JPH0242476B2 - - Google Patents

Info

Publication number
JPH0242476B2
JPH0242476B2 JP55146344A JP14634480A JPH0242476B2 JP H0242476 B2 JPH0242476 B2 JP H0242476B2 JP 55146344 A JP55146344 A JP 55146344A JP 14634480 A JP14634480 A JP 14634480A JP H0242476 B2 JPH0242476 B2 JP H0242476B2
Authority
JP
Japan
Prior art keywords
ester
group
optically active
amino
protecting group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55146344A
Other languages
Japanese (ja)
Other versions
JPS5771394A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP55146344A priority Critical patent/JPS5771394A/en
Priority to AT81108343T priority patent/ATE10835T1/en
Priority to EP81108343A priority patent/EP0050799B1/en
Priority to DE8181108343T priority patent/DE3167862D1/en
Publication of JPS5771394A publication Critical patent/JPS5771394A/en
Publication of JPH0242476B2 publication Critical patent/JPH0242476B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は光学活性なβ−(S)−アミノグルタル
酸モノアルキルエステルの製造法に関するもので
ある。 不斉炭素を有する生理活性物質は、しばしば一
方の光学活性体のみが生理活性を示し、その鏡像
体は不活性なものが多い。その代表的なものとし
てペニシリン、セフアロスポリン、チエナマイシ
ンなどのβ−ラクタム化合物がある。 例えばチエナマイシンは次式 の立体構造のカルバペナム核を有する化合物であ
り、これはL−アスパラギン酸 のジアルキルエステルから多数段階で誘導された
次式 〔式中、R1はアルキル基〕の(S)−4−アルコ
キシカルボニルメチルアゼチジン−2−オンを経
て全合成できる(特開昭55−27169号公報参照)。 本発明者は光学活性β−(S)−アミノグルタル
酸モノアルキルエステルが創製できるならば、チ
エナマイシン合成に有用な上記のS−立体配位を
もつアゼチジノン誘導体を製造するための中間体
として、従つてカルバペネムの重要な合成中間体
として有用であろうと予見した。この予見の下に
研究を進めて、本発明者は、有機合成によつて容
易に得られる光学不活性のベンジルオキシカルボ
ニルアミノグルタル酸ジメチルエステルを動物肝
臓由来のエステル加水分解酵素(エステラーゼ)
で処理すると、一方のエステル基のみが加水分解
により脱離して光学活性のモノメチルエステルが
生成することを知見した。そしてアミノ保護基と
してのベンジルオキシカルボニル基を常法で脱離
すると、光学活性β−(S)−アミノグルタル酸モ
ノメチルエステルになることを認めた。 但し
The present invention relates to a method for producing optically active β-(S)-aminoglutaric acid monoalkyl ester. In physiologically active substances having an asymmetric carbon, only one optically active form often exhibits physiological activity, and its enantiomer is often inactive. Representative examples include β-lactam compounds such as penicillin, cephalosporin, and thienamycin. For example, thienamycin has the following formula: It is a compound that has a carbapenam nucleus with the three-dimensional structure of L-aspartic acid. The following formula is derived in multiple steps from the dialkyl ester of It can be totally synthesized via (S)-4-alkoxycarbonylmethylazetidin-2-one [wherein R 1 is an alkyl group] (see JP-A-55-27169). The present inventor believes that if optically active β-(S)-aminoglutarate monoalkyl ester can be created, it can be used as an intermediate for producing the azetidinone derivative having the above-mentioned S-configuration useful for thienamycin synthesis. Therefore, they predicted that it would be useful as an important synthetic intermediate for carbapenems. Based on this foresight, the present inventor conducted research and discovered that optically inactive benzyloxycarbonylaminoglutarate dimethyl ester, which can be easily obtained by organic synthesis, was synthesized using an ester hydrolase derived from animal liver.
It was discovered that when treated with , only one ester group is eliminated by hydrolysis, producing an optically active monomethyl ester. It was also found that optically active β-(S)-aminoglutaric acid monomethyl ester was obtained when the benzyloxycarbonyl group as an amino protecting group was removed by a conventional method. however

