JPH0243349A - Method for working li-containing high-tensile aluminum alloy - Google Patents

Method for working li-containing high-tensile aluminum alloy

Info

Publication number
JPH0243349A
JPH0243349A JP19055988A JP19055988A JPH0243349A JP H0243349 A JPH0243349 A JP H0243349A JP 19055988 A JP19055988 A JP 19055988A JP 19055988 A JP19055988 A JP 19055988A JP H0243349 A JPH0243349 A JP H0243349A
Authority
JP
Japan
Prior art keywords
alloy
solution
aluminum alloy
containing high
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19055988A
Other languages
Japanese (ja)
Inventor
Mikinari Iharaki
幹成 伊原木
Tatsumi Sakano
坂野 竜美
Tsugio Imamura
今村 次男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19055988A priority Critical patent/JPH0243349A/en
Publication of JPH0243349A publication Critical patent/JPH0243349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To refine the recrystallized structure of the title alloy and to prevent the deterioration in the characteristics such as strength, elongation, and fatigue strength by solution-treating an Li-contg. high-tensile Al alloy, overageing the alloy, working the alloy, and then further solution-treating the alloy. CONSTITUTION:An Li-contg. Al alloy is solution-treated at about 500-550 deg.C, or preferably at about 520-530 deg.C to sufficiently dissolve added elements into the base metal. The Al alloy is then overaged on the high-temp. side at about 400-500 deg.C, or preferably at about 460-480 deg.C, to disperse and deposit the dissolved added elements. The treated Al alloy is worked, and then solution-treated. As a result, many fine recrystallized grains are deposited with the deposits of the overageing as the nuclei, and the alloy can be worked without deteriorating the characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高力アルミニウム合金、特にLi  含有高力
アルミニウム合金を加工する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a method for processing high strength aluminum alloys, in particular Li-containing high strength aluminum alloys.

〔従来の技術〕[Conventional technology]

従来、一般の高力アルミニウム合金(JIS規格202
4.7075)を加工するには、最も加工性がよい焼な
まし状態で加工後、溶体化処理を行う方法が実施されて
いる。しかしながら、Li  含有高力アルミニウム合
金そのものは現在工業化中であり、そのため該合金の加
工及びその際の熱処理条介は未だ確立されていない。
Conventionally, general high-strength aluminum alloy (JIS standard 202
4.7075), a method is implemented in which the material is processed in an annealed state, which provides the best workability, and then subjected to solution treatment. However, the Li-containing high-strength aluminum alloy itself is currently being industrialized, and therefore processing of the alloy and heat treatment conditions at that time have not yet been established.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

Li  含有高力アルミニウム合金を加工するためには
、先ず最も加工性のよい状態に熱処理することが必要で
ある。該合金は通常の高温(400〜460C)から徐
冷(27C/ hr  以下の冷却速度)する焼なまし
処理を行った状態よシ、高温(460〜540C)から
室温水中に焼入れを行う溶体化処理を施こした状態の方
が加工性がよい。
In order to process a Li-containing high-strength aluminum alloy, it is first necessary to heat-treat it to a state with the best workability. The alloy can be annealed by slow cooling (cooling rate of 27 C/hr or less) from a normal high temperature (400 to 460 C), or solution quenched by quenching in room temperature water from a high temperature (460 to 540 C). Workability is better in the treated state.

従ってLi  含有高力アルミニウム合金を溶体化処理
した後、加工して必要な形状となし、時効処理を行えば
よいが、加工量が大きく一度の加工だけでは所望の形状
が得られない場合には再溶体化処理を行い、更に加工を
行って所望の形状を得るようにしなければならないが、
再溶体化処理を行うと一度目の加工時に該合金内部に蓄
積された加工歪が高温に加熱されることにより解放され
、そのエネルギでいわゆる再結晶という結晶粒の再配列
現象が生ずる。このような現象が起ると新たに生じた結
晶粒は通常光のそれよシ大きくなシ、粗大化した結晶粒
をもつLi  含有高力アルミニウム合金製品は強度、
伸び及び耐疲労強度などの性質が劣化することになる。
Therefore, after solution treatment of the Li-containing high-strength aluminum alloy, it can be processed into the required shape and then subjected to aging treatment, but if the amount of processing is large and the desired shape cannot be obtained with just one processing, It must be re-solution treated and further processed to obtain the desired shape.
When the re-solution treatment is performed, the processing strain accumulated inside the alloy during the first processing is released by being heated to a high temperature, and the energy causes a rearrangement phenomenon of crystal grains called recrystallization. When this phenomenon occurs, the newly formed crystal grains are larger than those of normal light, and Li-containing high-strength aluminum alloy products with coarsened crystal grains have increased strength and strength.
Properties such as elongation and fatigue strength will deteriorate.

