JPH0126325B2 - - Google Patents

Info

Publication number
JPH0126325B2
JPH0126325B2 JP2006282A JP2006282A JPH0126325B2 JP H0126325 B2 JPH0126325 B2 JP H0126325B2 JP 2006282 A JP2006282 A JP 2006282A JP 2006282 A JP2006282 A JP 2006282A JP H0126325 B2 JPH0126325 B2 JP H0126325B2
Authority
JP
Japan
Prior art keywords
pressure
molecular weight
product
weight polyethylene
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2006282A
Other languages
Japanese (ja)
Other versions
JPS58138611A (en
Inventor
Yasuhiro Kadota
Masaaki Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUTSUNAKA PURASUCHITSUKU KOGYO KK
Original Assignee
TSUTSUNAKA PURASUCHITSUKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUTSUNAKA PURASUCHITSUKU KOGYO KK filed Critical TSUTSUNAKA PURASUCHITSUKU KOGYO KK
Priority to JP2006282A priority Critical patent/JPS58138611A/en
Publication of JPS58138611A publication Critical patent/JPS58138611A/en
Publication of JPH0126325B2 publication Critical patent/JPH0126325B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/001Shaping in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0088Molecular weight

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、超高分子量ポリエチレンの成形方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for molding ultra-high molecular weight polyethylene.

この明細書において、「超高分子量ポリエチレ
ン」なる用語は、分子量が粘度法で測定して約50
万以上、光散乱法で測定して200万以上を示すポ
リエチレンをいうこととする。
As used herein, the term "ultra-high molecular weight polyethylene" refers to
This refers to polyethylene that exhibits a molecular weight of 2,000,000 or more, or 2,000,000 or more when measured using a light scattering method.

従来の技術 超高分子ポリエチレンは、一般のポリエチレン
や他のプラスチツクに比べて、耐摩耗性、耐衝撃
性、耐ストレスクラツキング性、耐寒性等の点で
優れており、さらに低摩擦係数、耐水性、無毒
性、消音特性もよいことから、広範な用途が期待
されている。しかしこの種のポリエチレンは、加
熱溶融時の粘度が高いため、通常の押出成形法や
射出成形法に適合しにくく、丸棒や小形成形品を
除いて、大型成形品は圧縮成形法で製造されてい
る。
Conventional technology Ultra high molecular weight polyethylene is superior to general polyethylene and other plastics in terms of abrasion resistance, impact resistance, stress cracking resistance, cold resistance, etc. In addition, it has a low coefficient of friction, It is expected to have a wide range of applications because of its water resistance, non-toxicity, and good sound-absorbing properties. However, this type of polyethylene has a high viscosity when heated and melted, so it is difficult to adapt to normal extrusion molding or injection molding methods.Except for round bars and small molded products, large molded products are manufactured using compression molding. has been done.

最近、この種の合成樹脂の圧縮成形法として
は、予成形品を製造する第1工程と、予成形品か
ら板状物製品を製造する第2工程とからなる2段
圧縮成形法がとられている。従来、2段圧縮成形
法を行なう圧縮成形機は、第3図に示す構造のも
のであつた。まず第1工程の圧縮成形機51は、
同図イに示すように、加圧機構を備えた上側の雄
型52および下側の雌型53と、これらの間に設
けられた複数の中間型54とよりなり、中間型5
4は上部に雌型状の凹部55を有し、かつ下部に
雄型状の凸部56を有する。
Recently, as a compression molding method for this type of synthetic resin, a two-stage compression molding method has been adopted, which consists of a first step of manufacturing a preformed product and a second step of manufacturing a plate product from the preformed product. ing. Conventionally, a compression molding machine for performing a two-stage compression molding method has a structure shown in FIG. First, the compression molding machine 51 in the first step is
As shown in FIG.
4 has a female-shaped recess 55 at the upper part and a male-shaped convex part 56 at the lower part.