【式】Me=メチルである 上記の反応では、対称面を有するCs点群に属
する化合物であるβ−ベンジルオキシカルボニル
アミノグルタル酸ジメチルエステル()の互に
エナンチオトピツクな関係にあるメトキシカルボ
ニルメチル基の一方のみが酵素により選択的に加
水分解されて末端のメチル(Me)が脱離し、光
学活性なβ−(S)−ベンジルオキシカルボニルア
ミノグルタル酸モノメチルエステル()を生
じ、ついで脱保護で光学活性なβ−(S)−アミノ
グルタル酸モノメチルエステル()を生成する
ものである。 上記反応の特徴はプロキラルな出発物質()
からキラルな中間体()を経てキラルな目的物
()を得る点にある。 従来、この分野の研究は酵素化学的研究に限定
されており、抗生物質の如き有用な物質を合成的
に生産するという目的にはほど遠いものであつ
た。すなわち、コーエンとケドオリー(S.G.
Cohen、E.Khedouri、Nature、186、75(1960))
らは、酵素化学的研究の一環として、β−アセト
アミドグルタル酸ジエチルエステルをスイ臓プロ
テアーゼの一種、α−キモトリプシンを用いて光
学活性なβ−(R)−アセトアミドグルタル酸モノ
エステルを得ている。しかしこの出発物質はその
アミノ基がアセチル化されているため、生成物の
エステル基を加水分解することなくそのアセチル
アミノ基を遊離のアミノ基にすることは全く困難
である。かつエチルエステル基の場合は、酵素分
解速度は遅いため大量のα−キモトリプシンを要
するかあるいは長時間を要したので、とうてい有
機合成の手法を巧みに組合わせても生理活性物質
に変換することは困難なものであると考えられ
た。しかもその立体配位はRに帰属されるもの
で、生物活性を有するβ−ラクタムの製造には応
用できないものである。 本発明者らは、かかる不利な点を有すると認め
られた3−アミノグルタル酸ジアルキルエステル
を基質として用いながらも、アミノ基の保護基の
種類と使用酵素系について十分な検討をして選択
をした結果、上記の基質化合物から光学活性の
(S)立体配位をもつβ−アミノグルタル酸モノ
アルキルエステルを生成できることを発見して本
発明に到達したものである。 本発明は、次式 〔式中Rは炭素数1〜4のアルキル基であり、A
は接触還元で又は温和な加水分解で脱離できるア
ミノ保護基である〕のβ−保護アルミグルタル酸
ジアルキルエステルを動物肝臓由来のエステル加
水分解酵素で処理して選択的に一方のエステル基
(R)のみを加水分解し、ついでアミノ保護基(A)
を常法で脱離することを特徴とする次式 〔式中、Rは前記と同じ意味をもつ〕の光学活性
β−(S)−アミノグルタル酸モノアルキルエステ
ルの製造法を要旨とするものである。 本発明の方法において出発化合物として用いら
れるβ−保護アミノグルタル酸ジアルキルエステ
ル(i)におけるアミノ保護基(A)は接触還元で脱離で
きるものであり、ベンジル基、ベンツヒドリル基
及びベンジルオキシカルボニル基の如きアラルキ
ルオキシカルボニル基が好ましいが、温和の加水
分解で脱離できるt−ブトキシカルボニル基等で
あることもできる。この保護基はペプチド合成上
公知のアミノ保護手法で導入できる。また、エス
テル形成のアルキル基(R)はメチル基、エチル
基の如き低級アルキル基であることができる。 エステル加水分解酵素(エステラーゼ)として
は、種々な動物肝臓由来のエステラーゼが使用で
きるが、最も入手が容易であるブタの肝臓エステ
ラーゼが好ましい。 本発明の方法における酵素反応はβ−保護アミ
ノグルタル酸ジアルキルエステル(i)を、リン酸緩
衝液に溶解させエステル加水分解酵素を加え、撹
拌下に反応を進行させるようにして実施するのが
便利である。反応溶は通常は水が用いられるが、
必要ならばジメチルホルムアミド、アセトン、低
級アルカノールなどの有機溶媒を10%以下である
いは酵素の活性を損なわない濃度で用いることが
できる。反応液のPHは7.0〜9.0、好ましくは7.0〜
8.0である。反応温度は酵素の活性が保たれる温
度ならいずれでもよく、通常20〜30℃が好ましく
用いられる。反応時間は反応量と酵素の量にもよ
るが1〜2時間ですむ。酵素の量は触媒量でよい
が、反応速度を酵慮して基質化合物(i)に対して蛋
白量として0.001〜1重量%が好ましく用いられ
る。 反応後は稀塩酸でPHを7.0以下に調節し、20℃
以下で濃度乾固する。生成物をメタノールで抽出
し、濃縮すると粗生成物を得る。これをセルロー
スカラムで分離精製するとβ−(S)−保護アミノ
グルタル酸モノエステルを高収率で得る。ついで
接触還元等の公知手法でアミノ基から脱離保護す
ると、生成物β−(S)−アミノグルタル酸モノア
ルキルエステル(ii)を得る。その光学純度は反応条
件により異なるが負の〔α〕Dを示しその絶対構造
はβ−ラクタム化合物に誘導することにより別途
合成物質との同定からと決定された。それ故本発
明における基質化合物(i)のエナンチオトピツクな
2つのアルコキシカルボニルメチル基の中プロ−
のアルキル基が優先的に加水分解されたわけであ
る。 しかも驚くべきことに基質化合物(i)のアミノ基
が遊離のアミノ基あるいはアセチルアミノ基であ
る場合と立体配位の違う生成物が得られたわけで
ある。 本発明で得られたβ−(S)−アミノグルタル酸
モノメチルエステル及びモノエチルエステルはグ
ラム陽性菌、特にブドウ状球菌に抗菌力を示し、
抗菌剤として有用である。また、本発明は得られ
た光学活性−(S)−アミノグルタル酸モノアルキ
ルエステルは有機合成的手法により、1段階でカ
ルバペネルβ−ラクタムの重要な中間体(S)−
4−アルコキシカルボニルメチルアゼチジン−2
−オンに容易に導けるものである。 それ故本発明の方法は一般的には、酵素化学的
手法による光学活性遊離β−アミノ酸の製造法と
して応用されるものであり、そして、その生成物
としての光学活性アミノ酸は遊離のアミノ基とカ
ルボン酸あるいはエステル基に適切な化学変換を
行わせると、生理活性物質の不斉炭素に応じて任
意に置換基を変換できるので有用性の高いもので
ある。 以下、本発明を実施例について説明する。 実施例 1 (イ) β−ベンジルオキシカルボニルアミノグルタ
ル酸ジメチルエステル465mg(1.5ミリモル)を
アセトン1.5mlに溶かし、PH8.70リン酸緩衝液
45mlを加える。豚の肝臓から得られるエステラ
ーゼ(ジグマ社、E−3128)を蛋白量として
2.7mgを加え、25℃で6時間時々撹拌しながら
放置する。2N塩酸2.5mlを加え、溶液のPHを約
1に調節し、塩化メチレンで抽出する。無水硫
酸ナトリウムで仮乾燥後濃縮すると粗結晶419
mgを得る。シリカゲルカラムクロマトグラフイ
で精製すると、〔α〕25 D+0.69゜(c7.45、CHCl3
の光学活性β−(S)−ベンジルオキシカルボニ
ルアミノグルタル酸モノメチルエステルを410
mg(93%収率)得た。mp97.0−97.5℃。 I(KBr);3330、2840〜2960、1740、1725、
1700cm-1 H−NMR(CDCl3);δ2.69(bd、4H、CH2J=
6Hz)、δ3.65(S、3H、Co2Me)、δ4.17〜
4.53(m、1H、CH)、δ5.07(s、2H、OC)、
