JPH0243045B2 - - Google Patents

Info

Publication number
JPH0243045B2
JPH0243045B2 JP57152301A JP15230182A JPH0243045B2 JP H0243045 B2 JPH0243045 B2 JP H0243045B2 JP 57152301 A JP57152301 A JP 57152301A JP 15230182 A JP15230182 A JP 15230182A JP H0243045 B2 JPH0243045 B2 JP H0243045B2
Authority
JP
Japan
Prior art keywords
clutch
dog
clutch dog
friction
engagement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57152301A
Other languages
Japanese (ja)
Other versions
JPS5940019A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57152301A priority Critical patent/JPS5940019A/en
Publication of JPS5940019A publication Critical patent/JPS5940019A/en
Publication of JPH0243045B2 publication Critical patent/JPH0243045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/04Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch
    • F16D23/06Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch and a blocking mechanism preventing the engagement of the main clutch prior to synchronisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/04Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch
    • F16D23/06Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch and a blocking mechanism preventing the engagement of the main clutch prior to synchronisation
    • F16D2023/0618Details of blocking mechanism comprising a helical spring loaded element, e.g. ball

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、主として、船内エンジンと船外推進
機との動力伝達部に設けられて、いわゆる作業機
クラツチとして使用されるクラツチ装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates primarily to a clutch device that is installed in a power transmission section between an inboard engine and an outboard propulsion device and is used as a so-called work machine clutch.

従来の技術と発明が解決しようとする課題 従来、一般に使用されているこの種作業機クラ
ツチは、クラツチドグを摺動させてクラツチ爪同
士を単純に係脱させるだけのものであつて、いわ
ゆる同期噛合い機構は取付けられてなく、また、
半クラツチも使用できないものであつた。近時、
このような船外推進機にも大型のものが使用され
るようになつており、これに伴なつてクラツチ爪
の破損を防止する為、同期噛合い機構を設けるこ
とが必要になつている。また、半クラツチ機能を
備えたものとしては、従来、動力伝達部に摩擦板
式のクラツチを設け、これによつて半クラツチを
可能としたものがあるが、かかる構造では、摩擦
板が全動力の嵌脱をも行なう構造となつている為
大容量のものが必要となり、大型で高価となる欠
点があつた。本発明は、このような点に鑑みてな
されたもので、同期噛合い機構を備え、しかも半
クラツチをも使用可能として、船外推進機用の作
業機クラツチとして最適なクラツチ装置を提供す
ることを目的としてなされたものである。
Prior Art and Problems to be Solved by the Invention Conventionally, this type of work machine clutch that has been commonly used is one that simply engages and disengages the clutch pawls by sliding the clutch dog, and has a so-called synchronous meshing mechanism. The mechanism is not installed and
The half-clutch was also unusable. Recently,
As such outboard propulsion machines are becoming larger, it has become necessary to provide a synchronized mesh mechanism to prevent damage to the clutch pawl. In addition, conventionally, there are devices with a half-clutch function that have a friction plate type clutch installed in the power transmission section, which enables half-clutching. Since it has a structure that also allows for insertion and removal, it requires a large-capacity device, which has the disadvantage of being large and expensive. The present invention has been made in view of these points, and an object of the present invention is to provide a clutch device that is equipped with a synchronous meshing mechanism and can also be used as a half-clutch, and is optimal as a working machine clutch for an outboard propulsion engine. It was made for the purpose of

