JPH0242548B2 - - Google Patents

Info

Publication number
JPH0242548B2
JPH0242548B2 JP944083A JP944083A JPH0242548B2 JP H0242548 B2 JPH0242548 B2 JP H0242548B2 JP 944083 A JP944083 A JP 944083A JP 944083 A JP944083 A JP 944083A JP H0242548 B2 JPH0242548 B2 JP H0242548B2
Authority
JP
Japan
Prior art keywords
paint
conductive
surface resistance
resin
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP944083A
Other languages
Japanese (ja)
Other versions
JPS59136167A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP944083A priority Critical patent/JPS59136167A/en
Publication of JPS59136167A publication Critical patent/JPS59136167A/en
Publication of JPH0242548B2 publication Critical patent/JPH0242548B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は帯電防止塗装法に関する。 近年、じゆうたん、床材、壁材などの建築用部
材や、さらに電子機器部材、IC保存用容器に至
るまで帯電防止を必要とする場合が急増する傾向
にある。またマイクロ波による電磁波障害を防止
するための導電性塗料の要求も高まつている。 従来、このような要望に応じて、カーボン粉末
や金属粉末、あるいはカーボン繊維や金属繊維を
混入して導電性を持たせた塗料を塗布したり、ア
ルキルアミンハロゲン化物のようなイオン伝導性
のある有機物を塗布して、不導体に導電性を付与
し、帯電を防止することが行なわれていたが、前
者にあつては塗布被膜のもつ色調が灰色、または
黒色がかつたものになるため、塗料自身がもつ色
調が損なわれて好ましくなく、また後者にあつて
は塗布することによつて透明な帯電防止能を有す
る被膜を形成させることは可能であるが、湿度が
高い状態でないと帯電防止の効果が得られず、し
かも剥れやすいという欠点を有していた。 最近SbドープSnO2およびSnドープIn2O3が色
調の明るい導電粉末として多用されるようになつ
てきた。特に粒径0.4μm以下の微細なものは塗料
に混合して透明被膜を与える。 然しながら、導電性塗膜の形成には導電粉末は
固型分比で5〜90%、通常は50〜80%含まれるた
め、塗膜の強度が低下し、塗布條件によつては、
表面の平滑性が失なわれ、光の散乱を起して透明
性が落ちるという欠点がある。 本発明によれば、粒径0.4μm以下のSbドープ
SnO2またはSnドープIn2O3からなる導電粉末を含
有した導電塗料を不導体表面に塗布し、更に該塗
膜の上に導電粉末を含有しない塗料を20μm〜
1μm膜厚に重ね塗りすることを特徴とする帯電防
止塗装法が提供される。導電粉末を含有しない塗
膜の厚さは数μmから数+μmである。 第一層の導電塗料に用いる粉末は、0.4μm以下
の微粉末であり、SbドープSnO2、Snドープ
In2O3が適している。ここでSbドープSnO2、Sn
ドープIn2O3とは、SnO2結晶中の一部のSn原子が
Sb原子に置き代わり、またはIn2O3結晶中の一部
のIn原子がSn原子に置き代わつたものを云う。
SnO2中Sb含有量は0.1〜20重量%、In2O3中Sn含
有量は0.1〜5重量%である。いずれもこの限界
を越えると粉末の比抵抗が1MΩ.cmとなり塗膜
の導電化に適さなくなる。これらの材料は既知技
術によつて容易に製造される。 本発明方法による二重塗布により透明性が向上
するとともに塗料樹脂本来の強度を維持すること
ができる。 本発明の塗装法は、SbドープSnO2またはSnド
ープIn2O3の導電粉末を含む導電性塗料塗膜の改
良に係り、本発明の塗装法によれば、透明性に優
れ且つ耐久性に優れた導電性塗膜を容易に形成す
ることができる。 導電粉末を含まない塗料は着色料(顔料)を含
むことができる。ただし顔料が含まれる時、その
顔料の量は上に述べた紛末を含む塗膜の欠点が現
われる程に多量であつてはならない。 導電粉末を含有しない塗料の材質の選択により
下地の導電粉末含有塗膜との界面での両塗膜の屈
折率の差が少なくなり散乱が減じる。さらに表面
に粉末を含有しない層ができるため強度も高くな
る。しかし、導電粉末を含有しない塗膜は一般に
は絶縁体であり導電層とはならないはずである
が、驚くことに膜厚が数+μm好ましくは20μm以
下であれば下地の導電層の効果が保たれることを
見い出した。この原因は明確ではないが、一部導
電粉末が移行すること、または厚さが薄い絶縁層
では絶縁の効果が少ないことによると推察されて
いる。 透明性を向上させるための塗料は、乾燥後透明
になるものならば油性でも水性でも良い。またこ
の表面層塗料として硬度を出したい場合には、ア
クリル−メラミンのような硬度を高めるものも使
用でき、摩擦を少なくしたい時はシリコーン系の
ような低摩擦塗膜を得る塗料を使用できる。さら
にこの塗料中に前述の目的を害しない範囲におい
て顔料、染料を分散させておき、着色することも
でき、イオン伝導性の有機物を添加することもで
きる。 ポリエステル樹脂を用いた場合透明性は数+
μmの厚みまでほとんど変化なくヘーズ値は10%
以下であるが、表面抵抗は厚みを共に増加し、下
地が108Ω/口の時は20μmを越えると1012Ω/口
以上となり帯電防止効果は薄れる。 次に実施例によつて本発明を具体的に説明す
る。 実施例 1 ポリエステル樹脂をトルエンとメチルエチルケ
トンの混合溶剤で溶液について10重量%になるよ
うに溶解したワニスに、比抵抗3Ω・cmのSbド
ープSnO2(三菱金属(株)製「T−1」,Sb10%)を
固型分比で75重量%即ち、 SbドープSnO2/ポリエステル樹脂+SbドープSnO2 ×100=75% 含むようにポールミルで分散させて塗料を製造し
