This is a method that can be used. Here, the "oxygen-containing regenerable agent" is a specific metal oxide, and thallium trioxide is mentioned in addition to bismuth trioxide in the above-mentioned Japanese Patent Application Laid-Open No. 105602/1983. Many proposals have been made regarding such dimerization methods using metal oxides as catalysts, and it is known that various metal oxides are effective as dimerization catalysts. In addition, lead oxide, thallium oxide, bismuth oxide, etc. are known as the above-mentioned metal oxides, but these metal oxides are not particularly effective as dimerization catalysts by themselves, and therefore are not particularly effective as dimerization catalysts. Japanese Patent Publication No. 105602/1983 proposes increasing the catalytic activity of thallium oxide and bismuth oxide by supporting them on a basic carrier material having a surface area of 20 m 2 /g or more. The present inventors dimerized toluene or xylene to produce 1,2-diphenylethanes, 1,2-diphenylethylenes, or 1,2-ditolylethanes.
As a result of research to improve the yield of 1,2-ditriethylenes, it was discovered that when thallium oxide was activated with zinc oxide, the conversion rate of toluene or xylene from these metal oxides could be significantly improved. , led to the present invention. That is,
An object of the present invention is to provide a catalyst for advantageously dimerizing toluene or xylene, and to provide a method for advantageously dimerizing toluene or xylene using the catalyst. The present invention will be explained in detail below. The catalyst according to the present invention is thallium oxide activated with zinc oxide, and its composition ratio is expressed by the formula Tl a Zn b O c (wherein a represents 0.2 to 4.0, b represents 1, and c represents the above composition This is a catalyst for dimerizing toluene or xylene by an oxidative dehydrogenation reaction, which is characterized by the following relationship: . Further, the dimerization method according to the present invention is characterized in that a gas containing toluene or xylene is heated in the presence of the above catalyst. The catalyst of the present invention can be prepared by mixing thallium oxide and zinc oxide in a desired composition ratio, molding the mixture, drying it, and then calcining it at a temperature of 600 to 800°C. That is, thallium oxide and zinc oxide are activated by firing the above mixture. The metal oxide thus obtained has a composition ratio of the following formula. Tl a Zn b O c (In the formula, a, b and c represent the same meanings as above) Considering that the zinc oxide used here itself has low catalytic activity, tium oxide is It is surprising that the catalyst can be activated to exhibit catalytic activity that exhibits a high conversion rate of toluene or xylene. The catalyst of the present invention may be supported on a carrier inert to toluene and xylene, such as silica, alumina, silica-alumina, and the like. In addition, in the above general formula, a of the catalyst of the present invention is
Particularly preferred is one having a composition ratio of 0.4 to 1.7 and b of 1, since it significantly increases the conversion rate of toluene or xylene. Next, a method for dimerizing toluene or xylene using the above catalyst will be explained. In the present invention, toluene or xylene is used in a gas phase, but they may be used alone or in a mixture with a reaction-inert gas such as nitrogen or helium. It is also possible to use toluene or xylene mixed with water vapor. In this case, the water vapor suppresses the complete oxidation of toluene or xylene (to produce CO 2 due to complete oxidation) during the reaction, so it is difficult to carry out the method of the present invention. preferable. The mixing ratio of water vapor is determined by the molar ratio of water and toluene or xylene.
A range of 0.5 to 3 is suitable. The dimerization reaction of toluene or xylene is carried out by supplying toluene or xylene in a gas phase to a reactor provided with a layer of the catalyst according to the present invention and heating the reactor. The heating temperature at this time is 500 to 650°C, preferably 550 to 630°C. The reaction can also be carried out under atmospheric pressure, reduced pressure or increased pressure. The contact time of toluene or xylene with the catalyst during the above reaction is 0.1 to 2 seconds, preferably 0.3 to 1 second.
Seconds. Further, toluene or xylene is usually heated in advance and supplied to the reactor in a gaseous phase, but it may also be supplied to the reactor in a liquid phase and heated into the reactor to be converted into a gaseous phase. In the method of the present invention, toluene or xylene can be continuously dehydrogenated and dimerized by continuously repeating reduction and oxidation of the catalyst using a catalyst as a fluidized bed or a moving bed. It is also possible to perform the above dimerization intermittently by using it as a compound. In addition, the catalyst is regenerated after the reaction at a temperature of 400 to 600℃ in air or oxygen for 10 minutes or more depending on the particle size and degree of reduction.
This can be done by treating for 1 hour. The improvement in the conversion rate of toluene or xylene by the method of the present invention will become clear from the examples below. Examples are shown below. Example 1 This example illustrates the preparation of the catalyst of the present invention. 237.6 g of Tl 2 O 3 and 166.0 g of ZnO were weighed and mixed. After adding 110g of water to this mixture and mixing thoroughly,
The water was evaporated by heating. Furthermore, this mixture
After drying at 150℃ for 10 hours, baking at 700℃ for 3 hours,
The resulting oxide was ground into 13-30 meshes. The catalyst thus obtained has a composition ratio of Tl/Zn=
It has an atomic ratio of 1/2. Example 2 This example illustrates a method for dimerizing toluene using the catalyst obtained in Example 1. A stainless steel tube with a diameter of 25 mm and a length of 100 mm was used as a reactor. This reactor was filled with 50 ml of the catalyst obtained in Example 1, and then the reactor was heated to a predetermined temperature (see Table 1 below) using a heater attached to the inner wall of the reactor. ), then toluene and water were introduced in the gaseous state at a rate of 150 ml/hr of toluene and 53 ml/hr of water.
The reaction was carried out under heating for 10 minutes. The obtained reaction product was passed through a collector attached to the outlet of the reactor and analyzed using a gas chromatograph. The conversion, expressed as the proportion of toluene reacted, and the selectivity, expressed as the proportion of dimer, benzene and carbon dioxide in the product, are shown in Table 1. Here, dimer refers to 1,2-
Represents the sum of diphenylethane and 1,2-diphenylethylene. Comparative Example This example shows the results of dimerizing toluene in the same manner as in Example 2 using thallium oxide itself, which has not been activated with zinc oxide, and zinc oxide itself as catalysts. The result is the first
As shown in the table.