δ5.63(bd、1H、NH)、δ7.30(s、5H、Ph) 元素分析値 計算値(C14H17O6N):
C、56.94;H、5.80;、4.74。 実測値: C、57.05;H、5.84;N、4.69。 (ロ) 上記の如く得たモノメチルエステルの385mg
(1.3ミリモル)を20mlのメタノールにとかし10
%パラジウム炭素40mgを加え、水素雰囲気下30
分間撹拌する。反応溶液を過後濃縮するとβ
−(S)アミノグルタル酸モノメチルエステル
の油状物205mgを得る(収率98%)。このものは
〔α〕25 D−5.52゜(c3.26、H2O)を示す。 IR、NMR、元素分析値は次のとおりであ
る。 IR:3440、1730、2400〜2900cm- 1H−NMR(D2O):δ2.59(bd 2H、J=6
Hz)、δ2.84(bd 2H、J=6Hz)δ3.76(s、
3H)、δ3.85〜4.05(m、1H)。 元素分析値: 計算値(C6H11O4N);
C44.71;H、6.88;N、8.69 実測値: C、44.73;H、6.87;N8.65。 実施例 2 β−ベンツヒドリルアミノグルタル酸ジエチル
エステル500mgを用いて実施例1と同様に酵素処
理し、さらにパラジウム炭素上で接触還元した。
β−(S)−アミノグルタルモノエステルの油状物
400mgを得た。IR:3445、1728cm-
[Formula] Me = methyl In the above reaction, methoxycarbonylmethyl, which is in an enantiotopic relationship with β-benzyloxycarbonylaminoglutarate dimethyl ester (), which is a compound belonging to the Cs point group with a plane of symmetry, is Only one of the groups is selectively hydrolyzed by the enzyme, and the terminal methyl (Me) is eliminated, yielding optically active β-(S)-benzyloxycarbonylaminoglutarate monomethyl ester (), which is then deprotected. It produces optically active β-(S)-aminoglutaric acid monomethyl ester (). The above reaction is characterized by a prochiral starting material ()
The point is to obtain a chiral object () from a chiral intermediate (). Conventionally, research in this field has been limited to enzymatic chemical research, and has been far from the goal of synthetically producing useful substances such as antibiotics. i.e. Cohen and Kedo Ory (SG
Cohen, E.Khedouri, Nature, 186, 75 (1960))
As part of their enzymatic chemistry research, they obtained optically active β-(R)-acetamidoglutarate monoester from β-acetamidoglutarate diethyl ester using α-chymotrypsin, a type of Swiss protease. However, since the amino group of this starting material is acetylated, it is quite difficult to convert the acetylamino group into a free amino group without hydrolyzing the ester group of the product. In the case of ethyl ester groups, the rate of enzymatic decomposition is slow, requiring a large amount of α-chymotrypsin or a long time; therefore, even if organic synthesis methods are skillfully combined, it is difficult to convert them into physiologically active substances. It was considered difficult. Furthermore, the steric configuration is assigned to R, and cannot be applied to the production of biologically active β-lactams. Although the present inventors used 3-aminoglutarate dialkyl ester as a substrate, which was recognized to have such disadvantages, the present inventors carefully considered the type of protecting group for the amino group and the enzyme system used to select it. As a result, the present invention was achieved by discovering that β-aminoglutaric acid monoalkyl ester having an optically active (S) configuration can be produced from the above-mentioned substrate compound. The present invention is based on the following formula [In the formula, R is an alkyl group having 1 to 4 carbon atoms, and A
is an amino-protecting group that can be removed by catalytic reduction or mild hydrolysis] is treated with an ester hydrolase derived from animal liver to selectively remove one of the ester groups (R ), then the amino protecting group (A)