本発明は上記技術水準に鑑み、合目的なL1含有高力ア
ルミニウムの加工法、特に再結晶時に無数の結晶核を該
合金内部に均一に発生分散させ、それによりあらゆる個
所から同時に新しい再結晶粒を発生させ、元のものよシ
も微細な再結晶組織のものを得ることができるLi  
含有高力アルミニウム合金の加工法を提供しようとする
ものである。
In view of the above-mentioned state of the art, the present invention provides a purposeful method for processing high-strength aluminum containing L1, in particular, by uniformly generating and dispersing countless crystal nuclei within the alloy during recrystallization, thereby simultaneously creating new recrystallized grains from all locations. , and can obtain a finer recrystallized structure than the original one.
The present invention aims to provide a method for processing a high-strength aluminum alloy containing aluminum.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はLi  含有高力アルミニウム合金を溶体化処
理し、過時効処理した後、加工を施し、加工後溶体化処
理を行うLi  含有高力アルミニウム合金の加工法で
ある。
The present invention is a method for processing a Li-containing high-strength aluminum alloy, in which the Li-containing high-strength aluminum alloy is subjected to solution treatment, overaging treatment, processing, and post-processing solution treatment.

すなわち、本発明の加工法は、1回目の溶体化処理と1
段目の加工との間に、過時効処理工程を挿入したことを
特徴とするものである。
That is, the processing method of the present invention includes the first solution treatment and the first solution treatment.
This method is characterized in that an overaging treatment step is inserted between the step processing.

本発明の対象とする合金は、後記の実施例であげたA/
−Li−Cu−Mg−Zr  合金以外に、溶体化、時
効処理タイプの熱処理が可能な合金、例えば2000番
台のA/−Cu系合金、6000番台のA/−Mg−8
1系合金、7000番台のAI!−Zn−Mg系合金な
どがあげられる。
The alloy targeted by the present invention is A/
-In addition to the -Li-Cu-Mg-Zr alloy, alloys that can be heat treated by solution treatment and aging treatment, such as 2000 series A/-Cu alloys, 6000 series A/-Mg-8
1 series alloy, 7000 series AI! Examples include -Zn-Mg alloys.

本発明における溶体化処理温度は、添加元素を十分に母
材基地中に固溶させ共晶溶融を防止して結晶粒界の脆化
を防いで材料の延性を確保するには500〜550Cの
範囲が好ましく、特に520〜530Cが好ましい。
The solution treatment temperature in the present invention is 500 to 550C in order to fully dissolve the additive elements in the base metal matrix, prevent eutectic melting, prevent embrittlement of grain boundaries, and ensure the ductility of the material. The range is preferably 520 to 530C, particularly 520 to 530C.

また、過時効処理温度は、析出の進行を早めかつ安定相
8−A/’2CuMgの析出も容易にし、析出した安定
相が母材基地中に固溶させぬためには400〜480C
の範囲が好ましく、このうち特に高温側の460〜48
0Cが好ましい。
In addition, the overaging treatment temperature is set at 400 to 480C to accelerate the progress of precipitation and facilitate the precipitation of the stable phase 8-A/'2CuMg, and to prevent the precipitated stable phase from becoming a solid solution in the base metal matrix.
The range is preferably 460 to 48, especially on the high temperature side.
0C is preferred.

〔作用〕[Effect]

本発明において採用するような過時効処理をせず溶体化
処理だけでは、添加元素はアルミニウム基地中に固溶さ
れているため、再結晶の核となるものは合金中に含まれ
ている不純物(主に、Fe、Si、CrとA/の化合物
)、結晶粒界及び変形帯といった場所のみである。しか
しながら、本発明におけるように溶体化処理後、400
〜s o o c、特に460〜480Cの高温で過時
効処理を行うと、固溶されていた添加元素が析出物とな
ってアルミニウム基地中に分散され、例えばδ’−A/
3Li、δ−AI!S i、T1−A/ 2 CuL 
i、T/−A/MgLi及びS’−AI!2CuMg 
 といった析出物が現われる。この析出物は高温で時効
されるため大きく成長し、約10μ以上となり、いずれ
も再結晶が生ずる時の核として作用することが可能とな
る。そのため、溶体化処理のみと比較して再結晶の核の
数は無数に増大したと考えられる状態になシ、これら無
数の核よシ同時に再結晶粒が発生することによって元の
ものより微細な結晶粒が得られるようになる。
If only solution treatment is performed without overaging treatment as adopted in the present invention, the additive elements are solid-solved in the aluminum matrix, so the impurities contained in the alloy ( It mainly exists in places such as compounds of Fe, Si, Cr and A/), grain boundaries and deformation zones. However, after solution treatment as in the present invention, 400
When over-aging treatment is performed at a high temperature of 460 to 480C, the solid solution additive elements become precipitates and are dispersed in the aluminum base, for example, δ'-A/
3Li, δ-AI! S i, T1-A/2CuL
i, T/-A/MgLi and S'-AI! 2CuMg
A precipitate appears. Since these precipitates are aged at high temperatures, they grow to a size of about 10 μm or more, and can act as nuclei when recrystallization occurs. Therefore, the number of recrystallized nuclei is thought to have increased infinitely compared to solution treatment alone, and recrystallized grains are generated at the same time as these countless nuclei, resulting in finer grains than the original ones. Crystal grains can now be obtained.

