JPH0242650B2 - - Google Patents

Info

Publication number
JPH0242650B2
JPH0242650B2 JP27818388A JP27818388A JPH0242650B2 JP H0242650 B2 JPH0242650 B2 JP H0242650B2 JP 27818388 A JP27818388 A JP 27818388A JP 27818388 A JP27818388 A JP 27818388A JP H0242650 B2 JPH0242650 B2 JP H0242650B2
Authority
JP
Japan
Prior art keywords
mold
pressure
frame
molding
bottom plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27818388A
Other languages
Japanese (ja)
Other versions
JPH0248911A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP27818388A priority Critical patent/JPH0248911A/en
Publication of JPH0248911A publication Critical patent/JPH0248911A/en
Publication of JPH0242650B2 publication Critical patent/JPH0242650B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は超高分子量ポリエチレンの成形型に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a mold for ultra-high molecular weight polyethylene.

この明細書において、「超高分子量ポリエチレ
ン」なる用語は、分子量が粘度法で測定して約50
万以上、光散乱法で測定して200万以上を示すポ
リエチレンをいうこととする。
As used herein, the term "ultra-high molecular weight polyethylene" refers to
2 million or more when measured by light scattering method.

従来の技術 超高分子量ポリエチレンは、一般のポリエチレ
ンや他のプラスチツクに比べて、耐磨耗性、耐衝
撃性、耐ストレスクラツキング性、耐寒性等の点
で優れており、さらに低摩擦係数、耐水性、無毒
性、消音特性等もよいことから、広範な用途が期
待されている。しかしこの種のポリエチレンは、
加熱溶融時の粘度が高いため、通常の押出成形法
や射出成形法に適合しにくく、丸棒や小型成形品
を除いて大型成形品は圧縮成形法で製造されてい
る。
Conventional technology Ultra-high molecular weight polyethylene is superior to general polyethylene and other plastics in terms of abrasion resistance, impact resistance, stress cracking resistance, cold resistance, etc., and also has a low coefficient of friction. It is expected to have a wide range of uses because of its good water resistance, non-toxicity, and sound-absorbing properties. However, this type of polyethylene
Due to its high viscosity when heated and melted, it is difficult to adapt to normal extrusion molding or injection molding methods, and large molded products, with the exception of round bars and small molded products, are manufactured by compression molding.

最近、この種の合成樹脂の圧縮成形法として、
予成形品を製造する第1工程と、予成形品から板
状物製品を製造する第2工程とからなる2段圧縮
成形法が行われている。従来、2段圧縮成形法を
行なう圧縮成形機は、第3図に示す構造のもので
あつた。まず第1工程の圧縮成形機51は、同図
イに示すように、加圧機構を備えた上側の雄型5
2および下側の雌型53と、これらの間に設けら
れた複数の中間型54とよりなり、中間型54は
上部に雌型状の凹部55を有し、かつ下部に雄型
状の凸部56を有する。
Recently, as a compression molding method for this kind of synthetic resin,
A two-stage compression molding method is carried out, which consists of a first step of producing a preform and a second step of producing a plate product from the preform. Conventionally, a compression molding machine for performing a two-stage compression molding method has a structure shown in FIG. First, as shown in FIG.
2 and a lower female mold 53, and a plurality of intermediate molds 54 provided between these, the intermediate mold 54 has a female-shaped recess 55 in the upper part and a male-shaped convex part in the lower part. It has a section 56.