The following equation is characterized by the usual elimination of The gist of the present invention is a method for producing an optically active β-(S)-aminoglutaric acid monoalkyl ester, [wherein R has the same meaning as above]. The amino protecting group (A) in the β-protected aminoglutarate dialkyl ester (i) used as a starting compound in the method of the present invention can be removed by catalytic reduction, and can be removed by benzyl, benzhydryl, and benzyloxycarbonyl groups. An aralkyloxycarbonyl group such as the above is preferred, but a t-butoxycarbonyl group or the like which can be eliminated by mild hydrolysis may also be used. This protecting group can be introduced by a known amino protection method for peptide synthesis. Further, the alkyl group (R) for forming an ester can be a lower alkyl group such as a methyl group or an ethyl group. As the ester hydrolase (esterase), esterases derived from various animal livers can be used, but pig liver esterase is preferred as it is the easiest to obtain. The enzyme reaction in the method of the present invention is conveniently carried out by dissolving the β-protected aminoglutarate dialkyl ester (i) in a phosphate buffer, adding an ester hydrolase, and allowing the reaction to proceed under stirring. It is. Water is usually used as the reaction solution, but
If necessary, an organic solvent such as dimethylformamide, acetone, or lower alkanol can be used at a concentration of 10% or less or at a concentration that does not impair enzyme activity. The pH of the reaction solution is 7.0 to 9.0, preferably 7.0 to
It is 8.0. The reaction temperature may be any temperature as long as the activity of the enzyme is maintained, and 20 to 30°C is usually preferably used. The reaction time may be 1 to 2 hours, depending on the reaction volume and the amount of enzyme. The amount of enzyme may be a catalytic amount, but in consideration of the reaction rate, the amount of protein used is preferably 0.001 to 1% by weight based on the substrate compound (i). After the reaction, adjust the pH to 7.0 or less with dilute hydrochloric acid and store at 20℃.
Dry to a concentration below. The product is extracted with methanol and concentrated to obtain the crude product. When this is separated and purified using a cellulose column, β-(S)-protected aminoglutaric acid monoester is obtained in high yield. Then, the amino group is removed and protected by a known method such as catalytic reduction to obtain the product β-(S)-aminoglutaric acid monoalkyl ester (ii). Its optical purity varied depending on the reaction conditions, but it showed negative [α] D , and its absolute structure was determined to be derived from a β-lactam compound and identified as a separately synthesized substance. Therefore, in the present invention, the middle proton of the two enantiotopic alkoxycarbonylmethyl groups of the substrate compound (i) is