〔実施例〕〔Example〕

A7−Li −Cu−Mg−Zr合金(sl: 0.0
5 %、Fe:0.1  %、 cu:1.84%、 
Mg  :  0.8 1  %、 Ti:0.0 2
5%、 Li  :  2.6%、 Zr  :  0
.1 491r、A/:残部、但しSi、Fe及びT1
は不純物)に対し、通常と考えられる手順と本発明方法
による手順で製造した板状試料の測定結果を下記に示す
A7-Li-Cu-Mg-Zr alloy (sl: 0.0
5%, Fe: 0.1%, cu: 1.84%,
Mg: 0.8 1%, Ti: 0.0 2
5%, Li: 2.6%, Zr: 0
.. 1 491r, A/: remainder, however, Si, Fe and T1
The measurement results for plate-shaped samples produced by a procedure considered to be normal and a procedure according to the method of the present invention are shown below.

上記の結果よシ、通常法に比較し、本発明による方法に
よると約60チ結晶粒が微細であることがわかる。
The above results show that the method according to the present invention has finer crystal grains of about 60 cm compared to the conventional method.

〔発明の効果〕〔Effect of the invention〕

本発明は単純な加工度の低い部品は別として複雑で高い
加工度を要する部品(例えば航空機用ストリンガ−フレ
ームなど)の製造に対して大きな効果を奏することがで
きる。
The present invention can have a great effect on manufacturing not only simple parts that require a low degree of work, but also complex parts that require a high degree of work (for example, stringer frames for aircraft).

Claims (1)

【特許請求の範囲】[Claims] Li含有高力アルミニウム合金を溶体化処理し、過時効
処理した後、加工を施し、加工後溶体化処理を行うこと
を特徴とするLi含有高力アルミニウム合金の加工法。
A method for processing a Li-containing high-strength aluminum alloy, which comprises subjecting the Li-containing high-strength aluminum alloy to solution treatment, overaging treatment, processing, and performing post-processing solution treatment.
JP19055988A 1988-08-01 1988-08-01 Method for working li-containing high-tensile aluminum alloy Pending JPH0243349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19055988A JPH0243349A (en) 1988-08-01 1988-08-01 Method for working li-containing high-tensile aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19055988A JPH0243349A (en) 1988-08-01 1988-08-01 Method for working li-containing high-tensile aluminum alloy

Publications (1)

Publication Number Publication Date
JPH0243349A true JPH0243349A (en) 1990-02-13

Family

ID=16260083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19055988A Pending JPH0243349A (en) 1988-08-01 1988-08-01 Method for working li-containing high-tensile aluminum alloy

Country Status (1)

Country Link
JP (1) JPH0243349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537936A (en) * 2010-09-08 2013-10-07 アルコア インコーポレイテッド Improved aluminum-lithium alloy and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537936A (en) * 2010-09-08 2013-10-07 アルコア インコーポレイテッド Improved aluminum-lithium alloy and method for producing the same

Similar Documents

Publication Publication Date Title
US4092181A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
EP0031605B1 (en) Method of manufacturing products from a copper containing aluminium alloy
US5059257A (en) Heat treatment of precipitation hardenable nickel and nickel-iron alloys
EP0062469B1 (en) Method for producing fine-grained, high strength aluminum alloy material
US20180340248A1 (en) High-strength alpha-beta titanium alloy
US5194102A (en) Method for increasing the strength of aluminum alloy products through warm working
JPS59145765A (en) Aluminum alloy heat treatment
JPH05501588A (en) Method for producing plate or strip material with improved cold rolling properties
US4222797A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
JPH0243349A (en) Method for working li-containing high-tensile aluminum alloy
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
JPH0257655A (en) Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JPH01501325A (en) Aluminum-lithium alloy and its manufacturing process
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
Hirsch Annealing of Aluminum and Its Alloys
JPH0672295B2 (en) Method for producing aluminum alloy material having fine crystal grains
JP2652016B2 (en) Method for producing aluminum alloy material having fine crystal grains
JPH02104642A (en) Production of aluminum alloy sheet for superplastic working
JPS62202061A (en) Manufacture of aluminum alloy material having fine grain
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPS6157385B2 (en)
JPH03183750A (en) Production of superplastic aluminum alloy having high strength
JPH0570910A (en) Production of soft aluminum alloy material for welded structure
JPS6286150A (en) Manufacture of superplastic aluminum alloy