この圧縮成形機51において、雌型53および
各凹部55内に樹脂配合物粉末を所仕込む。つい
で雌型53と雄型52を加圧機構により上下から
約100Kg/cm2の圧力5〜10分間加圧保持し、予成
形品を得る。ついで、この予成形品を型から取出
し、第2工程に移す。この場合予成形品は崩壊し
やすいので、十分に注意して取扱う必要がある。
第2工程の圧縮成形機61は、第3図ロに示すよ
うに、第1工程の圧縮成形機51と同型である
が、雌型63および中間型64の凹部65の各周
壁部と、雄型62および中間型64の凸部66と
に、それぞれ独立に、蒸気ないし冷水を通す複数
の熱媒通路67,68が設けられていて、適時加
熱ないし冷却できるように構成されている。この
圧縮成型機61において、雌型63、雄型62お
よび中間型64を予め200〜220℃に加熱し、雌型
63および凹部65に予成形品を挿入し、圧力20
〜50Kg/cm2で加熱下に加圧し、完全に溶融させ
る。加圧時間は板厚20mmの場合1時間程度であ
る。ついで熱媒通路68に冷却水を通して樹脂の
表裏両面部を冷却して溶融物を固化し、板状成形
品を得る。このとき圧力を100Kg/cm2に上げる。
また側部は表裏両面部より緩慢に冷却する必要が
あるため、150℃に冷却された時に、熱媒通路6
7に蒸気を通して側部を加熱し、温度が120℃に
なるまで降下速度を遅。ついで成形品を常温まで
冷却し、圧力を100Kg/cm2に保つ。また第3図ハ
は第2工程の成形機の変形を示すもので、この場
合加圧成形機71はホツトプレス機構になつてお
り、加圧機構を備えた上下熱盤72,73と、こ
れらの間に設けられた複数の中間熱盤74と、各
熱盤間に配された多数の金型75とよりなる。そ
して金型75は上型76と下型77と1対の側枠
78とよりなり、やはり加熱ないし冷却できるよ
うに構成されている。成形条件は前記の場合と同
じである。この変形の場合、金型費用の点では経
済的であるが、成形回数が増すにつれて金型に反
りを生じるため、金型の更新時期を早める必要が
ある。また成形型は熱媒通路等を備えているの
で、成形の取出しが困難であつた。
In this compression molding machine 51, resin compound powder is charged into the female mold 53 and each recess 55. Then, the female die 53 and the male die 52 are kept under pressure from above and below at a pressure of about 100 kg/cm 2 for 5 to 10 minutes to obtain a preformed product. This preformed product is then removed from the mold and transferred to the second step. In this case, the preformed product is easily disintegrated and must be handled with great care.
The compression molding machine 61 for the second step is of the same type as the compression molding machine 51 for the first step, as shown in FIG. The mold 62 and the convex portion 66 of the intermediate mold 64 are each independently provided with a plurality of heat medium passages 67 and 68 through which steam or cold water passes, so that heating or cooling can be carried out in a timely manner. In this compression molding machine 61, a female mold 63, a male mold 62, and an intermediate mold 64 are heated in advance to 200 to 220°C, and the preformed product is inserted into the female mold 63 and the recess 65, and a pressure of 20° C.
Heat and pressurize at ~50Kg/cm 2 to melt completely. The pressing time is about 1 hour for a plate thickness of 20 mm. Next, cooling water is passed through the heat medium passage 68 to cool both the front and back surfaces of the resin to solidify the molten material, thereby obtaining a plate-shaped molded product. At this time, increase the pressure to 100Kg/cm 2 .
In addition, since the side portions need to be cooled more slowly than the front and back surfaces, when the side portions are cooled to 150°C, the heating medium passage 6
Pass steam through 7 to heat the side and slow down the rate of descent until the temperature reaches 120℃. Then, the molded product is cooled to room temperature and the pressure is maintained at 100 kg/cm 2 . FIG. 3C shows a modification of the molding machine in the second step. In this case, the pressure molding machine 71 has a hot press mechanism, and upper and lower heating plates 72 and 73 equipped with a pressure mechanism, and these It consists of a plurality of intermediate heating plates 74 provided in between and a number of molds 75 arranged between each heating plate. The mold 75 is composed of an upper mold 76, a lower mold 77, and a pair of side frames 78, and is also configured to be able to be heated or cooled. The molding conditions were the same as in the previous case. In the case of this deformation, it is economical in terms of mold cost, but as the number of molding increases, the mold warps, so it is necessary to renew the mold earlier. Moreover, since the mold is equipped with a heat medium passage, etc., it is difficult to remove the mold.

発明が解決しようとする問題点 これら従来の2段圧縮成形法の場合、結晶性樹
脂が溶融後固化する際に、主として結晶化に伴つ
て極めて大きな体積変化を生じ、また伝熱性が極
めて低いため、成形物に所望の物理的性質をもた
せるには、第2工程の金型として、加熱および冷
却できるものが必要であり、また成形品の密度を
増すには200〜220℃といつた高温加熱と約100
Kg/cm2といつた高圧力に耐え得る耐久性に富んだ
複雑な機構の成形設備が必要となる。また第1工
程で得た予成形品は、崩壊しやすいため取扱いに
くく、第2工程で得た成形品を型から取出すのも
容易ではない。
Problems to be Solved by the Invention In the case of these conventional two-stage compression molding methods, when the crystalline resin solidifies after melting, an extremely large volume change occurs mainly due to crystallization, and heat conductivity is extremely low. In order to give the molded product the desired physical properties, the mold for the second step must be capable of heating and cooling, and in order to increase the density of the molded product, high-temperature heating such as 200 to 220°C is required. and about 100
Molding equipment with a complex mechanism and high durability that can withstand high pressures of kg/cm 2 is required. Furthermore, the preformed product obtained in the first step is easily disintegrated and difficult to handle, and the molded product obtained in the second step is not easy to remove from the mold.