課題を解決するための手段 上記の目的を達成するため、この発明では、駆
動側と被動側の一方の伝動軸に摺動自在としてク
ラツチドグを設け、他方の伝動軸に前記クラツチ
ドグに噛合うクラツチ爪を設けたクラツチ装置に
おいて、前記クラツチ爪を備えた伝動軸に円錐摩
擦面を形成し、クラツチドグには、そのクラツチ
ドグより突出して前記の円錐摩擦面に摺接する摩
擦コーンを軸方向摺動自在に取付け、これら摩擦
コーンとクラツチドグとの摺動面の一方の側に軸
方向の両側に傾斜面を備えた係合溝を、他方の側
にバネの附勢力によつて前記係合溝に係合する係
合部材を設けるとともに、前記クラツチドグを摺
動操作するシフトレバーの軸に、そのシフトレバ
ーをクラツチドグを前記のクラツチ爪へ噛合させ
る方向とは反対方向に回動させると、前記の摩擦
コーンを相手方円錐摩擦面側へ押すカムを備えた
シフトアームを設けたことを特徴とする。
Means for Solving the Problems In order to achieve the above object, in the present invention, a clutch dog is provided in a slidable manner on one of the transmission shafts on the drive side and the driven side, and a clutch pawl that engages with the clutch dog is provided on the other transmission shaft. In the clutch device, a conical friction surface is formed on the transmission shaft provided with the clutch pawl, and a friction cone that protrudes from the clutch dog and slides into sliding contact with the conical friction surface is attached to the clutch dog so as to be freely slidable in the axial direction. , an engaging groove having inclined surfaces on both sides in the axial direction is formed on one side of the sliding surface of the friction cone and the clutch dog, and the engaging groove is engaged with the engaging groove on the other side by the biasing force of a spring. An engaging member is provided on the shaft of a shift lever that slides the clutch dog, and when the shift lever is rotated in the opposite direction to the direction in which the clutch dog engages with the clutch pawl, the friction cone is moved against the other end. It is characterized by a shift arm equipped with a cam that pushes toward the conical friction surface.

上記において、係合溝に係合する係合部材とし
ては、以下の実施例で示すような係合ピン又はそ
の他のボール等を用いることが考えられる。
In the above, as the engagement member that engages with the engagement groove, it is possible to use an engagement pin or other ball as shown in the following embodiments.

実施例 以下、本発明の構成を図示の一実施例に基づい
て説明すると、第1図は、船外推進機の全体を示
し、船尾1より突出して取付けられた船外推進機
本体2には、その下端に、後方に突出するプロペ
ラ3が取付けられ、このプロペラ3へ動力を伝達
するドライブ軸4が上下方向に配置されるととも
に、該ドライブ軸4の上端が、前・後進クラツチ
5を介して水平方向の中間入力軸6へ連結されて
いる。7は、船尾1を貫通して取付けられた筒状
のクラツチケースであつて、このクラツチケース
7には、船内側の端部より突出する入力軸8と、
船外側に突出する出力軸9が相互に同芯に配置さ
れ、出力軸9は、ボールジヨイント10を介して
前記中間入力軸6側へ連結され、入力軸8は、軸
継手11によつてエンジン側へ連結されるように
なつている。クラツチケース7内においては、入
力軸8と出力軸9との間に本発明クラツチとなる
作業機クラツチ12が設けられており、本実施例
では、この作業機クラツチ12を嵌脱することに
よつてエンジンから推進機本体への動力を嵌脱
し、或いは半クラツチ操作を行なつて船体を微速
航行させる、いわゆるトローリングを行なうもの
である。
Embodiment Hereinafter, the structure of the present invention will be explained based on an illustrated embodiment. FIG. 1 shows the entire outboard propulsion device. A propeller 3 that protrudes rearward is attached to the lower end of the propeller 3, and a drive shaft 4 that transmits power to the propeller 3 is arranged in the vertical direction. and is connected to a horizontal intermediate input shaft 6. Reference numeral 7 denotes a cylindrical clutch case installed through the stern 1, and the clutch case 7 includes an input shaft 8 protruding from the end on the inside of the ship;
Output shafts 9 protruding outward from the boat are arranged concentrically with each other, and the output shafts 9 are connected to the intermediate input shaft 6 via a ball joint 10, and the input shaft 8 is connected to the intermediate input shaft 6 by a shaft coupling 11. It is designed to be connected to the engine side. In the clutch case 7, a work machine clutch 12, which is the clutch of the present invention, is provided between the input shaft 8 and the output shaft 9. In this embodiment, the work machine clutch 12 is engaged and disengaged. This is what is called trolling, in which the boat is moved at a slow speed by engaging and disengaging power from the engine to the propulsion unit, or by performing a half-clutch operation.