た。この塗料を75μmのポリエステルフイルムに
ワイヤーバーで塗布し乾燥時の厚さ1.2μmの塗膜
を作成した。この塗膜のヘーズ値は25%で接着強
度は330g/25mm巾(JIS P8113の方法に基づき測
定)、表面抵抗は1.9×106Ω/口であつた。これ
にポリエステル樹脂15%含有のワニスをワイヤー
バーで5μmの厚さに塗布した。この上塗りをした
塗膜のヘーズ値は7.5%、接着強度は1220g/25mm
巾と著しく向上した。表面抵抗は2.6×108Ω/口
と約2桁増大したが帯電防止効果は充分であつ
た。これに、さらに上塗りをし20μmとした。こ
の時のヘーズ値は9.2%で表面抵抗は1×1013Ω/
口となり帯電防止効果はなくなつた。 実施例 2 水性ポリエステル樹脂「バイロナール、MD−
1930」を水で3倍稀釈し固型分を10%とした。こ
れに実施例1で使用した導電粉末を固型分比で50
%含ませボールミルで分散させ塗料を製造した。
これをポリエステルフイルムにワイヤーバーで塗
布し0.9μmの導電層を作成した。この塗膜のヘー
ズ値は27%、表面抵抗は9.2×106Ω/口であつ
た。これにバイロナールMD−1200を2μm塗布し
たところヘーズ値は12%、表面抵抗は2.3×108
Ω/口となつた。 実施例 3 実施例1と同一の導電塗料塗布フイルムに信越
シリコーン(株)製シリコーン樹脂塗料「KS−772」
を5μm塗布した。ヘーズ値は13%、表面抵抗は
3.2×106Ω/口で、ヘーズ値の向上が著しく、表
面抵抗はほとんど変化しなかつた。 実施例 4 実施例1と同一の手法で同一の導電粉末を65%
含有する塗料を作成し、ヘーズ値26%,表面抵抗
6.6×108Ω/口の導電層を得た。これに東栄化成
(株)製メタアクリル樹脂塗料「アクリナール、
#1000」を4μmを塗布した。この結果ヘーズ値は
8%、表面抵抗は3.9×109Ω/口となつた。 実施例 5 実施例4と同一の導電塗料塗布フイルムに塩化
ビニール樹脂塗料を3μm塗布した。ヘーズ値は15
%、表面抵抗は1.4×109Ω/口であつた。 実施例 6 粒径0.3μmのSnが2%含有したInO3の粉末70%
を含むアクリル系塗料を作成し、2μmの導電層を
作成したところ、ヘーズ値は42%、表面抵抗は
9.2×108Ω/口、接着強度は150g/25mm巾であつ
た、これにアクリナールを3μm上塗りしたとこ
ろ、ヘーズ値は25%、表面抵抗は1.3×1010Ω/
口、接着強度は900g/25mm巾となつた。なお、
このSnドープIn2O3は塩化インジウムと塩化錫を
Snが2%の割合になるように水に溶解し、アル
カリを加えて沈澱を生成し、これを別洗浄し、
500℃で焼成して冷後微粉砕して造つた。 実施例 7 実施例1と同一の手法で表面抵抗3.3×106金/
口の導電膜を得た。これに黄色無機顔料2gとワ
ニス4号1.5gをマーラーで混合した塗料を20μm
塗布した。これを110℃の熱風乾燥機で乾燥後表
面抵抗を測定したところ4×108Ω/口であつた。 比較例 1 実施例1と同一の塗料にSbドープSnO2をTiO2
に被覆してなる白色導電粉(三菱金属社製W−
1)を固形分比で50重量%含むように分散し、こ
の塗料を75μmのポリエステルフイルムにドクタ
ーブレードを用いて塗布し、膜厚70μmの塗膜を
形成した。この塗膜は不透明であり、表面抵抗は
1×105Ω/口であつた。この塗膜上に次表の塗
料を1〜5μmの膜厚に塗布したところ、表面抵抗
が次表の如く増加した。
The present invention relates to antistatic coating methods. In recent years, there has been a rapid increase in the need for anti-static properties in architectural components such as carpets, flooring, and wall materials, as well as electronic equipment components and IC storage containers. There is also an increasing demand for conductive paints to prevent electromagnetic interference caused by microwaves. Conventionally, in response to such requests, paints mixed with carbon powder, metal powder, or carbon fibers or metal fibers to make them conductive have been applied, or paints with ion conductivity such as alkylamine halides have been applied. Organic substances have been applied to nonconductors to make them conductive and prevent static electricity, but in the case of the former, the color tone of the applied film becomes gray or black. In the latter case, it is possible to form a transparent film with antistatic properties by applying the paint, but the antistatic property will not be effective unless the humidity is high. However, it has the disadvantage that it does not have the same effect as described above and is easily peeled off. Recently, Sb-doped SnO 2 and Sn-doped In 2 O 3 have come into widespread use as bright-colored conductive powders. In particular, fine particles with a particle size of 0.4 μm or less are mixed into paints to form a transparent film. However, since conductive powder is included in the solid content of 5 to 90%, usually 50 to 80%, in the formation of a conductive coating, the strength of the coating decreases and, depending on the coating conditions,