この発明は、上記のような諸問題をすべて解決
することを企図してなされたものである。
This invention was made with the intention of solving all of the problems mentioned above.

問題点を解決するための手段 この発明による成形方法の第1のものは、表面
部分を焼結させた超高分子量ポリエチレン製また
は充填材を含む超高分子量ポリエチレン製の予成
形品を、5Kg/cm2以上の圧力下に、予成形品を可
塑化せしめる温度で、加圧加熱して所要厚さの成
形品を得、ついでこれを加圧下に常温まで冷却す
ることを特徴とする。
Means for Solving the Problems The first molding method according to the present invention is to form a preformed product made of ultra-high molecular weight polyethylene with a sintered surface portion or ultra-high molecular weight polyethylene containing a filler. The method is characterized in that a preformed product is pressurized and heated at a temperature that plasticizes the preformed product under a pressure of cm 2 or higher to obtain a molded product of a required thickness, and then this is cooled to room temperature under pressure.

また、第2発明による成形方法は、超高分ポリ
エチレンよりなる配合物粉末を、5Kg/cm2以上の
圧力下に140℃以上の温度で加圧加熱して、表面
部分が焼結した予成形品を得、ついでこれを加圧
下に常温まで冷却する第1工程と、予成形品を5
Kg/cm2以上の圧力下に、予成形品を可塑化せしめ
る温度で、加圧加熱して所要厚さの成形品を得、
ついでこれを加圧下に常温まで冷却する第2工程
とよりなる超高分子量ポリエチレンの成形方法で
ある。
Further, in the molding method according to the second invention, a compound powder made of ultra-high-density polyethylene is pressurized and heated at a temperature of 140° C. or higher under a pressure of 5 kg/cm 2 or higher to form a preform in which the surface portion is sintered. The first step is to obtain the product and then cool it to room temperature under pressure, and the preformed product is
Under a pressure of Kg/cm 2 or more, the preformed product is heated under pressure at a temperature that plasticizes it to obtain a molded product of the required thickness.
This is a method for molding ultra-high molecular weight polyethylene, which comprises a second step of cooling the polyethylene to room temperature under pressure.

さらに、第3発明による成形方法は、第1工程
の変法として、同配合物粉末を、常圧下に180℃
以上の温度で加熱して、表面部分が焼結した予成
形品を得るものである。
Furthermore, in the molding method according to the third invention, as a modified method of the first step, the same compound powder is heated at 180°C under normal pressure.
By heating at the above temperature, a preformed product whose surface portion is sintered is obtained.

第1工程において、超高分子量ポリエチレンよ
りなる配合物は、ガラス繊維、炭素繊維、ガラス
ビーズ、グラフアイト、モリブデンパウバー、カ
ーボンブラツク等の無機系充填剤を含んでいても
よい。また同配合物には、必要に応じて通常の抗
酸化剤が含められている。
In the first step, the formulation made of ultra-high molecular weight polyethylene may contain inorganic fillers such as glass fibers, carbon fibers, glass beads, graphite, molybdenum powder, and carbon black. The formulation also includes conventional antioxidants, as appropriate.

第1工程の加圧加熱法において、表面部分が焼
結した予成形品を得るには、圧力は5Kg/cm2以上
で、温度は140℃以上であることを要する。圧力
が5Kg/cm2未満では、予成形品の密度が低すぎて
伝熱性が乏しく予成形品が壊れるおそれがある。
ただし圧力を著しく高圧たとえば100Kg/cm2に上
げても、特に優れた予成形品が得られるわけでは
ない。設備費等を考慮すると、5〜50Kg/cm2が好
適である。また温度が140℃未満では、焼結が生
じない。ただし温度が高すぎると、樹脂の低分子
化をきたすので、140〜160℃が好ましい。加圧加
熱時間および冷却時間は、予成形品の厚さ、成形
装置の構造、圧力および温度により決定される。
In the pressure heating method of the first step, in order to obtain a preformed product with a sintered surface portion, the pressure must be 5 Kg/cm 2 or higher and the temperature must be 140° C. or higher. If the pressure is less than 5 Kg/cm 2 , the density of the preformed product will be too low, resulting in poor heat transfer, and there is a risk that the preformed product will break.
However, even if the pressure is increased significantly, for example to 100 kg/cm 2 , a particularly excellent preformed product cannot be obtained. Considering equipment costs, etc., 5 to 50 kg/cm 2 is suitable. Furthermore, if the temperature is less than 140°C, sintering does not occur. However, if the temperature is too high, the resin will have a low molecular weight, so a temperature of 140 to 160°C is preferable. The pressure heating time and cooling time are determined by the thickness of the preform, the structure of the molding device, the pressure, and the temperature.