この圧縮成形機51において、雌型53および
各凹部55内に樹脂配合物粉末を所要量仕込む。
ついで雌型53と雄型52を加圧機構により上下
から約100Kg/cm2の圧力で常温にて5〜10分間加
圧保持し、予成形品を得る。ついで、この予成形
品を型から取出し、第2工程に移す。この場合予
成形品は崩壊しやすいので、十分に注意して取扱
う必要がある。第2工程の圧縮成形機61は、第
3図ロに示すように、第1工程の圧縮成形機51
と同型であるが、雌型63および中間型64の凹
部65の各周壁部と、雄型62および中間型64
の凸部66とに、それぞれ独立に、蒸気ないし冷
水を通す複数の熱媒通路67,68が設けられて
いて、適時加熱ないし冷却できるように構成され
ている。この圧縮成形機61において、雌型6
3、雄型62および中間型64を予め200〜220℃
に加熱し、雌型63および凹部65に予成形品を
挿入し、圧力20〜50Kg/cm2で加熱下に加圧し、完
全に溶融させる。加圧時間は板圧20mmの場合1時
間程度である。ついで熱媒通路68に冷却水を通
して表裏両面部を冷却して溶融物を固化し、板状
成形品を得る。このとき圧力を100Kg/cm2に上げ
る。また成形品の側部は表裏両面部より緩慢に冷
却する必要があるため、150℃に冷却された時に、
熱媒通路67に蒸気を通して側部を加熱し、温度
が120℃になるまで降下速度を遅らせる。ついで
成形品を常温まで冷却し、圧力を100Kg/cm2に保
つ。また第3図ハは第2工程の成形機の変形を示
すもので、この場合加圧成形機71はホツトプレ
ス機構になつており、加圧機構を備えた上下熱盤
72,73と、これらの間に設けられた複数の中
間熱盤74と、各熱盤間に配された多数の金型7
5とよりなる。そして金型75は上型76と下型
77と1対の側枠78とよりなり、やはり加熱な
いし冷却できるように構成されている。成形条件
は前記の場合と同じである。この変形の場合、金
型の費用の点では経済的であるが、成形回数が増
すにつれて金型に反りを生じるため、金型の更新
時期を早める必要がある。また成形型は熱媒通路
等を備えているので、成形品の取出が困難であつ
た。
In this compression molding machine 51, a required amount of resin compound powder is charged into the female mold 53 and each recess 55.
Then, the female mold 53 and the male mold 52 are held under pressure from above and below at a pressure of about 100 kg/cm 2 for 5 to 10 minutes at room temperature using a pressure mechanism to obtain a preformed product. This preformed product is then removed from the mold and transferred to the second step. In this case, the preformed product is easily disintegrated and must be handled with great care. As shown in FIG.
However, each peripheral wall of the recess 65 of the female mold 63 and the intermediate mold 64, and the male mold 62 and the intermediate mold 64
A plurality of heat medium passages 67 and 68 through which steam or cold water passes are provided independently in the convex portion 66, so that heating or cooling can be carried out in a timely manner. In this compression molding machine 61, the female mold 6
3. Preheat the male mold 62 and intermediate mold 64 to 200 to 220°C.
The preformed product is inserted into the female mold 63 and the recess 65, and heated and pressurized at a pressure of 20 to 50 kg/cm 2 to melt it completely. The pressurizing time is about 1 hour when the plate pressure is 20 mm. Next, cooling water is passed through the heating medium passage 68 to cool both the front and back surfaces to solidify the molten material and obtain a plate-shaped molded product. At this time, increase the pressure to 100Kg/cm 2 . In addition, the sides of the molded product need to be cooled more slowly than the front and back surfaces, so when cooled to 150℃,
Steam is passed through the heat medium passage 67 to heat the side, and the rate of descent is slowed until the temperature reaches 120°C. Then, the molded product is cooled to room temperature and the pressure is maintained at 100 kg/cm 2 . FIG. 3C shows a modification of the molding machine in the second step. In this case, the pressure molding machine 71 has a hot press mechanism, and upper and lower heating plates 72 and 73 equipped with a pressure mechanism, and these A plurality of intermediate heating plates 74 provided in between and a number of molds 7 arranged between each heating plate.
5 and more. The mold 75 is composed of an upper mold 76, a lower mold 77, and a pair of side frames 78, and is also configured to be able to be heated or cooled. The molding conditions were the same as in the previous case. In the case of this deformation, it is economical in terms of the cost of the mold, but as the number of molding increases, the mold warps, so it is necessary to renew the mold earlier. Further, since the mold is equipped with a heat medium passage, etc., it is difficult to remove the molded product.

発明が解決しようとする問題点 これら従来の2段圧縮成形法の場合、結晶性樹
脂が溶融後固化するに際し、主として結晶化に伴
つて極めて大きな体積変化を生じ、また伝熱性が
極めて低いため、成形物に所望の物理的性質をも
たせるには、第2工程の金型として、加熱および
冷却できるものが必要であり、また成形品の密度
を増すには200〜220℃といつた高温加熱と約100
Kg/cm2といつた高圧力に耐え得る耐久性に富んだ
複雑な機構の成形設備が必要となる。また第1工
程で得た予成形品は、崩壊しやすいため取扱いに
くく、第2工程で得た成形品を型から取出すもの
も容易ではない。
Problems to be Solved by the Invention In the case of these conventional two-stage compression molding methods, when the crystalline resin melts and then solidifies, an extremely large volume change occurs mainly due to crystallization, and heat conductivity is extremely low. In order to give the molded product the desired physical properties, the mold for the second step must be capable of heating and cooling, and in order to increase the density of the molded product, high-temperature heating such as 200 to 220°C is required. about 100
Molding equipment with a complex mechanism and high durability that can withstand high pressures of kg/cm 2 is required. Furthermore, the preformed product obtained in the first step is easily disintegrated and is therefore difficult to handle, and the molded product obtained in the second step is not easily removed from the mold.