The drawback is that the surface loses its smoothness, causing light scattering and reducing transparency. According to the present invention, Sb doped with a particle size of 0.4 μm or less
A conductive paint containing a conductive powder made of SnO 2 or Sn-doped In 2 O 3 is applied to the surface of the nonconductor, and a paint not containing a conductive powder is applied on top of the coating to a thickness of 20 μm or more.
An antistatic coating method is provided that is characterized by overcoating to a thickness of 1 μm. The thickness of a coating film that does not contain conductive powder is from several μm to several + μm. The powder used for the first layer of conductive paint is a fine powder of 0.4 μm or less, and includes Sb-doped SnO 2 and Sn-doped powder.
In 2 O 3 is suitable. Here Sb-doped SnO 2 , Sn
Doped In 2 O 3 means that some Sn atoms in the SnO 2 crystal are
This refers to Sn atoms replacing Sb atoms, or some In atoms in In 2 O 3 crystals.
The Sb content in SnO 2 is 0.1-20% by weight, and the Sn content in In 2 O 3 is 0.1-5% by weight. In either case, if this limit is exceeded, the specific resistance of the powder will be 1MΩ. cm, making it unsuitable for making the paint film conductive. These materials are easily manufactured by known techniques. Double coating according to the method of the present invention improves transparency and maintains the original strength of the coating resin. The coating method of the present invention relates to the improvement of a conductive paint film containing conductive powder of Sb-doped SnO 2 or Sn-doped In 2 O 3. According to the coating method of the present invention, the coating film has excellent transparency and durability. Excellent conductive coatings can be easily formed. Paints that do not contain conductive powder can contain colorants (pigments). However, when pigments are included, the amount of pigments should not be so large that the above-mentioned defects in powder-containing coatings appear. By selecting a material for the paint that does not contain conductive powder, the difference in refractive index between the two paint films at the interface with the underlying paint film containing conductive powder is reduced, and scattering is reduced. Furthermore, since a powder-free layer is formed on the surface, the strength is also increased. However, a coating film that does not contain conductive powder is generally an insulator