This means that the alkyl group was preferentially hydrolyzed. Moreover, surprisingly, a product with a different steric configuration was obtained when the amino group of substrate compound (i) was a free amino group or an acetylamino group. The β-(S)-aminoglutarate monomethyl ester and monoethyl ester obtained in the present invention exhibit antibacterial activity against Gram-positive bacteria, especially Staphylococcus,
Useful as an antibacterial agent. Furthermore, the optically active -(S)-aminoglutaric acid monoalkyl ester obtained in the present invention can be converted into an important intermediate (S)- of carbapenel β-lactam in one step by an organic synthetic method.
4-Alkoxycarbonylmethylazetidine-2
- It can be easily turned on. Therefore, the method of the present invention is generally applied as a method for producing an optically active free β-amino acid by an enzymatic chemical method, and the optically active amino acid as a product has a free amino group. When a carboxylic acid or ester group is subjected to an appropriate chemical conversion, the substituent group can be arbitrarily converted depending on the asymmetric carbon of the physiologically active substance, which is highly useful. Hereinafter, the present invention will be explained with reference to examples. Example 1 (a) Dissolve 465 mg (1.5 mmol) of β-benzyloxycarbonylaminoglutarate dimethyl ester in 1.5 ml of acetone and add it to PH8.70 phosphate buffer.
Add 45ml. Esterase obtained from pig liver (Sigma, E-3128) as protein amount
Add 2.7 mg and leave at 25°C for 6 hours with occasional stirring. Add 2.5 ml of 2N hydrochloric acid to adjust the pH of the solution to approximately 1, and extract with methylene chloride. After temporary drying with anhydrous sodium sulfate and concentration, crude crystals 419
Get mg. When purified by silica gel column chromatography, [α] 25 D +0.69° (c7.45, CHCl 3 )
Optically active β-(S)-benzyloxycarbonylaminoglutarate monomethyl ester of 410
mg (93% yield) was obtained. mp97.0−97.5℃. I (KBr); 3330, 2840-2960, 1740, 1725,
1700 cm -1 H-NMR (CDCl 3 ); δ2.69 (bd, 4H, CH 2 J=
6Hz), δ3.65 (S, 3H, Co 2 Me), δ4.17~
4.53 (m, 1H, CH), δ5.07 (s, 2H, OC),
δ5.63 (bd, 1H, NH), δ7.30 (s, 5H, Ph) Elemental analysis value Calculated value (C 14 H 17 O 6 N):
C, 56.94; H, 5.80;, 4.74. Actual values: C, 57.05; H, 5.84; N, 4.69. (b) 385 mg of monomethyl ester obtained as above.
(1.3 mmol) in 20 ml of methanol 10
Add 40 mg of % palladium on carbon and add 30% palladium on carbon under hydrogen atmosphere.
Stir for a minute. When the reaction solution is filtered and concentrated, β
- Obtain 205 mg of an oily product of (S) aminoglutarate monomethyl ester (yield 98%). This one shows [α] 25 D −5.52° (c3.26, H 2 O). The IR, NMR, and elemental analysis values are as follows. IR: 3440, 1730, 2400 ~ 2900 cm - 1 H-NMR (D 2 O): δ2.59 (bd 2H, J = 6
Hz), δ2.84 (bd 2H, J=6Hz) δ3.76 (s,
3H), δ3.85-4.05 (m, 1H). Elemental analysis value: Calculated value (C 6 H 11 O 4 N);
C44.71; H, 6.88; N, 8.69 Actual value: C, 44.73; H, 6.87; N8.65. Example 2 Enzyme treatment was performed in the same manner as in Example 1 using 500 mg of β-benzhydrylaminoglutarate diethyl ester, followed by catalytic reduction on palladium carbon.
β-(S)-aminoglutaric monoester oil
Got 400mg. IR: 3445, 1728cm - .