こうして第1工程によつて、表面部分が焼結さ
れた予成形品が得られる。これはクラツクや割れ
のない崩壊しにくいものであつて、取扱い、運
搬、積重ね等が極めて容易である。
In this way, in the first step, a preformed product whose surface portion is sintered is obtained. This material does not have cracks or cracks and does not easily disintegrate, and is extremely easy to handle, transport, stack, etc.

第1工程で用いる成形装置の代表例を第1図に
示す。
A typical example of the molding apparatus used in the first step is shown in FIG.

成形型1は、基板2と、基板2上に配された底
板3と、底板3の周囲に配された囲枠4と、囲枠
4内上部に配された樹脂粉体押圧用の頂板5と、
頂板5上に配されたクツシヨン材6とよりなる。
The mold 1 includes a substrate 2, a bottom plate 3 placed on the substrate 2, a surrounding frame 4 placed around the bottom plate 3, and a top plate 5 for pressing resin powder placed on the upper part of the surrounding frame 4. and,
It consists of a cushion material 6 arranged on a top plate 5.

基板2は周囲に立上り状枠7を有し、これによ
つて成形型から漏れた樹脂粉末が飛散しないよう
になつている。1000mm×2000mm×20mmの成形品の
場合、底板3および頂板5は、いずれも厚さ4mm
であつて、鏡面仕上げになつている。囲枠4の有
効面積は1000mm×2000mmであり、高さは60mmであ
り。囲枠4内に仕込まれた配合物粉末の嵩高さよ
り高い。頂板5およびクツシヨン材6は囲枠4の
内部にはまり込む大きさとなされている。クツシ
ヨン材6は厚板状であつて、ガラス繊維で強化さ
れた耐熱ゴムで構成され、厚さは18mmである。
The substrate 2 has an upright frame 7 around it, which prevents resin powder leaking from the mold from scattering. In the case of a molded product of 1000 mm x 2000 mm x 20 mm, the bottom plate 3 and top plate 5 are both 4 mm thick.
It has a mirror finish. The effective area of the surrounding frame 4 is 1000 mm x 2000 mm, and the height is 60 mm. It is higher than the bulk of the compound powder charged in the surrounding frame 4. The top plate 5 and cushion material 6 are sized to fit inside the surrounding frame 4. The cushion material 6 has a thick plate shape, is made of heat-resistant rubber reinforced with glass fiber, and has a thickness of 18 mm.

このような構造の第1工程の予成形品の成形型
1は、多段式ホツトプレス機8で加熱加圧せられ
る。同プレス機8は加圧機構を備えた上下熱盤
9,10と、これらの間に設けられた複数の中間
熱盤11とよりなり、各熱盤9,10,11はそ
れぞれ水蒸気、冷水等の熱媒を通す複数の熱媒通
路12を有していて、適時加熱ないし冷却できる
ように構成されている。
The mold 1 of the preformed product in the first step having such a structure is heated and pressurized by a multistage hot press machine 8. The press machine 8 consists of upper and lower heating plates 9 and 10 equipped with a pressurizing mechanism, and a plurality of intermediate heating plates 11 provided between these. It has a plurality of heat medium passages 12 through which the heat medium passes, and is configured to be able to heat or cool at the appropriate time.

第1工程の変法すなわち常圧加熱は、通常、オ
ーブンで行なわれる。この場合温度が180℃以上
に限定されるのは、やはり表面部分が焼結した予
成形品を得るためである。そして温度が高すぎる
と、やはり樹脂の低分子化をきたすので、180〜
200℃が好ましい。加熱時間はやはり予成形品の
厚さ、成形装置の構造、圧力および温度により決
定される。加熱後の予成形品は、常温まで放冷さ
れる。
A variant of the first step, atmospheric heating, is usually carried out in an oven. In this case, the temperature is limited to 180° C. or higher in order to obtain a preformed product whose surface portion is sintered. If the temperature is too high, the resin will become lower in molecular weight, so
200°C is preferred. The heating time is again determined by the thickness of the preform, the construction of the forming equipment, pressure and temperature. The preformed product after heating is allowed to cool to room temperature.

