JPH0242397A - Cleaning method for sludge in fuel reprocessing - Google Patents

Cleaning method for sludge in fuel reprocessing

Info

Publication number
JPH0242397A
JPH0242397A JP19213588A JP19213588A JPH0242397A JP H0242397 A JPH0242397 A JP H0242397A JP 19213588 A JP19213588 A JP 19213588A JP 19213588 A JP19213588 A JP 19213588A JP H0242397 A JPH0242397 A JP H0242397A
Authority
JP
Japan
Prior art keywords
sludge
ruthenium
plutonium
cleaning
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19213588A
Other languages
Japanese (ja)
Inventor
Tetsuo Morisue
森末 哲夫
Masami Toda
正見 遠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19213588A priority Critical patent/JPH0242397A/en
Publication of JPH0242397A publication Critical patent/JPH0242397A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To recover useful nuclides in sludge and to remove disturbing nuclides in a glass solidifying process by cleaning the sludge with strong oxidizing acid cleaning liquid and dissolving and recovering plutonium, and vaporizing and removing ruthenium. CONSTITUTION:Used fuel is cut into pieces and dissolved with nitric acid and the sludge which is removed in a clarifying process is put in a cleaner. Then the sludge is cleaned with the oxidizing acid cleaning liquid which contains secondary cerium nitrate as an oxidizing agent and plutonium and uranium are dissolved in the cleaning liquid, oxidized, and converted into hexavalent ions, which are adsorbed and recovered selectively with anion exchange resin. Further, off gas which is produced in the cleaner is guided to a condenser to reduce part of ruthenium, so that ruthenium dioxide is condensed and recovered together with water. Then the off gas which is dewatered and dried is passed through an absorber and absorbed by an organic solvent and volatile ruthenium tetraoxide is reduced into particulates of ruthenium dioxide, which are trapped in the organic solvent, so this is filtered and removed by a liquid- phase filter.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は使用済み燃料の再処理施設において、使用済み
燃料を溶解したのち清澄工程で発生する不溶解性残渣(
以下スラッジと称す)を洗浄する燃料再処理におけるス
ラッジの洗浄方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention is a spent fuel reprocessing facility, in which insoluble residue (
The present invention relates to a method for cleaning sludge in fuel reprocessing (hereinafter referred to as sludge).

(従来の技術) 使用済み燃料再処理施設においては、使用済み燃料を解
体・切断後、硝酸を用いて溶解する。この場合、少量の
有用核種(とくにプルトニウム)。
(Prior art) In a spent fuel reprocessing facility, spent fuel is dismantled and cut, and then dissolved using nitric acid. In this case, a small amount of useful nuclides (especially plutonium).

核分裂生成物の一部(例えばルテニウム、パラジウム、
モリブデンなど)およびジルカロイ燃料被覆管の切屑が
不溶解性残渣(スラッジ)として溶解液中に残る。ウラ
ン、プルトニウムを有機溶媒で抽出する前にあらかじめ
微粒子状のスラッジを除去しておく必要がある。このス
ラッジを固液分離するための清澄工程には、パルスフィ
ルタまたは遠心清澄機が用いられている。パルスフィル
タまたは遠心清澄機で除去したスラッジは、付着してい
るウラン、プルトニウムを極力回収するため硝酸を洗浄
液として洗浄後、安全に長期にわたり貯蔵・処分するた
めガラス固化される。
Some of the fission products (e.g. ruthenium, palladium,
molybdenum, etc.) and chips from the Zircaloy fuel cladding remain in the solution as insoluble residue (sludge). Before extracting uranium and plutonium with an organic solvent, it is necessary to remove particulate sludge. A pulse filter or a centrifugal clarifier is used in the clarification process to separate solid and liquid from this sludge. The sludge removed by a pulse filter or centrifugal clarifier is washed with nitric acid as a cleaning solution to recover as much of the attached uranium and plutonium as possible, and then vitrified for safe long-term storage and disposal.

ところで、燃料の燃焼度を高めると、特に高速増殖炉(
以下FBRと称す)では、使用済み燃料中の難溶解性プ
ルトニウム量が次第に増加する。
By the way, increasing the burnup of the fuel is especially important for fast breeder reactors (
(hereinafter referred to as FBR), the amount of poorly soluble plutonium in the spent fuel gradually increases.