そこで、上記本発明にかかる作業機クラツチ1
2の構造を、第2図以下に基づいて説明すると、
まず入力軸8は、そのケース7内の端部が出力軸
9の端部へ挿入支持されている。また、入力軸8
には、第6図でも示すように、ケース7内におい
て、クラツチドグ13がスプライン14を介し軸
方向摺動自在に外嵌されており、互いに対向する
クラツチドグ13と、出力軸9の大径端部9a
に、各々クラツチ爪15,16が形成されて、ク
ラツチドグ13を摺動操作することによつて、こ
れらクラツチ爪15,16同志を係脱し、入力軸
8から出力軸9への動力を嵌脱するようになつて
いる。出力軸9は、前記大径端部9aの外周に円
錐摩擦外周面17が形成されている。他方、クラ
ツチドグ13には、その外周にスプライン18が
形成され、このスプライン18には、摩擦コーン
19が、該クラツチドグ13に対し軸方向摺動自
在として外嵌され、更に、この摩擦コーン19に
は、出力軸9側に向けて突出した環状突出部20
が一体に形成されており、この環状突出部20の
内周に、前記円錐摩擦外周面17に摺接する円錐
摩擦内周面21が形成されている。したがつて、
摩擦コーン19は、クラツチドグ13に対して摺
動自在であるが、この摩擦コーン19とクラツチ
ドグ13との摺動面においては、第6図及び第7
図で示すように、クラツチドグ13の外周に、そ
の軸方向の両側を傾斜面22,22とした断面V
字状の係合溝23が、円周方向に形成されてい
る。他方、、摩擦コーン19には、半径方向に貫
通してガイド孔24が形成され、このガイド孔2
4には、その先端に前記係合溝23の傾斜面2
2,22に当接する傾斜面25,25を備えた係
合ピン26が摺動自在に挿入されている。27
は、摩擦コーン19へ外嵌したバネ押えであつ
て、このバネ押え27の先端が前記ガイド孔24
を塞ぐとともに、このバネ押え27と前記係合ピ
ン26との間に、該係合ピン26を半径方向に常
に附勢するバネ28が介装され、こバネ28の附
勢力によつて、係合ピン26は、前記係合溝23
へ常時係合している。
Therefore, the working machine clutch 1 according to the present invention is
The structure of 2 will be explained based on Figure 2 and below.
First, the end of the input shaft 8 inside the case 7 is inserted into and supported by the end of the output shaft 9 . In addition, the input shaft 8
As shown in FIG. 6, a clutch dog 13 is fitted onto the outside of the case 7 through a spline 14 so as to be able to freely slide in the axial direction, and the clutch dog 13 and the large diameter end of the output shaft 9 that face each other are connected to each other. 9a
Clutch pawls 15 and 16 are formed respectively, and by slidingly operating the clutch dog 13, these clutch pawls 15 and 16 are engaged and disengaged from each other to engage and disengage the power from the input shaft 8 to the output shaft 9. It's becoming like that. The output shaft 9 has a conical friction outer peripheral surface 17 formed on the outer periphery of the large diameter end 9a. On the other hand, a spline 18 is formed on the outer periphery of the clutch dog 13, and a friction cone 19 is fitted onto the spline 18 so as to be slidable in the axial direction with respect to the clutch dog 13. , an annular protrusion 20 protruding toward the output shaft 9 side.
A conical friction inner circumferential surface 21 is formed on the inner periphery of the annular protrusion 20 and is in sliding contact with the conical friction outer circumferential surface 17 . Therefore,
The friction cone 19 is slidable with respect to the clutch dog 13, but the sliding surface between the friction cone 19 and the clutch dog 13 is as shown in FIGS.
As shown in the figure, a cross section V is formed on the outer periphery of the clutch dog 13 with inclined surfaces 22, 22 on both sides in the axial direction.
A letter-shaped engagement groove 23 is formed in the circumferential direction. On the other hand, a guide hole 24 is formed through the friction cone 19 in the radial direction.
4 has an inclined surface 2 of the engagement groove 23 at its tip.
An engagement pin 26 having sloped surfaces 25, 25 that abut against the engagement pins 2, 22 is slidably inserted therein. 27
is a spring holder fitted onto the friction cone 19, and the tip of this spring holder 27 is connected to the guide hole 24.
A spring 28 is interposed between the spring presser 27 and the engagement pin 26 to constantly bias the engagement pin 26 in the radial direction. The matching pin 26 is connected to the engagement groove 23.
is constantly engaged.