この発明は、上記のような諸問題をすべて解決
することを企図してなされたものである。
This invention was made with the intention of solving all of the problems mentioned above.

問題点を解決するための手段 この発明による成形型は、後述する超高分子量
ポリエチレンの成形方法の第2工程において使用
されるものであつて、周囲に立上り状の止枠27
を有する枠付き基板22と、同基板22上に配さ
れた底板23と、該底板23の周縁部上に配され
た成形厚規定用の囲枠24と、該囲枠24の上方
に配された予成形品押圧用の頂板25とより、な
り、上記囲枠24は、少なくとも内面部が断熱材
よりなる直線棒体29,30が底板23の各辺部
上にそれぞれ独立に配されたものである。
Means for Solving the Problems The mold according to the present invention is used in the second step of the method for molding ultra-high molecular weight polyethylene, which will be described later.
a base plate 22 with a frame, a bottom plate 23 disposed on the base plate 22, a surrounding frame 24 for regulating molding thickness disposed on the peripheral edge of the bottom plate 23, and a frame 24 disposed above the surrounding frame 24. The surrounding frame 24 consists of a top plate 25 for pressing the preformed product, and the surrounding frame 24 has linear rods 29 and 30 each having at least an inner surface made of a heat insulating material and arranged independently on each side of the bottom plate 23. It is.

はじめに、超高分子量ポリエチレンの成形方法
について説明する。
First, a method for molding ultra-high molecular weight polyethylene will be explained.

この成形方法は、超高分子量ポリエチレンまた
は充填材を含む超高分子量ポリエチレンよりなる
配合物粉末を、5Kg/cm2以上の圧力下に140℃以
上の温度で加圧加熱して、表面部分が焼結した予
成形品を得、ついでこれを加圧下に常温まで冷却
する第1工程と、予成形品を5Kg/cm2以上の圧力
下に、予成形品を可塑化せしめる温度で、加圧加
熱して所要厚の成形品を得、ついでこれを加圧下
に常温まで冷却する第2工程とよりなる超高分子
量ポリエチレンの成形方法である。
This molding method involves heating a compound powder made of ultra-high molecular weight polyethylene or ultra-high molecular weight polyethylene containing a filler at a temperature of 140°C or higher under a pressure of 5 kg/cm 2 or higher, so that the surface portion is baked. The first step is to obtain a preformed product and then cool it to room temperature under pressure.The first step is to heat the preform under pressure at a temperature of 5 kg/cm 2 or more at a temperature that plasticizes the preform. This is a method for molding ultra-high molecular weight polyethylene, which comprises a second step of obtaining a molded product of the required thickness and then cooling it to room temperature under pressure.

また第1工程の変法として、同配合物粉末を常
温下に180℃以上の温度で加熱して、表面部分が
焼結した予成形品を得ることもできる。
Further, as a modification of the first step, a preformed product having a sintered surface portion can also be obtained by heating the same compound powder at a temperature of 180° C. or higher at room temperature.

第1工程において、超高分子量ポリエチレンよ
りなる配合物は、ガラス繊維、炭素繊維、ガラス
ビーズ、グラフアイト、モリブデンパウバー、カ
ーボンブラツク等の無機系充填剤を含んでいても
よい。また同配合物には、必要に応じて通常の抗
酸化剤が含められている。
In the first step, the formulation made of ultra-high molecular weight polyethylene may contain inorganic fillers such as glass fibers, carbon fibers, glass beads, graphite, molybdenum powder, and carbon black. The formulation also includes conventional antioxidants, as appropriate.