【表】 上表にみられるように、酸化亜鉛で活性化した
本発明の触媒を用いるとトルエンの酸化率が著し
く向上する。 実施例 3 実施例1で調製した触媒を用い、実施例2と同
様の手順により、反応温度600℃でキシレンを二
量化した。 反応したキシレンの割合を表わした酸化率は
29.7%であり、二量体の選択率は69.1%の炭酸ガ
スの選択率は11.6%であつた。 なお、二量体は1,2−ジトリルエタンと1,
2−ジトリルエチレンの和である。
[Table] As seen in the above table, the oxidation rate of toluene is significantly improved when using the catalyst of the present invention activated with zinc oxide. Example 3 Using the catalyst prepared in Example 1, xylene was dimerized at a reaction temperature of 600° C. in the same manner as in Example 2. The oxidation rate, which represents the proportion of xylene reacted, is
The selectivity for dimer was 69.1%, and the selectivity for carbon dioxide was 11.6%. In addition, the dimer is 1,2-ditolylethane and 1,
It is the sum of 2-ditolylethylene.

Claims (1)

【特許請求の範囲】 1 酸化亜鉛で活性化された酸化タリウムであつ
て、その組成比が式 TlaZnbOc (式中、aは0.2〜4.0、bは1を表し、cは上記
組成物中の酸化状態におけるTl及びZnの平均原
子価をみたすために必要な数を表す)の関係にあ
ることを特徴とするトルエン又はキシレンの酸化
的脱水素二量化用触媒。
[Scope of Claims] 1. Thallium oxide activated with zinc oxide, whose composition ratio is expressed by the formula Tl a Zn b O c (wherein a represents 0.2 to 4.0, b represents 1, and c represents the above-mentioned 1. A catalyst for oxidative dehydrogenation of toluene or xylene, characterized by having the following relationship (representing the number necessary to satisfy the average valence of Tl and Zn in the oxidation state in the composition)
JP56046019A 1981-03-27 1981-03-27 Catalyst for oxidative dehydrogenation dimerization Granted JPS57159541A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56046019A JPS57159541A (en) 1981-03-27 1981-03-27 Catalyst for oxidative dehydrogenation dimerization
US06/358,214 US4438021A (en) 1981-03-27 1982-03-15 Catalyst for dehydrocoupling of toluene or xylene
DE3210709A DE3210709C2 (en) 1981-03-27 1982-03-24 Thallium oxide-containing catalyst and its use
GB8208995A GB2097278B (en) 1981-03-27 1982-03-26 Catalyst for dehydrocoupling toluene or xylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56046019A JPS57159541A (en) 1981-03-27 1981-03-27 Catalyst for oxidative dehydrogenation dimerization

Publications (2)

Publication Number Publication Date
JPS57159541A JPS57159541A (en) 1982-10-01
JPH0243536B2 true JPH0243536B2 (en) 1990-09-28

Family

ID=12735331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56046019A Granted JPS57159541A (en) 1981-03-27 1981-03-27 Catalyst for oxidative dehydrogenation dimerization

Country Status (1)

Country Link
JP (1) JPS57159541A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161747A (en) * 1984-01-28 1985-08-23 エクソン リサ−チ アンド エンヂニアリング コムパニ− Manufacture of inorganic metallic oxygen composition which can dehydrogenation-couple toluene

Also Published As

Publication number Publication date
JPS57159541A (en) 1982-10-01

Similar Documents

Publication Publication Date Title
US3963793A (en) Process for preparing dehydrodimerization products
US4254293A (en) Dehydrocoupling of toluene
CA2409933C (en) Process for the selective preparation of acetic acid by catalytic oxidation of ethane and/or ethylene
US4150064A (en) Activating zinc ferrite oxidative dehydrogenation catalysts
US3998760A (en) Modified zinc ferrite oxidative dehydrogenation catalysts
US4091044A (en) Dehydrocoupling process
US3200081A (en) Mixed antimony oxide-manganese oxide oxidation catalyst
JPS584694B2 (en) Method for producing acrolein or methacrolein
US4394297A (en) Zinc titanate catalyst
US4552978A (en) Oxidation of unsaturated aldehydes
US4000209A (en) Isoprene production and catalyst therefor
EP0030837B1 (en) Dehydrocoupling of toluene
EP0078150A1 (en) Production of methacrylonitrile
JPH0547265B2 (en)
US4243825A (en) Dehydrocoupling of toluene
US5051390A (en) Chemical process and catalyst to be used therein
US4390728A (en) Process for conversion of toluene to benzaldehyde
JP2003531874A (en) Catalyst for oxidation of lower olefins to unsaturated aldehydes, method of making and using the same
US4783572A (en) Process for the preparation of ethylene-ethane mixtures
JPH0243536B2 (en)
US4438021A (en) Catalyst for dehydrocoupling of toluene or xylene
JPH0243538B2 (en)
US4278825A (en) Dehydrocoupling of toluene
JPH0243537B2 (en)
US4299987A (en) Process for producing benzo-phenone from 1,1-diphenylethane (or 1,1-diphenylethylene) using antimonate catalysts