第2工程において、圧力が5Kg/cm2以上に限定
される理由は、5Kg/cm2未満では、予成形品の密
度を上げて伝熱性をよくし内在する空気を追出し
て可塑状の予成形品を規定厚さに圧縮することが
できないからである。ただし圧力を著しく高圧た
とえば100Kg/cm2に上げても、特に優れた予成形
品が得られるわけではない。設備費等を考慮する
と5〜20Kg/cm2が好適である。温度は圧力との関
係で変化するが、特定圧力下に予成形品を可塑化
せしめる温度であり、通常160℃以上である。た
だし温度が高すぎると、樹脂の低分子化をきたす
ので、160〜220℃が好ましい。冷却時の圧力は、
樹脂の体積変化に追随するように、加熱時よりも
上昇され、通常10〜40Kg/cm2である。加圧加熱時
間および冷却時間は、やはり予成形品の厚さ、成
形装置の構造、圧力および温度により決定され
る。
The reason why the pressure is limited to 5 kg/cm 2 or more in the second step is that if it is less than 5 kg/cm 2 , the density of the preformed product will be increased to improve heat conductivity, and the existing air will be expelled, resulting in a plastic preform. This is because the product cannot be compressed to a specified thickness. However, even if the pressure is increased significantly, for example to 100 kg/cm 2 , a particularly excellent preformed product cannot be obtained. Considering equipment costs, etc., 5 to 20 kg/cm 2 is suitable. Although the temperature varies in relation to the pressure, it is the temperature that plasticizes the preform under a certain pressure, and is usually 160°C or higher. However, if the temperature is too high, the resin will have a low molecular weight, so 160 to 220°C is preferable. The pressure during cooling is
In order to follow the volume change of the resin, the amount is increased from that during heating, and is usually 10 to 40 kg/cm 2 . The pressure heating time and cooling time are also determined by the thickness of the preform, the structure of the molding equipment, pressure and temperature.

こうして予成形品を加圧加熱することにより、
内在する空気が追出されて、所望の成形品が得ら
れる。
By pressurizing and heating the preformed product in this way,
The remaining air is expelled and the desired molded article is obtained.

第2工程で用いる成形装置の代表例を第2図に
示す。
A typical example of the molding apparatus used in the second step is shown in FIG.

成形型21は、周囲に立上り状の止枠27を有
する枠付き基板22と、同基板22上に配された
底板23と、該底板23の周縁部上に配された成
形厚規定用の囲枠24と、該囲枠24の上方に配
された予成形品押圧用の頂板25とよりなる。
The mold 21 includes a frame substrate 22 having an upright stopper frame 27 on the periphery, a bottom plate 23 placed on the substrate 22, and a molding thickness regulating enclosure placed on the periphery of the bottom plate 23. It consists of a frame 24 and a top plate 25 for pressing the preformed product placed above the surrounding frame 24.

底板23の下側および頂板25の上側には、ガ
ラス繊維で強化された耐熱ゴムよりなる薄板状の
クツシヨン材26,28がそれぞれ配されてい
る。ただし、これらクツシヨン材26,28は必
ずしも必須なものではない。底板23および頂板
25はいずれも厚さ4mmであつて、やはり鏡面仕
上げになつている。予成形品の面積が1000mm×
2000mmで成形品の厚さが20mmである場合、成形厚
規定用の囲枠24の高さは20mmである。同囲枠2
4は互いに独立した1対の長直棒体29と1対の
短直棒体30とからなり、各直棒体は、横断面正
方形(20mm×20mm)のアルミニウム製本体31
と、これの内面に装着された厚さ10mmの断熱層3
2とからなる。断熱層32はガラス繊維で強化さ
れたエチレン・プロピレン・ターポリマー・ゴム
よりなる。断熱層32の材質は、上記ゴムのほ
か、弗素ゴム、シリコンゴム、ウレタンゴム、ア
スベスト等であつてもよい。囲枠24を構成する
4本の直棒体は、予成形品の各側面に接するとと
もに、止枠27との間に5〜10mmの小間隙を有し
ていて、予成形品の加圧加熱に伴う外方膨出によ
つて、止枠27まで移動してこれに止められるよ
うになつている。なお、各直棒体は予成形品との
間に所要の小間隙を有し、止枠27の内面に接す
るように配されていてもよい。
Thin cushion materials 26 and 28 made of heat-resistant rubber reinforced with glass fibers are disposed below the bottom plate 23 and above the top plate 25, respectively. However, these cushion materials 26 and 28 are not necessarily essential. Both the bottom plate 23 and the top plate 25 have a thickness of 4 mm, and also have a mirror finish. The area of the preformed product is 1000mm×
When the thickness of the molded product is 2000 mm, the height of the surrounding frame 24 for regulating the molded thickness is 20 mm. Same frame 2
4 consists of a pair of long straight rods 29 and a pair of short straight rods 30 that are independent of each other, and each straight rod has an aluminum main body 31 with a square cross section (20 mm x 20 mm).
And a 10mm thick insulation layer 3 attached to the inner surface of this
It consists of 2. The heat insulating layer 32 is made of ethylene propylene terpolymer rubber reinforced with glass fibers. The material of the heat insulating layer 32 may be fluororubber, silicone rubber, urethane rubber, asbestos, etc. in addition to the above-mentioned rubbers. The four straight rods constituting the surrounding frame 24 are in contact with each side of the preformed product, and have a small gap of 5 to 10 mm between them and the stopper frame 27, so that the preformed product can be pressurized and heated. Due to the outward bulge caused by this, it can be moved up to the stop frame 27 and stopped there. In addition, each straight bar body may have a required small gap between it and the preformed product, and may be arranged so as to be in contact with the inner surface of the stop frame 27.