第1工程の加圧加熱法において、表面部分が焼
結した予成形品を得るには、圧力は5Kg/cm2以上
で、温度は140℃以上であることを要する。圧力
が5Kg/cm2未満では、予成形品の密度が低すぎて
伝熱性が乏しく予成形品が壊れるおそれがある。
ただし圧力を著く高圧たとえば100Kg/cm2に上げ
ても、特に優れた予形成品が得られるわけではな
い。設備費等を考慮すると、5〜50Kg/cm2が好適
である。また温度が140℃未満では、焼結が生じ
ない。ただし温度が高すぎると、樹脂の低分子化
をきたすので、140〜160℃が好ましい。加圧加熱
時間および冷却時間は、予成形品の厚さ、成形装
置の構造、圧力および温度により決定される。
In the pressure heating method of the first step, in order to obtain a preformed product with a sintered surface portion, the pressure must be 5 Kg/cm 2 or higher and the temperature must be 140° C. or higher. If the pressure is less than 5 Kg/cm 2 , the density of the preformed product will be too low, resulting in poor heat transfer, and there is a risk that the preformed product will break.
However, even if the pressure is increased to a very high pressure, for example 100 kg/cm 2 , particularly good preforms are not obtained. Considering equipment costs, etc., 5 to 50 kg/cm 2 is suitable. Furthermore, if the temperature is less than 140°C, sintering does not occur. However, if the temperature is too high, the resin will have a low molecular weight, so a temperature of 140 to 160°C is preferable. The pressure heating time and cooling time are determined by the thickness of the preform, the structure of the molding device, the pressure, and the temperature.

こうして第1工程によつて、表面部分が焼結さ
れた予成形品が得られる。これはクラツクや割れ
のない崩壊しにくいものであつて、取扱い、運
搬、積重ね等が極めて容易である。
In this way, in the first step, a preformed product whose surface portion is sintered is obtained. This material does not have cracks or cracks and does not easily disintegrate, and is extremely easy to handle, transport, stack, etc.

第1工程で用いる成形装置の代表例を第1図に
示す。
A typical example of the molding apparatus used in the first step is shown in FIG.

成形型1は、基板2と、基板2上に配された底
板3と、底板3の周囲に配された囲枠4と、囲枠
内上部に配された樹脂粉体押圧用の頂板5と、頂
板5上に配されたクツシヨン材6とよりなる。
The mold 1 includes a substrate 2, a bottom plate 3 placed on the substrate 2, a surrounding frame 4 placed around the bottom plate 3, and a top plate 5 for pressing resin powder placed above the surrounding frame. , and a cushion material 6 disposed on the top plate 5.

基板2は周囲に立上り状枠7を有し、これによ
つて成形型から洩れた樹脂粉末が飛散しないよう
になつている。1000mm×2000mm×20mmの成形品の
場合、底板3および頂板5は、いずれも厚さ4mm
であつて、鏡面仕上げになつている。囲枠4の有
効面積は1000mm×2000mmであり、高さは60mmであ
り、囲枠4内に仕込まれた配合物粉末の嵩高さよ
り高い。頂板5およびクツシヨン材6は囲枠4の
内部にはまり込む大きさとなされている。クツシ
ヨン材6は厚板状であつて、ガラス繊維で強化さ
れた耐熱ゴムで構成され、厚さは18mmである。
The substrate 2 has an upright frame 7 around its periphery, which prevents resin powder leaking from the mold from scattering. In the case of a molded product of 1000 mm x 2000 mm x 20 mm, the bottom plate 3 and top plate 5 are both 4 mm thick.
It has a mirror finish. The effective area of the surrounding frame 4 is 1000 mm x 2000 mm, and the height is 60 mm, which is higher than the bulk of the compound powder charged within the surrounding frame 4. The top plate 5 and cushion material 6 are sized to fit inside the surrounding frame 4. The cushion material 6 has a thick plate shape, is made of heat-resistant rubber reinforced with glass fiber, and has a thickness of 18 mm.

このような構造の第1工程の予成形品の成形型
1は、多段式ホツトプレス機8で加熱加圧せられ
る。同プレス機8は加圧機構を備えた上下熱盤
9,10と、これらの間に設けられた複数の中間
熱盤11とよりなり、各熱盤9,10,11はそ
れぞれ水蒸気、冷水等の熱媒を通す複数の熱媒通
路12を有していて、適時加熱ないし冷却できる
ように構成されている。
The mold 1 of the preformed product in the first step having such a structure is heated and pressurized by a multistage hot press machine 8. The press machine 8 consists of upper and lower heating plates 9 and 10 equipped with a pressurizing mechanism, and a plurality of intermediate heating plates 11 provided between these. It has a plurality of heat medium passages 12 through which the heat medium passes, and is configured to be able to heat or cool at the appropriate time.

第1工程の変法すなわち常圧加熱は、通常、オ
ーブンで行なわれる。この場合温度が180℃以上
に限定されるのは、やはり表面部分が焼結しした
予成形品を得るためである。そして温度が高すぎ
ると、やはり樹脂の低分子化をきたすので、180
〜200℃が好ましい。加熱時間はやはり予成形品
の厚さ、成形装置の構造、圧力および温度により
決定される。加熱後の予成形品は、常温まで放冷
される。
A variant of the first step, atmospheric heating, is usually carried out in an oven. In this case, the temperature is limited to 180° C. or higher in order to obtain a preformed product whose surface portion is sintered. If the temperature is too high, the resin will become lower in molecular weight, so 180
~200°C is preferred. The heating time is again determined by the thickness of the preform, the construction of the forming equipment, pressure and temperature. The preformed product after heating is allowed to cool to room temperature.