次に、上記クラツチドグ13の側方には、第3
図で示すように、クラツチケース7の側面に取付
けたケース蓋29を貫通して、レバー軸30が回
動自在に取付けられており、このレバー軸30の
内端にはシフトアーム31が嵌着され、このシフ
トアーム31の一端、即わち第3図において該シ
フトアーム31の上端側には、該シフトアーム3
1より内方に突出する概略L形のシフター32
が、軸33によつて回動自在に取付けられてお
り、このシフター32は、前記クラツチドグ13
に形成した円周方向のシフター溝34へ係合して
いる。また、レバー軸30の外端には、シフトレ
バー35が取付けられており、このシフトレバー
35を回動させるとシフトアーム31が回動する
から、これに伴つてシフター32が、シフター溝
34を介してクラツチドグ13を軸方向に摺動さ
せ、前記クラツチ嵌脱を行なう。36は、上記シ
フトアーム31と摩擦コーン19との間に配置さ
れたプレツシヤーフオークであつて、その先端
が、摩擦コーン20の後端部へ形成した外周段部
37へ嵌合するとともに、第4図の如く、前記ケ
ース蓋29に取付けたガイドピン38によつて、
軸方向摺動自在に支持されている。そして、同じ
く第4図で示すように、シフトアーム31の前記
シフター32の軸33と反対側の端部には、プレ
ツシヤーフオーク36の後側面に当接するカム3
9が形成され、したがつて、該シフトアーム31
を、シフター32がクラツチドグ13を嵌入方向
へ摺動させる方向とは反対の方向へ回動させる
と、このシフトアーム31がプレツシヤーフオー
ク36を押し、これによつて摩擦コーン19が、
クラツチドグ13上を出力軸9側へ摺動するよう
構成されている。
Next, on the side of the clutch dog 13, a third
As shown in the figure, a lever shaft 30 is rotatably mounted through a case lid 29 attached to the side surface of the clutch case 7, and a shift arm 31 is fitted into the inner end of this lever shaft 30. At one end of the shift arm 31, that is, at the upper end side of the shift arm 31 in FIG.
A generally L-shaped shifter 32 protruding inward from 1.
is rotatably mounted on a shaft 33, and this shifter 32 is connected to the clutch dog 13.
It engages with a circumferential shifter groove 34 formed in the. Further, a shift lever 35 is attached to the outer end of the lever shaft 30, and when the shift lever 35 is rotated, the shift arm 31 is rotated. The clutch dog 13 is slid in the axial direction through the clutch to engage and disengage the clutch. 36 is a pressure fork disposed between the shift arm 31 and the friction cone 19, the tip of which fits into the outer circumferential step 37 formed at the rear end of the friction cone 20; As shown in FIG. 4, by the guide pin 38 attached to the case lid 29,
It is supported slidably in the axial direction. As also shown in FIG. 4, a cam 3 that abuts against the rear side of the pressure fork 36 is provided at the end of the shift arm 31 opposite to the shaft 33 of the shifter 32.
9 is formed, thus the shift arm 31
When the shifter 32 rotates the clutch dog 13 in the direction opposite to the direction in which it slides in the insertion direction, the shift arm 31 pushes the pressure fork 36, thereby causing the friction cone 19 to
It is configured to slide on the clutch dog 13 toward the output shaft 9 side.