and should not become a conductive layer, but surprisingly, if the film thickness is several μm or less, preferably 20 μm or less, the effect of the underlying conductive layer can be maintained. I discovered that Although the cause of this is not clear, it is presumed that some of the conductive powder migrates or that a thin insulating layer has little insulation effect. The paint for improving transparency may be oil-based or water-based as long as it becomes transparent after drying. Also, if you want to increase the hardness of this surface layer paint, you can use a material that increases hardness, such as acrylic-melamine, and if you want to reduce friction, you can use a paint that produces a low-friction coating, such as a silicone-based paint. Furthermore, pigments and dyes can be dispersed in this paint to the extent that it does not impair the above-mentioned purpose, and it can be colored, and ion-conductive organic substances can also be added. Transparency is several + when using polyester resin
Haze value is 10% with almost no change up to μm thickness
As shown below, the surface resistance increases with thickness, and when the base is 10 8 Ω/hole, if it exceeds 20 μm, it becomes 10 12 Ω/hole or more, and the antistatic effect weakens. Next, the present invention will be specifically explained with reference to Examples. Example 1 Sb-doped SnO 2 ("T-1" manufactured by Mitsubishi Metals Co., Ltd., A paint was produced by dispersing Sb (10%) in a pole mill so that the solid content was 75% by weight, ie, Sb-doped SnO 2 /polyester resin + Sb-doped SnO 2 ×100 = 75%. This paint was applied to a 75 μm polyester film using a wire bar to create a coating film with a dry thickness of 1.2 μm. The haze value of this coating film was 25%, the adhesive strength was 330 g/25 mm width (measured according to the method of JIS P8113), and the surface resistance was 1.9×10 6 Ω/hole. A varnish containing 15% polyester resin was applied to this with a wire bar to a thickness of 5 μm. The haze value of this top coated film is 7.5%, and the adhesive strength is 1220g/25mm.
The width has significantly improved. Although the surface resistance increased by about two orders of magnitude to 2.6×10 8 Ω/mouth, the antistatic effect was sufficient. This was further overcoated to a thickness of 20 μm. At this time, the haze value was 9.2% and the surface resistance was 1×10 13 Ω/
The antistatic effect was lost. Example 2 Water-based polyester resin “Vylonal, MD-
1930'' was diluted 3 times with water to make the solid content 10%. Add the conductive powder used in Example 1 to this with a solid content ratio of 50
% and dispersed in a ball mill to produce a paint.