第2工程において、圧力が5Kg/cm2以上に限定
される理由は、5Kg/cm2未満では、予成形品の密
度を上げて伝熱性をよくし内在する空気を追出し
て可塑状の予成形品を規定厚さに圧縮することが
できないからである。ただし圧力を著しく高圧た
とえば100Kg/cm2に上げても、特に優れた予成形
品が得られるわけではない。設備費等を考慮する
と5〜20Kg/cm2が好適である。温度は圧力との関
係で変化するが、特定圧力下に予成形品を可塑化
せしめる温度であり、通常160℃以上である。た
だし温度が高すぎると、樹脂の低分子化をきたす
ので、160〜220℃が好ましい。冷却時の圧力は、
樹脂の体積変化に追随するように、加熱時よりも
上昇され、通常10〜40Kg/cm2である。加圧加熱時
間および冷却時間は、やはり予成形品の厚さ、成
形装置の構造、圧力および温度により決定され
る。
The reason why the pressure is limited to 5 kg/cm 2 or more in the second step is that if it is less than 5 kg/cm 2 , the density of the preformed product will be increased to improve heat conductivity, and the existing air will be expelled, resulting in a plastic preform. This is because the product cannot be compressed to a specified thickness. However, even if the pressure is increased significantly, for example to 100 kg/cm 2 , a particularly excellent preformed product cannot be obtained. Considering equipment costs, etc., 5 to 20 kg/cm 2 is suitable. Although the temperature varies in relation to the pressure, it is the temperature that plasticizes the preform under a certain pressure, and is usually 160°C or higher. However, if the temperature is too high, the resin will have a low molecular weight, so 160 to 220°C is preferable. The pressure during cooling is
In order to follow the volume change of the resin, the amount is increased from that during heating, and is usually 10 to 40 kg/cm 2 . The pressure heating time and cooling time are also determined by the thickness of the preform, the structure of the molding equipment, pressure and temperature.

こうして予成形品を加圧加熱することにより、
内在する空気が追出されて、所望の成形品が得ら
れる。
By pressurizing and heating the preformed product in this way,
The remaining air is expelled and the desired molded article is obtained.

実施例 つぎに、この発明の実施例として、第2工程で
用いる成形装置の代表例を第2図に示す。
Embodiment Next, as an embodiment of the present invention, a typical example of a molding apparatus used in the second step is shown in FIG.

成形型21は、周囲に立上り状の止枠27を有
する枠付き基板22と、同基板22上に配された
底板23と、該底板23の周縁部上に配された成
形厚規定用の囲枠24と、該囲枠24の上方に配
された予成形品押圧用の頂板25とよりなる。
The mold 21 includes a frame substrate 22 having an upright stopper frame 27 on the periphery, a bottom plate 23 placed on the substrate 22, and a molding thickness regulating enclosure placed on the periphery of the bottom plate 23. It consists of a frame 24 and a top plate 25 for pressing the preformed product placed above the surrounding frame 24.