さて、上記の構成に基づいて作用を説明する
と、まず、シフトレバー35をクラツチドグ13
の嵌入方向、即わち第3図の向こう側(第4図で
は左方向)へ回動させると、前述したように、シ
フトアーム31によつてシフター32が軸方向に
移動し、これによつて、クラツチドグ13が出力
軸9側へ摺動する。それと同時に、前記係合ピン
26と係合溝23とが係合していることにより、
摩擦コーン19も同様に一体となつて軸方向に摺
動し、まず、この摩擦コーン19の円錐摩擦内周
面21が、出力軸9側の円錐摩擦外周面17へ摺
接し、これによつて、出力軸9が回転を始める。
なおも強くクラツチドグ13押すと、両円錐摩擦
面21,17の摩擦力が増大し、出力軸9の回転
が増大して同期回転にまで高められる。更に強く
押し込むと、係合溝23の後部側の傾斜面22と
係合ピン26の傾斜面25との作用によつて、第
7図の如く、係合ピン26がガイド孔24内に押
しまれて、クラツチドグ13のみが摺動して、該
クラツチドグ13のクラツチ爪15が出力軸9の
クラツチ爪16へ噛合し、完全なクラツチ嵌入状
態となる。また、この状態からレバー軸35を元
の方向へ回動させると、クラツチドグ13が元の
方向へ摺動し、該クラツチドグ13の係合溝23
が再び係合ピン26へ係合して、摩擦コーン19
を元の方向へ戻す。なお、この場合、係合ピン2
6と係合溝23との係合が行なわれないで嵌入時
のままの状態で戻つたとしても、摩擦コーン19
は、その後端部が前記プレツシヤーフオーク36
に当たるので、それ以上は移動することはでき
ず、常に、係合ピン26と係合溝23とが係合す
る位置に戻ることになる。次に、シフトレバー3
5を、上記クラツチドグ13の嵌入方向とは反対
の方向、即わち第3図の手前方向(第4図では右
方向)へ回動させると、シフトアーム31に形成
したカム39がプレツシヤーフオーク36を摺動
させるので、プレツシヤーフオーク36は、クラ
ツチドグ13の摺動とは無関係に摩擦コーン19
を出力軸9側へ摺動させ、これによつて、該摩擦
コーン19の円錐摩擦内周面21と出力軸9側の
円錐摩擦外周面17とが摺接し、その保擦力によ
つて、出力軸9側へ動力が伝達される。この伝達
トルクは、シフトレバー35に加えられる荷重に
よつて決まることとなるから、この荷重を調節す
ることによつて所望の速度で船体を微速航行さ
せ、トローリング作業等を行なうことができる。
なお、このとき係合ピン26は、傾斜面22,2
5によつてガイド孔24内へ僅かに押し込まれる
が、係合溝23により完全に離脱することはな
い。すなわち、係合溝23より離脱してしまう
と、シフトレバー35に加えている荷重を除去し
ても摩擦コーン13が戻らず、円錐摩擦外周面1
7と内周面21が完全に離れないで出力軸9側が
ひきずられて連れ廻りを生じるがそのように離脱
しないようにしておくことによつて、バネ28と
係合溝23の傾斜面25の作用によつて、前記荷
重の除去に伴つて摩擦コーン13が自動的に戻る
のである。
Now, to explain the operation based on the above configuration, first, move the shift lever 35 to the clutch dog 13.
When the shifter 32 is rotated in the insertion direction, that is, to the other side in FIG. 3 (leftward in FIG. 4), the shift arm 31 moves the shifter 32 in the axial direction, as described above. Then, the clutch dog 13 slides toward the output shaft 9 side. At the same time, since the engagement pin 26 and the engagement groove 23 are engaged,
The friction cone 19 similarly slides together in the axial direction, and first, the conical friction inner circumferential surface 21 of this friction cone 19 comes into sliding contact with the conical friction outer circumferential surface 17 on the output shaft 9 side. , the output shaft 9 starts rotating.
If the clutch dog 13 is pressed still strongly, the frictional force between the two conical friction surfaces 21 and 17 increases, and the rotation of the output shaft 9 increases to synchronous rotation. When pushed in even more forcefully, the engagement pin 26 is pushed into the guide hole 24 as shown in FIG. Then, only the clutch dog 13 slides, and the clutch claw 15 of the clutch dog 13 meshes with the clutch claw 16 of the output shaft 9, so that the clutch is completely engaged. Furthermore, when the lever shaft 35 is rotated in the original direction from this state, the clutch dog 13 slides in the original direction, and the engagement groove 23 of the clutch dog 13 slides in the original direction.
engages with the engagement pin 26 again, and the friction cone 19
Return to the original direction. In addition, in this case, the engagement pin 2
6 and the engagement groove 23 are not engaged and the friction cone 19 returns to the state in which it was inserted.
, whose rear end is connected to the pressure fork 36
, so it cannot move any further and always returns to the position where the engagement pin 26 and the engagement groove 23 engage. Next, shift lever 3
When the shift arm 31 is rotated in the opposite direction to the direction in which the clutch dog 13 is inserted, that is, toward the front in FIG. Since the fork 36 is slid, the pressure fork 36 is caused to slide against the friction cone 19 regardless of the sliding movement of the clutch dog 13.
is slid toward the output shaft 9 side, whereby the conical friction inner circumferential surface 21 of the friction cone 19 and the conical friction outer circumferential surface 17 on the output shaft 9 side come into sliding contact, and due to the friction retention force, Power is transmitted to the output shaft 9 side. This transmitted torque is determined by the load applied to the shift lever 35, so by adjusting this load it is possible to move the boat at a desired speed and perform trolling operations.
In addition, at this time, the engagement pin 26 is attached to the inclined surfaces 22, 2.
5 into the guide hole 24, but the engagement groove 23 prevents it from being completely removed. That is, if the friction cone 13 is disengaged from the engagement groove 23, even if the load applied to the shift lever 35 is removed, the friction cone 13 will not return, and the conical friction outer peripheral surface 1
7 and the inner circumferential surface 21 are not completely separated, and the output shaft 9 side is dragged and rotated. As a result of this action, the friction cone 13 returns automatically upon removal of said load.