この難溶解性プルトニウム微粒子は清澄工程で除去した
スラッジ中に相当量含まれており、硝酸による洗浄では
溶解・回収することが困難であり、有用核種の損失、廃
棄物対策などの観点から好ましくない事態が生じる。ま
たスラッジの主要成分であるルテニウムの量も増加する
。このルテニウムは高レベル廃液中ないしはスラッジの
ガラス固化工程で高温のため揮発することと、その長半
減期のため廃棄物処理上問題が多い成分である。
A considerable amount of these poorly soluble plutonium particles are contained in the sludge removed during the clarification process, and it is difficult to dissolve and recover them by cleaning with nitric acid, which is undesirable from the standpoint of loss of useful nuclides and waste management. A situation arises. Also, the amount of ruthenium, which is the main component of sludge, increases. This ruthenium is a component that causes many problems in waste treatment because it volatilizes due to the high temperature during the vitrification process of high-level waste liquids or sludge, and because of its long half-life.

(発明が解決しようとする課題) 従来、使用済み燃料の再処理施設において、清澄工程で
除去したスラッジは硝酸で洗浄された後。
(Problems to be Solved by the Invention) Conventionally, in spent fuel reprocessing facilities, the sludge removed in the clarification process is washed with nitric acid.

高レベル廃液のガラス固化工程でガラス固化される。It is vitrified in the vitrification process of high-level waste liquid.

しかしながら、この従来からの洗浄方法ではスラッジ中
に含まれる多量のルテニウムが高温のため気相中に揮発
、移行して放射性汚染をひきおこす可能性が高い。この
ため、ルテニウムばあらがしめスラッジ中から除去して
おくことが望ましい。
However, in this conventional cleaning method, there is a high possibility that a large amount of ruthenium contained in the sludge will volatilize and migrate into the gas phase due to the high temperature, causing radioactive contamination. For this reason, it is desirable to remove ruthenium from the sludge.

このルテニウムの問題は、燃料の燃焼度が上がるにつれ
ルテニウムの割合いが増大するため大きくなる。
This problem with ruthenium increases as the burn-up of the fuel increases because the proportion of ruthenium increases.

また燃料の燃焼度が上がるにつれ、とくにFBRでは、
溶解工程で溶けにくい難溶解性プルトニウムが増大する
。この難溶解性プルトニウムはスラッジとともにガラス
固化工程に送られガラス固化される。プルトニウムの半
減期は非常に長く(Pu −239:約20,000年
)、かつ化学的毒性の強い核種である1本来プルトニウ
ムは燃料として利用すべき物質であり、ガラス固化工程
へ送らず1回収すべきものなのである。
Also, as fuel burnup increases, especially in FBR,
During the melting process, the amount of plutonium that is difficult to dissolve increases. This hardly soluble plutonium is sent to the vitrification process together with the sludge and is vitrified. Plutonium has a very long half-life (Pu-239: approximately 20,000 years) and is a highly chemically toxic nuclide.1 Originally, plutonium was a substance that should be used as fuel, so it was recovered without being sent to the vitrification process. It is something that should be done.

従来の硝酸によるスラッジの洗浄方法では、ルテニウム
の除去、難溶解性プルトニウムの回収は全くできない。
Conventional sludge cleaning methods using nitric acid cannot remove ruthenium or recover hardly soluble plutonium.

本発明は、以上の事情に鑑みてなされたものであり、高
燃焼度の使用済み燃料、特にFBHの再処理施設におい
て、清澄工程で除去したスラッジ中に含まれる有用核種
の難溶解性プルトニウムを溶解・回収するとともに同じ
くガラス同化妨害核種のルテニウムを揮発・除去するこ
とができる燃料再処理におけるスラッジ洗浄方法を提供
することにある。
The present invention has been made in view of the above circumstances, and is a method for removing refractory plutonium, a useful nuclide, contained in the sludge removed in the clarification process at high burnup spent fuel, particularly in FBH reprocessing facilities. The object of the present invention is to provide a method for cleaning sludge in fuel reprocessing, which can dissolve and recover ruthenium and also volatilize and remove ruthenium, a nuclide that interferes with glass assimilation.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は使用済み燃料を解体、切断し、硝酸で溶解処理
したのち、清澄工程で除去したスラッジを強酸化性酸性
洗浄液で洗浄処理することを特徴とする。
(Means for Solving the Problems) The present invention is characterized in that spent fuel is dismantled, cut, and dissolved in nitric acid, and then the sludge removed in the clarification step is cleaned with a strongly oxidizing acidic cleaning solution.