底板23の下側および頂板25の上側には、ガ
ラス繊維で強化された耐熱ゴムよりなる薄板状の
クツシヨン材26,28がそれぞれ配されてい
る。ただし、これらクツシヨン材26,28は必
ずしも必須なものではない。底板23および頂板
25にはいずれも厚さ4mmであつて、やはり鏡面
仕上げになつている。予成形品の面積が1000mm×
2000mmで成形品の厚さが20mmである場合、成形厚
規定用の囲枠24の高さは20mmである。同囲枠2
4は互いに独立した1対の長直棒体29と一対の
短直棒体30とからなり、各直棒体は、横断面正
方形(20mm×20mm)のアルミニウム製本体31
と、これの内面に装着された厚さ10mmの断熱層3
2とからなる。断熱層32はガラス繊維で強化さ
れたエチレン・プロピレン・ターポリマー・ゴム
よりなる。断熱層32の材質は、上記ゴムのほ
か、弗素ゴム、シリコンゴム、ウレタンゴム、ア
スベスト等であつてもよい。囲枠24を構成する
4本の直棒体は、予成形品の各側面に接するとと
もに、止枠27との間に5〜10mmの小間隙を有し
ていて、予成形品の加圧加熱に伴う外方膨出によ
つて、止枠27まで移動してこれに止められるよ
うになつている。なお、各直棒体は予成形品との
間に所要の小間隙を有し、止枠27の内面に接す
るように配されていてもよい。
Thin cushion materials 26 and 28 made of heat-resistant rubber reinforced with glass fibers are disposed below the bottom plate 23 and above the top plate 25, respectively. However, these cushion materials 26 and 28 are not necessarily essential. Both the bottom plate 23 and the top plate 25 have a thickness of 4 mm and have a mirror finish. The area of the preformed product is 1000mm×
When the thickness of the molded product is 2000 mm, the height of the surrounding frame 24 for regulating the molded thickness is 20 mm. Same frame 2
4 consists of a pair of long straight rods 29 and a pair of short straight rods 30 that are independent of each other, and each straight rod has an aluminum main body 31 with a square cross section (20 mm x 20 mm).
And a 10mm thick insulation layer 3 attached to the inner surface of this
It consists of 2. The heat insulating layer 32 is made of ethylene propylene terpolymer rubber reinforced with glass fibers. In addition to the above-mentioned rubbers, the material of the heat insulating layer 32 may be fluororubber, silicone rubber, urethane rubber, asbestos, or the like. The four straight rods constituting the surrounding frame 24 are in contact with each side of the preformed product, and have a small gap of 5 to 10 mm between them and the stopper frame 27, so that the preformed product can be pressurized and heated. Due to the outward bulge caused by this, it can be moved up to the stop frame 27 and stopped there. In addition, each straight bar body may have a required small gap between it and the preformed product, and may be arranged so as to be in contact with the inner surface of the stop frame 27.

このような構造の第2工程の合成樹旨板製品の
成形型21は、やはり多段式ホツトプレス機8で
加熱加圧せられる。同プレス機8は加圧機構を備
えた上下熱盤9,10と、これらの間に設けられ
た複数の中間熱盤11とよりなり、各熱盤9,1
0,11はそれぞれ水蒸気、冷水等の熱媒を示す
複数の熱媒通路12を有していて、適時加熱ない
し冷却できるように構成されている。
The mold 21 for the synthetic resin board product in the second step having such a structure is also heated and pressed by the multistage hot press machine 8. The press machine 8 consists of upper and lower heating plates 9, 10 equipped with a pressurizing mechanism, and a plurality of intermediate heating plates 11 provided between these.
0 and 11 each have a plurality of heat medium passages 12 representing a heat medium such as steam or cold water, and are configured to be able to heat or cool at the appropriate time.

使用例 1 第1図に示す成形装置において、1000mm×2000
mm×20mmの成形品を得る場合、有効面積1000mm×
2000mmれで高さ60mmの囲枠4内に、超高分子量ポ
リエチレン(ヘキスト社製商品名ホスタレン
GUR412)と市販の抗酸化剤0.1PHRとからなる
配合物を高さ47mmまで仕込んだ。仕込物を圧力10
Kg/cm2で温度160℃で30分間加圧加熱し、ついで
同圧力で30分間冷却した。こうして表面部分が焼
結した厚さ4mmの予成形品を得た。
Example of use 1 In the molding equipment shown in Fig. 1, 1000mm x 2000
When obtaining a molded product of mm x 20 mm, the effective area is 1000 mm x
In a frame 4 with a distance of 2000 mm and a height of 60 mm, ultra-high molecular weight polyethylene (trade name: Hostalen manufactured by Hoechst) is placed.
GUR412) and a commercially available antioxidant, 0.1 PHR, to a height of 47 mm. Pressure 10
Kg/cm 2 and a temperature of 160° C. for 30 minutes, followed by cooling at the same pressure for 30 minutes. In this way, a preformed product with a thickness of 4 mm with a sintered surface portion was obtained.

ついで予成形品を成形型1から取出して、第2
図に示す成形装置に移し、圧力5Kg/cm2で温度
180℃で55分間加圧加熱した。この状態では成形
品は高さ20mmの囲枠24から1〜2mm突出てい
た。ついで温度が150〜120℃に下がる間、圧力を
20Kg/cm2に徐々に上げた。この状態では成形品の
高さは囲枠24と同じ高さになつた。ついで成形
品を圧力20Kg/cm2で常温まで冷却した。こうして
厚さ20mmの板状成形品を得た。この成形品を縦横
に切断して内部を調べたところ、気泡や巣が全く
認められず、全体に均一な成形がなされていた。
また表面にも陥没によるスポツト状のひけや反り
がなく、焼による着色も認められなかつた。
Then, the preformed product is taken out from the mold 1 and placed in the second mold.
Transfer to the molding equipment shown in the figure, and heat at a pressure of 5Kg/ cm2 .
It was heated under pressure at 180°C for 55 minutes. In this state, the molded product protruded 1 to 2 mm from the surrounding frame 24 having a height of 20 mm. The pressure is then reduced while the temperature drops to 150-120°C.
The weight was gradually increased to 20Kg/ cm2 . In this state, the height of the molded product was the same as that of the surrounding frame 24. The molded product was then cooled to room temperature under a pressure of 20 kg/cm 2 . In this way, a plate-shaped molded product with a thickness of 20 mm was obtained. When this molded product was cut vertically and horizontally and the inside was examined, no air bubbles or nests were observed, and the molding was uniform throughout.
Furthermore, there were no spot-like sink marks or warpage due to depression on the surface, and no discoloration due to firing was observed.