Claims (1)

【特許請求の範囲】 1 次式 〔式中Rは炭素数1〜4のアルキル基であり、A
は接触還元で又は温和な加水分解で脱離できるア
ミノ保護基である〕のβ−保護アミノグルタル酸
ジアルキルエステルを動物肝臓由来のエステル加
水分解酵素で処理して選択的に一方のエステル基
(R)のみを加水分解し、ついでアミノ保護基(A)
を常法で脱離することを特徴とする次式 〔式中、Rは前記と同じ意味をもつ〕の光学活性
β−(S)−アミノグルタル酸モノアルキルエステ
ルの製造法。
[Claims] Linear formula [In the formula, R is an alkyl group having 1 to 4 carbon atoms, and A
is an amino-protecting group that can be removed by catalytic reduction or mild hydrolysis] is treated with an animal liver-derived ester hydrolase to selectively remove one of the ester groups (R ), then the amino protecting group (A)
The following equation is characterized by the usual elimination of A method for producing an optically active β-(S)-aminoglutaric acid monoalkyl ester, [wherein R has the same meaning as above].
JP55146344A 1980-10-21 1980-10-21 Preparation of optically active monoalkyl beta-(s)-aminoglutarate Granted JPS5771394A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP55146344A JPS5771394A (en) 1980-10-21 1980-10-21 Preparation of optically active monoalkyl beta-(s)-aminoglutarate
AT81108343T ATE10835T1 (en) 1980-10-21 1981-10-15 PROCESS FOR THE PRODUCTION OF DI-ALKYLESTERS AND OPTICALLY ACTIVE MONO-ALKYLESTERS OF 3AMINOGLUTARS[URE.
EP81108343A EP0050799B1 (en) 1980-10-21 1981-10-15 New processes for the production of di-alkyl esters and optically active mono-alkyl esters of 3-aminoglutaric acid
DE8181108343T DE3167862D1 (en) 1980-10-21 1981-10-15 New processes for the production of di-alkyl esters and optically active mono-alkyl esters of 3-aminoglutaric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55146344A JPS5771394A (en) 1980-10-21 1980-10-21 Preparation of optically active monoalkyl beta-(s)-aminoglutarate