このような構造の第2工程の合成樹脂板製品の
成形型21は、やはり多段式ホツトプレス機8で
加熱加圧せられる。このプレス機8の構造は前述
したとおりである。
The mold 21 for the synthetic resin plate product in the second step having such a structure is also heated and pressed by the multistage hot press machine 8. The structure of this press machine 8 is as described above.

発明の効果 この発明は以上のとおり構成されているので、
つぎの効果が奏される。
Effects of the invention Since this invention is configured as described above,
The following effects are produced.

a 第1工程では圧力5Kg/cm2以上で、温度140
℃以上で、配合物粉末を加圧加熱するので、得
られた予成形品はクラツクや割れのない崩壊し
にくいものであつて、取扱い、運搬、積重ね等
の作業が極めて容易であり、また圧力は冒頭で
説明した従来法に比べて極めて低くてよく、し
たがつて設備費の点で利点が大きい。そのため
第1工程の成形型はコンパクト化可能であつ
て、多段式ホツトプレス機によつて予成形品の
生産性向上を果すことができる。
a In the first step, the pressure is 5Kg/cm2 or more and the temperature is 140
Since the blended powder is heated under pressure at temperatures above can be extremely low compared to the conventional method explained at the beginning, and therefore has a great advantage in terms of equipment costs. Therefore, the mold for the first step can be made compact, and the productivity of preformed products can be improved by using a multi-stage hot press.

b 第1工程の変法として、常圧で180℃以上で
配合物を加熱する場合は、加圧機構を必要とし
ないので、通常のオーブン等の加熱装置をその
まま用いることができて、設備費の点で利点が
大きい。
b As a modification of the first step, when heating the compound at 180°C or higher at normal pressure, a pressurizing mechanism is not required, so a heating device such as an ordinary oven can be used as is, reducing equipment costs. It has great advantages in terms of.

c 第2工程では5Kg/cm2以上の圧力で、予成形
品の可塑化せしめる温度で、予成形品を加圧加
熱するので、圧力および温度は従来法に比べて
いずれも低くてよく、そのため熱コストおよび
設備費の点で利点が大きい。
c In the second step, the preformed product is heated under pressure at a pressure of 5 kg/cm 2 or more and at a temperature that plasticizes the preformed product, so both the pressure and temperature can be lower than in the conventional method. It has great advantages in terms of heat costs and equipment costs.

実施例 つぎに、この発明の実施例について説明する。Example Next, embodiments of the invention will be described.

実施例 1 第1図に示す成形装置において、1000mm×2000
mm×20mmの成形品を得る場合、有効面積1000mm×
2000mmで高さ60mmの囲枠4内に、超高分子ポリエ
チレン(ヘキスト社製商品名ホスタレン
GUR412)と市販の抗酸化剤0.1PHRとからなる
配合物を高さ47mmまで仕込んだ。仕込物を圧力10
Kg/cm2で温度160℃で30分間加圧加熱し、ついで
同圧力で30分間冷却した。こうして表面部分が焼
結した厚さ34mmの予成形品を得た。
Example 1 In the molding apparatus shown in Fig. 1, 1000 mm x 2000
When obtaining a molded product of mm x 20 mm, the effective area is 1000 mm x
Inside the frame 4, which is 2000 mm long and 60 mm high, ultra-high molecular weight polyethylene (Hoechst product name Hostalen) is used.
GUR412) and a commercially available antioxidant, 0.1 PHR, to a height of 47 mm. Pressure 10
Kg/cm 2 and a temperature of 160° C. for 30 minutes, followed by cooling at the same pressure for 30 minutes. In this way, a preformed product with a thickness of 34 mm with a sintered surface portion was obtained.