使用例 2〜7 ガラス繊維、炭素繊維、ガラスビーズ、グラフ
アイト、モリブデンパウダー、カーボンブラツク
を、樹脂に対してそれぞれ10重量%別々に添加し
た配合物を用いて、使用例1の操作を繰返した。
Application Examples 2 to 7 The operation of Application Example 1 was repeated using a formulation in which 10% by weight of each of glass fiber, carbon fiber, glass beads, graphite, molybdenum powder, and carbon black were separately added to the resin. .

得られた成形品は、使用例1で得られたものと
ほぼ等しい物性を有していた。
The obtained molded article had almost the same physical properties as those obtained in Use Example 1.

発明の効果 この発明は以上のとおり構成されているので、
つぎの効果が奏される。
Effects of the invention Since this invention is configured as described above,
The following effects are produced.

(a) この発明による成形型は、周囲に立上り状の
止枠27を有する枠付き基板22と、同基板2
2上に配された底板23と、該底板23の周縁
部上に配された成形厚規定用の囲枠24と、該
囲枠24の上方に配された予成形品押圧用の頂
板25とよりなるものであるので、コンパクト
化が可能であり、したがつて多段式ホツトプレ
ス機の使用により成形品の生産性の向上を異す
ことができる。
(a) The mold according to the present invention includes a frame-equipped substrate 22 having an upright stopper frame 27 on the periphery, and the substrate 22.
2, a surrounding frame 24 for regulating molding thickness arranged on the peripheral edge of the bottom plate 23, and a top plate 25 for pressing the preformed product arranged above the surrounding frame 24. Since the molded product is made of 100%, it can be made compact, and the productivity of molded products can be improved by using a multi-stage hot press.

(b) この発明による成形型は、熱媒通路等を有し
ない割型であるので、金型コストの点で有利で
あり、また型からの成形品の取出しも容易にな
し得る。
(b) Since the mold according to the present invention is a split mold having no heat medium passage, etc., it is advantageous in terms of mold cost, and the molded product can be easily removed from the mold.

(c) さらに成形型の囲枠24は少なくとも内面部
が断熱材よりなる直棒体29,30が底板23
の各辺部上にそれぞれ独立に配されたものであ
るので、これによつて加熱後の成形品の周縁部
を保温することができる。そのため別個の周縁
部保温用の加熱装置を設ける必要がなく、この
点でみ設備費の低減が果せる。
(c) Further, in the surrounding frame 24 of the mold, at least the inner surface of the straight rods 29 and 30 are made of a heat insulating material, and the bottom plate 23
Since they are arranged independently on each side of the molded article, it is possible to keep the peripheral edge of the molded product warm after heating. Therefore, there is no need to provide a separate heating device for keeping the peripheral edge warm, and in this respect only equipment costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の第1工程で使用した成形
装置の要部を示す平面図、第2図イ,ロは同図第
2工程で用いる代表的な成形装置の代表例を示す
垂直断面図、同図ハは同図ハは同図イ上のB−B
線に沿う矢視図、第3図イ,ロ,ハは従来の成形
装置を示す縦断面図である。 22……基板、23……底板、24……囲枠、
25……頂板、27……止枠、29,30……直
棒体、32……断熱層。
Fig. 1 is a plan view showing the main parts of the molding device used in the first step of the present invention, and Fig. 2 A and B are vertical cross-sections showing a typical example of a typical molding device used in the second step of the same figure. Figure, C in the same figure is B-B on A in the same figure.
A view taken along the line, and FIGS. 3A, 3B, and 3C are longitudinal cross-sectional views showing a conventional molding apparatus. 22... Board, 23... Bottom plate, 24... Surrounding frame,
25... Top plate, 27... Stopping frame, 29, 30... Straight bar body, 32... Heat insulation layer.