なお、シフトレバー35は第5図で示すよう
に、片効きのスプリングジヨイント40を介し
て、船内の操作部へ連結されて遠隔操作されるよ
うになつており、このスプリングジヨイント40
は、操作部に加えられる力の変動を吸収し、常に
一定の荷重をシフトレバー35へ作用させること
ができて、安定した船体の微速航行が得られる。
As shown in FIG. 5, the shift lever 35 is connected to an operating section inside the ship via a single-handed spring joint 40 so that it can be remotely operated.
It is possible to absorb fluctuations in the force applied to the operating section and always apply a constant load to the shift lever 35, thereby achieving stable slow-speed navigation of the ship.

上記において、係合ピン26と係合溝23の位
置関係は逆となつてもよく、係合ピン26をクラ
ツチドグ13側に、係合溝23を摩擦コーン19
側へ形成してもよい。また、係合ピン26は、そ
の他の係合部材即わちボールであつてもよい。更
に、摩擦コーン19側に円錐摩擦外周面を、出力
軸9側に円錐摩擦内周面を形成するようにしても
よい。
In the above, the positional relationship between the engagement pin 26 and the engagement groove 23 may be reversed, with the engagement pin 26 facing the clutch dog 13 side and the engagement groove 23 facing the friction cone 19 side.
It may also be formed on the side. Further, the engagement pin 26 may be another engagement member, that is, a ball. Furthermore, a conical friction outer circumferential surface may be formed on the friction cone 19 side, and a conical friction inner circumferential surface may be formed on the output shaft 9 side.