Publications (2)

Publication Number Publication Date
JPS5771394A JPS5771394A (en) 1982-05-04
JPH0242476B2 true JPH0242476B2 (en) 1990-09-21

Family

ID=15405574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55146344A Granted JPS5771394A (en) 1980-10-21 1980-10-21 Preparation of optically active monoalkyl beta-(s)-aminoglutarate

Country Status (1)

Country Link
JP (1) JPS5771394A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075032A (en) * 2004-09-08 2006-03-23 Ube Ind Ltd Method for producing optically active (r or s)-3-aminoglutaric acid monoester compound
JP2010183917A (en) * 2010-06-01 2010-08-26 Ube Ind Ltd Method for producing optically active (r or s)-3-aminoglutaric acid monoester compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127380A (en) * 1980-03-12 1981-10-06 Toyama Chem Co Ltd 2r,5r -3-oxo-7-oxo-1-azabicyclo 3,2,0 heptane-2-carboxylic acids and their preparations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127380A (en) * 1980-03-12 1981-10-06 Toyama Chem Co Ltd 2r,5r -3-oxo-7-oxo-1-azabicyclo 3,2,0 heptane-2-carboxylic acids and their preparations

Also Published As

Publication number Publication date
JPS5771394A (en) 1982-05-04

Similar Documents

Publication Publication Date Title
US5767316A (en) Process for producing 3-amino-2-oxo-1-halogenopropane derivatives
EP0003786A1 (en) Stereoselective separation of phenylglycine derivatives and 4-hydroxyphenylglycine derivatives with enzyme-containing polymers
CN102177132B (en) Optically active vinyl-cyclopropane carboxylic acid derivative and optically active vinyl-cyclopropane amino acid derivative manufacturing method
US6020518A (en) Process for preparing β-amino-α-hydroxy acid derivatives
US4859602A (en) Process for the preparation of stereoisomers of 1-aminoalkylphosphonic and phosphinic acids
US4708825A (en) Process for the production of penicillins
IL95949A (en) Process for the preparation of 3-(l-pyroglutamyl)-l-thiazolidine-4- carboxylic acid and its derivatives
JPH0242476B2 (en)
JP3704719B2 (en) Process for producing optically active 3-aminobutanoic acid and its ester intermediate
US3925362A (en) {60 -Alkylsulfobenzyl penicillins and production thereof
CN1183110C (en) Process for production of N-protected azetidinie-2-carboxylic acids (AzeOHs)
EP0050799B1 (en) New processes for the production of di-alkyl esters and optically active mono-alkyl esters of 3-aminoglutaric acid
EP0316725A2 (en) Process for the enzymatic synthetis of peptides containing at least one non-proteic aminoacid, and peptides derived from this synthesis
CN107935874A (en) A kind of synthetic method of (R) 3 amino 3 (2 naphthyl) propionic acid
JPH0482863A (en) Production of p-nitrobenzyl alcohol malonic monoester
JPH07184685A (en) Method for synthesizing optionally pure tetraquinoline derivative
US5929242A (en) Manufacture of levobupivacaine and analogues thereof from L-lysine
JP3005072B2 (en) Preparation of cephalosporin derivatives
JPH0649005A (en) Simple method for producing vinylglycine (2-amino-3- butenoic acid) and simple method for dividing derivative
JP2666890B2 (en) Method for producing optically active (+)-4,4,4-trifluoro-3- (indole-3-) butyric acid
DE60024540T2 (en) SYNTHESIS OF ALPHA-AMINO-ALPHA ', ALPHA'-DIHALOKETONES AND METHOD FOR THE PRODUCTION OF BETA) -AMINO-ACID DERIVATIVES BY THE USE THEREOF
US4324891A (en) Process for the production of a 7-methoxycephalosporine derivative
JPS63500721A (en) New manufacturing method for chemical compounds
EP2264039A1 (en) Process for the preparation of fosinopril and intermediates thereof
KR100576335B1 (en) Processes for preparing 3-Z-propenyl cephem derivatives