Claims (1)

【特許請求の範囲】[Claims] 1 周囲に立上り状の止枠27を有する枠付き基
板22と、同基板22上に配された底板23と、
該底板23の周縁部上に配された成形厚規定用の
囲枠24と、該囲枠24の上方に配された予成形
品押圧用の頂板25とよりなり、上記囲枠24
は、少なくとも内面部が断熱材よりなる直線棒体
29,30が底板23の各辺部上にそれぞれ独立
に配されたものである、超高分子量ポリエチレン
の成形型。
1. A frame board 22 having a raised stopper frame 27 around it, a bottom plate 23 disposed on the board 22,
It consists of a surrounding frame 24 for regulating the molding thickness arranged on the peripheral edge of the bottom plate 23 and a top plate 25 for pressing the preformed product arranged above the surrounding frame 24.
2 is a mold made of ultra-high molecular weight polyethylene, in which linear rods 29 and 30, at least the inner surfaces of which are made of a heat insulating material, are arranged independently on each side of the bottom plate 23.
JP27818388A 1988-11-02 1988-11-02 Molding tool of ultra-high-molecular-weight polyethylene Granted JPH0248911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27818388A JPH0248911A (en) 1988-11-02 1988-11-02 Molding tool of ultra-high-molecular-weight polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27818388A JPH0248911A (en) 1988-11-02 1988-11-02 Molding tool of ultra-high-molecular-weight polyethylene

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006282A Division JPS58138611A (en) 1982-02-10 1982-02-10 Method and die for forming ultra-high-molecular-weight polyethylene

Publications (2)

Publication Number Publication Date
JPH0248911A JPH0248911A (en) 1990-02-19
JPH0242650B2 true JPH0242650B2 (en) 1990-09-25

Family

ID=17593746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27818388A Granted JPH0248911A (en) 1988-11-02 1988-11-02 Molding tool of ultra-high-molecular-weight polyethylene

Country Status (1)

Country Link
JP (1) JPH0248911A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05162U (en) * 1991-06-25 1993-01-08 隆江 山本 Far infrared radiation patch
JPH06218069A (en) * 1993-01-26 1994-08-09 Mitsuo Watanabe Far-infrared radiation body and manufacture thereof
US9938110B2 (en) 2015-09-24 2018-04-10 Fuji Xerox Co., Ltd. Folding processing device having a guiding portion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05162U (en) * 1991-06-25 1993-01-08 隆江 山本 Far infrared radiation patch
JPH06218069A (en) * 1993-01-26 1994-08-09 Mitsuo Watanabe Far-infrared radiation body and manufacture thereof
US9938110B2 (en) 2015-09-24 2018-04-10 Fuji Xerox Co., Ltd. Folding processing device having a guiding portion

Also Published As

Publication number Publication date
JPH0248911A (en) 1990-02-19

Similar Documents

Publication Publication Date Title
JP5929986B2 (en) Fiber reinforced plastic molding method
JP2751768B2 (en) Fiber-reinforced thermoplastic resin molded article and molding method thereof
EP0448570B1 (en) Thermoformable polyaryletherketone sheet
EP0335098B1 (en) Compression molding of composite parts on hot mold surfaces with a short cycle time
JPS6410168B2 (en)
JPH0242650B2 (en)
JPH0126325B2 (en)
US4501549A (en) Injection mold with replacable insert in mold cavity outlet opening
US3608058A (en) Method for manufacture of void-free and warp-free slab stock
US2770842A (en) Injection molding of polytetrafluoroethylene
EP0755762A1 (en) Molded article of fiber-reinforced resins and process and equipment for the molding thereof
CN208500742U (en) The lower heating thermal-field device of model solid glass apparatus for continuous formation
US3836306A (en) Transfer molding apparatus
US4229405A (en) Continuous method for forming thermoplastic slab stock
JPH05131456A (en) Resin mold and resin molding method
KR200257689Y1 (en) A Manufacturing Device Of The Fluorine Resin Using A Continuous Extrusion Method
CN217257999U (en) Injection mold with automatic demolding function
JPH0333492B2 (en)
JP3421188B2 (en) Mold assembly for injection compression molding and injection compression molding method
CN217752706U (en) Blow molding device for plastic bottle mold blanks
JP3309913B2 (en) Method for producing thermoplastic composite material
JPH0369320A (en) Press molding method for fiber-reinforced plastic molded body and heat insulation material used therefor
JPS6362382B2 (en)
JPH01178418A (en) Compression molding
CA1316658C (en) Compression molding of composite parts on hot mold surfaces with a short cycle time