発明の効果 以上の説明で解るように、本発明では、まずク
ラツチドグの噛合いに先行して摩擦コーンを相手
方の円錐摩擦面へ摺動させて、クラツチドグと相
手方が同期回転となつた状態で、該クラツチドグ
が相手方クラツチ爪へ噛合うようにしているの
で、クラツチドグ嵌入時の衝撃が緩和され、クラ
ツチ爪の耐久性を向上でき、かつ、嵌入時のシヨ
ツクやシヨツク音を低減することができたもので
ある。また、本発明では、このような同期噛合い
機構に加えて、上記摩擦コーンのみをクラツチド
グとは別に摺動させて、その円錐摩擦面を相手方
円錐摩擦面へ摺接させることができるから、この
ような同期噛合い機構を備えた構造でありながら
半クラツチを行なつて船体を微速航行できる効果
があるとともに、その半クラツチ操作は、前記ク
ラツチドグを摺動させる摺動操作具を、嵌入時と
は反対方向に回動させることによつて行なうよう
にしているから、通常の嵌脱動作と半クラツチ操
作を同一の操作具で行なうことができ、操作系統
が従来通り1本で済む等の効果がある。更に本発
明では、通常の嵌脱はクラツチ爪の噛合いによつ
て行ない半クラツチは同期回転用の摩擦コーンを
摺動させることによつて行なうようにしているか
ら、従来の摩擦板式のクラツチと異なり小容量の
もので済み、したがつて、全体にコンパクトで安
価に構成できるという効果が得られる。
Effects of the Invention As can be understood from the above explanation, in the present invention, first, prior to the engagement of the clutch dog, the friction cone is slid onto the conical friction surface of the mating partner, and when the clutch dog and the mating partner are in synchronous rotation, Since the clutch dog is designed to mesh with the mating clutch pawl, the impact when the clutch dog is inserted is alleviated, the durability of the clutch pawl is improved, and the shock and shock noise when the clutch dog is inserted can be reduced. It is. Further, in the present invention, in addition to such a synchronized meshing mechanism, only the friction cone can be slid separately from the clutch dog, and its conical friction surface can be brought into sliding contact with the mating conical friction surface. Although the structure is equipped with such a synchronized meshing mechanism, it has the effect of allowing the ship to sail at a slow speed by half-clutching, and the half-clutching operation also allows the sliding operation tool that slides the clutch dog to be moved at the same time as when the clutch dog is inserted. Since this is done by rotating the clutch in the opposite direction, the same operating tool can be used for normal engagement/disengagement and half-clutching, and the effect is that only one operating system is required as before. There is. Furthermore, in the present invention, normal engagement and disengagement is performed by the engagement of clutch pawls, and half-clutching is performed by sliding a friction cone for synchronous rotation, so it is different from the conventional friction plate type clutch. Unlike this, it only requires a small capacity, and therefore has the advantage of being compact and inexpensive as a whole.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、船外推進機の一部のみを縦断して示
す全体側面図、第2図は、作業機クラツチ部の拡
大縦断面図、第3図は、第2図のA−A線断面
図、第4図は、シフトアームとプレツシヤーフオ
ークの取付構造を第3図の左方向から見た側面
図、第5図は、シフトレバー部の側面図、第6図
は第2図の要部拡大図、第7図は同じくクラツチ
嵌入状態を示す要部拡大図である。 8……入力軸、9……出力軸、13……クラツ
チドグ、16……クラツチ爪、17……円錐摩擦
外周面、19……摩擦コーン、21……円錐摩擦
内周面、22……傾斜面、23……係合溝、26
……係合ピン、28……バネ、31……シフトア
ーム、35……シフトレバー、39……カム。
Fig. 1 is an overall side view showing only a part of the outboard propulsion machine, Fig. 2 is an enlarged longitudinal cross-sectional view of the work implement clutch, and Fig. 3 is a line taken along line A-A in Fig. 2. 4 is a side view of the mounting structure of the shift arm and pressure fork as seen from the left side of FIG. 3, FIG. 5 is a side view of the shift lever section, and FIG. FIG. 7 is an enlarged view of the main part showing the clutch in the fitted state. 8... Input shaft, 9... Output shaft, 13... Clutch dog, 16... Clutch pawl, 17... Conical friction outer circumferential surface, 19... Friction cone, 21... Conical friction inner circumferential surface, 22... Inclined Surface, 23...Engagement groove, 26
...Engaging pin, 28...Spring, 31...Shift arm, 35...Shift lever, 39...Cam.