This was applied to a polyester film using a wire bar to create a 0.9 μm conductive layer. The haze value of this coating film was 27%, and the surface resistance was 9.2×10 6 Ω/mouth. When 2 μm of Vylonal MD-1200 was applied to this, the haze value was 12% and the surface resistance was 2.3×10 8
Ω/It became a mouth. Example 3 Silicone resin paint “KS-772” manufactured by Shin-Etsu Silicone Co., Ltd. was applied to the same conductive paint coated film as in Example 1.
was applied to a thickness of 5 μm. Haze value is 13%, surface resistance is
At 3.2×10 6 Ω/mouth, the haze value was significantly improved, and the surface resistance remained almost unchanged. Example 4 Using the same method as Example 1, 65% of the same conductive powder was used.
Created a paint containing a haze value of 26%, surface resistance
A conductive layer of 6.6×10 8 Ω/hole was obtained. Toei Kasei
Co., Ltd.'s methacrylic resin paint "Acrynal,"
#1000" was applied to a thickness of 4 μm. As a result, the haze value was 8% and the surface resistance was 3.9×10 9 Ω/mouth. Example 5 The same conductive paint coated film as in Example 4 was coated with vinyl chloride resin paint to a thickness of 3 μm. Haze value is 15
%, and the surface resistance was 1.4×10 9 Ω/mouth. Example 6 70% InO 3 powder containing 2% Sn with a particle size of 0.3 μm
When we created an acrylic paint containing 2 μm conductive layer, the haze value was 42% and the surface resistance was
The adhesive strength was 9.2×10 8 Ω/width, and the adhesive strength was 150 g/25 mm width. When this was overcoated with 3 μm of acrinal, the haze value was 25% and the surface resistance was 1.3×10 10 Ω/
The adhesive strength was 900g/25mm width. In addition,
This Sn-doped In 2 O 3 contains indium chloride and tin chloride.
Dissolve Sn in water at a ratio of 2%, add alkali to form a precipitate, and wash this separately.
It was made by firing at 500℃, cooling, and then finely pulverizing. Example 7 Using the same method as Example 1, the surface resistance was 3.3×10 6 gold/
A conductive membrane for the mouth was obtained. Mix 2g of yellow inorganic pigment and 1.5g of varnish No. 4 with a mala and apply paint to 20μm.
Coated. After drying this in a hot air dryer at 110° C., the surface resistance was measured and found to be 4×10 8 Ω/mouth. Comparative Example 1 Sb-doped SnO 2 and TiO 2 were added to the same paint as in Example 1.
White conductive powder (W- manufactured by Mitsubishi Metals Co., Ltd.) coated with
1) was dispersed to contain 50% by weight in terms of solid content, and this paint was applied to a 75 μm polyester film using a doctor blade to form a coating film with a thickness of 70 μm. This coating was opaque and had a surface resistance of 1×10 5 Ω/mouth. When the paints shown in the table below were applied to this coating film to a thickness of 1 to 5 μm, the surface resistance increased as shown in the table below.