ついで予成形品を成形型1から取出して、第2
図に示す成形装置に移し、圧力5Kg/cm2で温度
180℃で55分間加圧加熱した。この状態では成形
品は高さ20mmの囲枠24から1〜2mm突出してい
た。ついで温度が150〜120℃に下がる間、圧力を
20Kg/cm2に徐々に上げた。この状態では成形品の
高さは囲枠24と同じ高さになつた。ついで成形
品を圧力20Kg/cm2で常温まで冷却した。こうして
厚さ20mmの板状成形品を得た。この成形品を縦横
に切断して内部を調べたところ、気泡や巣が全く
認められず。全体に均一な成形がなされていた。
また表面にも陥没によるスポツト状のひけや反り
がなく、焼けによる着色も認められなかつた。
Then, the preformed product is taken out from the mold 1 and placed in the second mold.
Transfer to the molding equipment shown in the figure, and heat at a pressure of 5Kg/ cm2 .
It was heated under pressure at 180°C for 55 minutes. In this state, the molded product protruded 1 to 2 mm from the surrounding frame 24 having a height of 20 mm. The pressure is then reduced while the temperature drops to 150-120°C.
The weight was gradually increased to 20Kg/ cm2 . In this state, the height of the molded product was the same as that of the surrounding frame 24. The molded product was then cooled to room temperature under a pressure of 20 kg/cm 2 . In this way, a plate-shaped molded product with a thickness of 20 mm was obtained. When this molded product was cut vertically and horizontally and the interior was examined, no air bubbles or nests were found. The molding was uniform throughout.
Furthermore, there were no spot-like sink marks or warpage due to depression on the surface, and no discoloration due to burning was observed.

実施例 2〜7 ガラス繊維、炭素繊維、ガラスビーズ、グラフ
アイト、モリブデンパウダー、カーボンブラツク
を、樹脂に対してそれぞれ10重量%別々に添加し
た配合物を用いて、実施例1の操作を繰返した。
Examples 2-7 The operation of Example 1 was repeated using a formulation in which glass fibers, carbon fibers, glass beads, graphite, molybdenum powder, and carbon black were each added separately at 10% by weight based on the resin. .

得られた成形品は、実施例1で得られたものと
ほぼ等しい物性を有していた。
The obtained molded article had almost the same physical properties as those obtained in Example 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イ,ロはこの発明の第1工程で用いる成
形装置の代表例を示す垂直断面図、同図ハは同図
イ上のA−A線に沿う矢視図、第2図イ,ロは同
第2工程で用いる代表的な成形装置の代表例を示
す垂直断面図、同図ハは同図イ上のB−B線に沿
う矢視図、第3図イ,ロ,ハは従来の成形装置を
示す縦断面図である。 22…基板、23…底板、24…囲枠、25…
頂板、27…止枠、29,30…直棒体、32…
断熱層。
1A and 1B are vertical cross-sectional views showing a typical example of a molding apparatus used in the first step of the present invention, FIG. B is a vertical sectional view showing a typical example of a typical molding device used in the second step, C is a view taken along line B-B on A in the same figure, and FIG. FIG. 2 is a longitudinal sectional view showing a conventional molding device. 22... Board, 23... Bottom plate, 24... Surrounding frame, 25...
Top plate, 27... Stop frame, 29, 30... Straight bar body, 32...
insulation layer.

Claims (1)