Claims (1)

【特許請求の範囲】[Claims] 1 駆動側と被動側の一方の伝動軸に摺動自在と
してクラツチドグを設け、他方の伝動軸に前記ク
ラツチドグに噛合うクラツチ爪を設けたクラツチ
装置において、前記クラツチ爪を備えた伝動軸に
円錐摩擦面を形成し、クラツチドグには、そのク
ラツチドグより突出して前記の円錐摩擦面に摺接
する摩擦コーンを軸方向摺動自在に取付け、これ
ら摩擦コーンとクラツチドグとの摺動面の一方の
側に軸方向の両側に傾斜面を備えた係合溝を、他
方の側にバネの附勢力によつて前記係合溝に係合
する係合部材を設けるとともに、クラツチドグを
摺動操作するシフトレバーの軸に、このシフトレ
バーをクラツチドグを相手側クラツチ爪へ噛合さ
せる方向とは反対方向へ回動させると、前記の摩
擦コーンを相手方円錐摩擦面へ押すカムを備えた
シフトアームを設けたことを特徴とする半クラツ
チを備えた同期噛合いクラツチ装置。
1. In a clutch device in which a clutch dog is provided on one of the transmission shafts on the driving side and the driven side so as to be slidable, and a clutch pawl is provided on the other transmission shaft to mesh with the clutch dog, the transmission shaft equipped with the clutch pawl is provided with a conical friction. A friction cone that protrudes from the clutch dog and slides in sliding contact with the conical friction surface is attached to the clutch dog so as to be slidable in the axial direction. An engagement groove with an inclined surface is provided on both sides of the clutch, and an engagement member that engages with the engagement groove by the biasing force of a spring is provided on the other side, and the shaft of the shift lever that slides the clutch dog is provided with an engagement member that engages with the engagement groove by the biasing force of a spring. , characterized in that a shift arm is provided with a cam that pushes the friction cone toward the mating conical friction surface when the shift lever is rotated in a direction opposite to the direction in which the clutch dog engages with the mating clutch pawl. Synchronous mesh clutch device with half clutch.
JP57152301A 1982-08-31 1982-08-31 Synchronous claw clutch device provided with semi-clutch Granted JPS5940019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57152301A JPS5940019A (en) 1982-08-31 1982-08-31 Synchronous claw clutch device provided with semi-clutch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57152301A JPS5940019A (en) 1982-08-31 1982-08-31 Synchronous claw clutch device provided with semi-clutch

Publications (2)

Publication Number Publication Date
JPS5940019A JPS5940019A (en) 1984-03-05
JPH0243045B2 true JPH0243045B2 (en) 1990-09-27

Family

ID=15537526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57152301A Granted JPS5940019A (en) 1982-08-31 1982-08-31 Synchronous claw clutch device provided with semi-clutch

Country Status (1)

Country Link
JP (1) JPS5940019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013899A (en) * 1996-06-21 1998-01-16 Nec Shizuoka Ltd Selective radio call receiver

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225728U (en) * 1988-08-05 1990-02-20
WO2007072539A1 (en) * 2005-12-19 2007-06-28 Hitachi, Ltd. Engine start device and method for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013899A (en) * 1996-06-21 1998-01-16 Nec Shizuoka Ltd Selective radio call receiver

Also Published As

Publication number Publication date
JPS5940019A (en) 1984-03-05

Similar Documents

Publication Publication Date Title
US4809572A (en) Power driven screwdriver
JPH0574727B2 (en)
US20090209150A1 (en) Shift mechanism of boat propulsion unit
US1997056A (en) Transmission mechanism
US4349091A (en) Synchronized dog clutch
JPH0243045B2 (en)
US5381878A (en) Structure of reverse brake for automobile transmission
US5813283A (en) Vertical/horizontal spindle head for machine tools
US4668198A (en) Power switching apparatus of outboard engines
US3760920A (en) Power shaft coupling and uncoupling mechanism
US2314042A (en) Transmission control
JP3560788B2 (en) Power tool transmission
JPH0240885B2 (en)
JPH0743535Y2 (en) Gear change device
JPH01309890A (en) Counter rotation driving apparatus
JPS5847313Y2 (en) Clutch device for inboard and outboard motors, etc.
US2319784A (en) Driving mechanism
US5295913A (en) Device for coupling a winding shaft pin with a drive shaft pin
JPS5937335A (en) Engaging clutch device with half-clutch mechanism
JPH0138977B2 (en)
JP3724850B2 (en) Tapper mechanism
GB2244105A (en) Internally assisted clutch
JP2904421B2 (en) Propeller drive for ship propulsion
JPS5847314Y2 (en) Clutches for inboard and outboard motors, etc.
US1867427A (en) Reversing mechanism for power boats