【表】 (注) 表面抵抗の増加率:上塗り後の表面
抵抗/上塗り前の表面抵抗
比較例 2 実施例1と同一の塗料にカーボンブラツクを固
形分比で15重量%含むように分散し、この塗料を
75μmのポリエステルフイルムにドクターブレー
ドを用いて塗布し、膜厚10μmの塗膜を形成した。
この塗膜は不透明であり、表面抵抗は2×105
Ω/口であつた。この塗膜上に次表の塗料を1〜
10μmの膜厚に塗布したところ、表面抵抗が次表
の如く増加した。
[Table] (Note) Rate of increase in surface resistance: Surface resistance after topcoating/Surface resistance before topcoat Comparison example 2 Carbon black was dispersed in the same paint as in Example 1 to a solid content of 15% by weight. this paint
It was applied to a 75 μm polyester film using a doctor blade to form a coating film with a thickness of 10 μm.
This coating is opaque and has a surface resistance of 2×10 5
Ω/It was hot with my mouth. Apply 1 to 1 coat of paint from the following table on this coating film.
When applied to a film thickness of 10 μm, the surface resistance increased as shown in the table below.

【表】 抗/上塗り前の表面抵抗
[Table] Resistance/surface resistance before topcoating

Claims (1)

【特許請求の範囲】 1 粒径0.4μm以下のSbドープSnO2またはSnド
ープIn2O3からなる導電粉末を含有した導電塗料
を不導体表面に塗布し、更に該塗膜の上に導電粉
末を含有しない塗料を1μm以上〜20μm以下の膜
厚に重ね塗りすることを特徴とする帯電防止塗装
法。 2 下層の導電粉末を含有する樹脂がポリエステ
ル樹脂であり、上層がアクリル樹脂、メラミン樹
脂、シリコン樹脂又は塩化ビニール樹脂である特
許請求の範囲第1項の塗装法。 3 上記導電塗料が透明である特許請求の範囲第
1項の塗装法。 4 導電粉末を含有しない上層の塗料が着色剤を
含有する特許請求の範囲第1項の塗装法。
[Claims] 1. A conductive paint containing a conductive powder made of Sb-doped SnO 2 or Sn-doped In 2 O 3 with a particle size of 0.4 μm or less is applied to the surface of a nonconductor, and the conductive powder is further applied on the coating film. An antistatic coating method characterized by overcoating a paint that does not contain 1 μm or more and 20 μm or less in thickness. 2. The coating method according to claim 1, wherein the lower layer resin containing conductive powder is a polyester resin, and the upper layer is an acrylic resin, melamine resin, silicone resin, or vinyl chloride resin. 3. The coating method according to claim 1, wherein the conductive paint is transparent. 4. The coating method according to claim 1, wherein the upper layer paint that does not contain conductive powder contains a colorant.
JP944083A 1983-01-25 1983-01-25 Antistatic painting method Granted JPS59136167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP944083A JPS59136167A (en) 1983-01-25 1983-01-25 Antistatic painting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP944083A JPS59136167A (en) 1983-01-25 1983-01-25 Antistatic painting method

Publications (2)

Publication Number Publication Date
JPS59136167A JPS59136167A (en) 1984-08-04
JPH0242548B2 true JPH0242548B2 (en) 1990-09-25

Family

ID=11720361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP944083A Granted JPS59136167A (en) 1983-01-25 1983-01-25 Antistatic painting method

Country Status (1)

Country Link
JP (1) JPS59136167A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147738A (en) * 1984-08-14 1986-03-08 Sekisui Chem Co Ltd Transparent antistatic film or sheet
JPS6391172A (en) * 1986-10-04 1988-04-21 Mitsui Kinzoku Toryo Kagaku Kk Antistatic corrosion preventive coating system
JPS63195686A (en) * 1987-02-10 1988-08-12 触媒化成工業株式会社 Display device and manufacture thereof
JP2715860B2 (en) * 1993-06-30 1998-02-18 三菱マテリアル株式会社 Infrared cutoff film and its forming material
JP2715859B2 (en) * 1993-06-30 1998-02-18 三菱マテリアル株式会社 Infrared cutoff material

Also Published As

Publication number Publication date
JPS59136167A (en) 1984-08-04

Similar Documents

Publication Publication Date Title
US4431764A (en) Antistatic transparent coating composition
JP3444919B2 (en) Conductive pigment
US4950538A (en) Fluoreresin-containing coating composition and use thereof
JPS5891777A (en) Electrically conductive clear paint
KR960022876A (en) Compound Powder Coating
JP2011173943A (en) Ink using pearlescent pigment
JPH0242548B2 (en)
KR20010072656A (en) Light Colored, Electrically Conductive Coated Particles and Composites Made Therefrom
US5037581A (en) Electroconductive coating material
CN106752321A (en) White ink with superpower covering performance
JP3713086B2 (en) Matte colored pigment, its production method and use
JP3228962B2 (en) Coating material with excellent ironing workability
US3231537A (en) Sacrificial anode coating containing a fugitive colorant
JPS60181177A (en) Electrically-conductive coating compound composition, electrically-conductive plastic sheet or plate using it
JP2676242B2 (en) White conductive resin composition with improved whiteness and light resistance
CN106752322A (en) High-performance high temperature resistant ink
JPH086055B2 (en) Zinc oxide-based transparent conductive film-forming composition
JPH02129265A (en) Conductive resin composition
JPH05140486A (en) Metallic paint and method for coating therewith
JP3221344B2 (en) Weatherproof paint
JPS59122561A (en) Electrically conductive transparent paint stable to moisture
JPS61206641A (en) Conductive sheet or film
JPS59172527A (en) Application of antistatic coating
JPS61207472A (en) Electrically conductive transparent paint
JPH0440390B2 (en)