【特許請求の範囲】 1 表面部分を焼結させた超高分子量ポリエチレ
ン製または充填材を含む超高分子量ポリエチレン
製の予成形品を、5Kg/cm2以上の圧力下に、予成
形品を可塑化せしめる温度で、加圧加熱して所要
厚さの成形品を得、ついでこれを加圧下に常温ま
で冷却することを特徴とする超高分子量ポリエチ
レンの成形方法。 2 超高分子量ポリエチレンまたは充填材を含む
超高分子量ポリエチレンよりなる配合物粉末を、
5Kg/cm2以上の圧力下に140℃以上の温度で加圧
加熱して、表面部分が焼結した予成形品を得、つ
いでこれを加圧下に常温まで冷却する第1工程
と、予成形品を5Kg/cm2以上の圧力下に、予成形
品を可塑化せしめる温度で、加圧加熱して所要厚
さの成形品を得、ついでこれを加圧下に常温まで
冷却する第2工程とよりなる超高分子量ポリエチ
レンの成形方法。 3 超高分子量ポリエチレンまたは充填材を含む
超高分子量ポリエチレンよりなる配合物粉末を、
常圧下に180℃以上の温度で加熱して、表面部分
が焼結した予成形品を得る第1工程と、予成形品
を5Kg/cm2以上の圧力下に、予成形品を可塑化せ
しめる温度で、加圧加熱して所要厚さの成形品を
得、ついでこれを加圧下に常温まで冷却する第2
工程とよりなる超高分子量ポリエチレンの成形方
法。
[Claims] 1. A preformed product made of ultrahigh molecular weight polyethylene with a sintered surface portion or ultrahigh molecular weight polyethylene containing a filler is plasticized under a pressure of 5 kg/cm 2 or more. A method for molding ultra-high molecular weight polyethylene, which is characterized by heating under pressure to obtain a molded product of a required thickness at a temperature that causes it to oxidize, and then cooling the molded product under pressure to room temperature. 2 A blend powder made of ultra-high molecular weight polyethylene or ultra-high molecular weight polyethylene containing filler,
The first step is to pressurize and heat at a temperature of 140°C or higher under a pressure of 5 kg/cm 2 or higher to obtain a preformed product with a sintered surface, and then cool it to room temperature under pressure, and preforming. The second step is to heat the product under pressure of 5 kg/cm 2 or more at a temperature that plasticizes the preformed product to obtain a molded product of the required thickness, and then cool it to room temperature under pressure. A method for molding ultra-high molecular weight polyethylene. 3 A blend powder made of ultra-high molecular weight polyethylene or ultra-high molecular weight polyethylene containing filler,
The first step is to obtain a preformed product with a sintered surface portion by heating at a temperature of 180°C or higher under normal pressure, and the preformed product is plasticized under a pressure of 5Kg/cm 2 or higher. A second step is to heat the product under pressure and heat to obtain a molded product of the required thickness, and then cool it to room temperature under pressure.
A method of molding ultra-high molecular weight polyethylene consisting of steps.
JP2006282A 1982-02-10 1982-02-10 Method and die for forming ultra-high-molecular-weight polyethylene Granted JPS58138611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282A JPS58138611A (en) 1982-02-10 1982-02-10 Method and die for forming ultra-high-molecular-weight polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282A JPS58138611A (en) 1982-02-10 1982-02-10 Method and die for forming ultra-high-molecular-weight polyethylene

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27818388A Division JPH0248911A (en) 1988-11-02 1988-11-02 Molding tool of ultra-high-molecular-weight polyethylene

Publications (2)

Publication Number Publication Date
JPS58138611A JPS58138611A (en) 1983-08-17
JPH0126325B2 true JPH0126325B2 (en) 1989-05-23

Family

ID=12016593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282A Granted JPS58138611A (en) 1982-02-10 1982-02-10 Method and die for forming ultra-high-molecular-weight polyethylene

Country Status (1)

Country Link
JP (1) JPS58138611A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10152189B4 (en) * 2001-10-23 2006-03-23 Hubert Rosing Process for the production of semi-finished products from ultra-high molecular weight polyethylene with anthracite, semifinished products thus produced and their use
JP4845138B2 (en) * 2007-12-27 2011-12-28 日信工業株式会社 Method for producing carbon fiber composite material
KR101961596B1 (en) * 2018-09-06 2019-03-25 군산대학교산학협력단 Method for manufacturing sputter target and sputter gun for accomodating the sputter target

Also Published As

Publication number Publication date
JPS58138611A (en) 1983-08-17

Similar Documents

Publication Publication Date Title
JP5929986B2 (en) Fiber reinforced plastic molding method
US5047198A (en) Compression molding of composite parts on hot mold surfaces with a short cycle time
EP0448570B1 (en) Thermoformable polyaryletherketone sheet
US3733159A (en) Apparatus for manufacture of void-free and warp-free slab stock
US4490321A (en) Method and apparatus for manufacturing filter plates or the like
KR100225162B1 (en) Multilayer molded articles and process for producing the same
EP0335098B1 (en) Compression molding of composite parts on hot mold surfaces with a short cycle time
JPS6410168B2 (en)
JPH0126325B2 (en)
JPH0242650B2 (en)
US4439390A (en) Process for injection molding of thermoplastics and split mold for effecting same
US2770842A (en) Injection molding of polytetrafluoroethylene
US3608058A (en) Method for manufacture of void-free and warp-free slab stock
EP0755762A1 (en) Molded article of fiber-reinforced resins and process and equipment for the molding thereof
CN208500742U (en) The lower heating thermal-field device of model solid glass apparatus for continuous formation
CN208500741U (en) The heating thermal-field device of model solid glass apparatus for continuous formation
KR200257689Y1 (en) A Manufacturing Device Of The Fluorine Resin Using A Continuous Extrusion Method
JPH05131456A (en) Resin mold and resin molding method
US4229405A (en) Continuous method for forming thermoplastic slab stock
JP3309913B2 (en) Method for producing thermoplastic composite material
JP3421188B2 (en) Mold assembly for injection compression molding and injection compression molding method
JPH0521059B2 (en)
JPH0333492B2 (en)
JPH0369320A (en) Press molding method for fiber-reinforced plastic molded body and heat insulation material used therefor
CN206188633U (en) Heating device for continuous forming device of three -dimensional glass of model