(作用) 酸化性酸性洗浄液に含まれる酸化剤の酸化作用によって
スラッジ中の難溶解性の酸化プルトニウム微粒子を洗浄
液中に溶出させる。洗浄液中に溶出したプルトニウムは
イオン交換樹脂で洗浄液中から吸着・回収する。また、
ルテニウムも酸化性酸性洗浄液中の酸化剤の酸化作用に
よって4酸化ルテニウムに酸化し、気相中に揮発させる
。揮発したルテニウムは凝縮器で水分とルテニウムの一
部を回収するとともに有機溶媒の吸収器で2酸化ルテニ
ウムに還元して回収する。
(Function) The oxidizing action of the oxidizing agent contained in the oxidizing acidic cleaning solution causes the hardly soluble plutonium oxide fine particles in the sludge to be eluted into the cleaning solution. Plutonium eluted into the cleaning solution is adsorbed and recovered from the cleaning solution using an ion exchange resin. Also,
Ruthenium is also oxidized to ruthenium tetraoxide by the oxidizing action of the oxidizing agent in the oxidizing acidic cleaning solution, and is volatilized into the gas phase. The volatilized ruthenium is recovered by recovering water and part of the ruthenium in a condenser, and is reduced to ruthenium dioxide in an organic solvent absorber.

酸化性酸性洗浄液はスラッジを洗浄することによってそ
の酸化力を喪失するが、この洗浄液の酸化力は電解反応
により再生させることができる。
Although the oxidizing acidic cleaning liquid loses its oxidizing power by cleaning the sludge, the oxidizing power of this cleaning liquid can be regenerated by electrolytic reaction.

このようにしてスラッジ中から有用核種を回収するとと
もに、ガラス固化工程の妨害核種を除去する。
In this way, useful nuclides are recovered from the sludge, and nuclides that interfere with the vitrification process are removed.

(実施例) 本発明に係る燃料再処理におけるスラッジの洗浄方法の
一実施例を図を参照しながら説明する。
(Example) An example of the sludge cleaning method in fuel reprocessing according to the present invention will be described with reference to the drawings.

まず、使用済み燃料を解体、切断し硝酸で溶解し。First, the spent fuel is dismantled, cut up and dissolved in nitric acid.

清澄工程で除去したスラッジを洗浄器1に受入れる。洗
浄器1の構造としては撹拌槽洗浄、遠心洗浄、スプレー
洗浄などが使用されるが、その構造は特に限定しない、
酸化性酸性洗浄液としては酸化剤として硝酸第2セリウ
ム(セリウム4価イオン)を、酸性液として硝酸を用い
る。セリウム濃度は0.05mol#!から0.8mo
l/ffiの範囲とする。硝酸濃度は0.5mo1/1
2から6mol#Iの範囲が望ましい。洗浄液の温度は
室温から沸騰温度まで適用できるが、洗浄性からは高い
ほうが望ましい。
The sludge removed in the clarification process is received in a washer 1. The structure of the cleaning device 1 includes stirring tank cleaning, centrifugal cleaning, spray cleaning, etc., but the structure is not particularly limited.
As the oxidizing acidic cleaning liquid, ceric nitrate (tetravalent cerium ion) is used as the oxidizing agent, and nitric acid is used as the acidic liquid. Cerium concentration is 0.05mol#! from 0.8mo
The range is l/ffi. Nitric acid concentration is 0.5mol1/1
A range of 2 to 6 mol #I is desirable. The temperature of the cleaning liquid can range from room temperature to boiling temperature, but higher temperatures are desirable from the viewpoint of cleaning performance.

上記酸化性酸性洗浄液によってスラッジを洗浄した後、
ガラス固化工程に移送し、ガラス固化する。ガラス固化
したスラッジは貯蔵庫に貯蔵するか、または処分する。
After cleaning the sludge with the above oxidizing acidic cleaning solution,
Transfer to vitrification process and vitrify. The vitrified sludge can be stored in storage or disposed of.

洗浄器1でスラッジを洗浄後の洗浄液はイオン交換器2
によってプルトニウムおよびウランを吸着回収する。イ
オン交換器2に充填されるイオン交換樹脂としては陰イ
オン交換樹脂を用いる。プルトニウム、ウランはセリウ
ムで酸化されて、6価イオンに変換されているため水和
効果により陰イオンに選択的に吸着される。以上の作用
により難溶解性のプルトニウムはスラッジから分離・回
収される。イオン交換器2の構造は回分式または連続カ
ラム式どちらでもかまわない。
After washing the sludge with washer 1, the cleaning liquid is sent to ion exchanger 2.
plutonium and uranium are adsorbed and recovered. As the ion exchange resin filled in the ion exchanger 2, an anion exchange resin is used. Plutonium and uranium are oxidized with cerium and converted into hexavalent ions, so they are selectively adsorbed by anions due to the hydration effect. Due to the above action, the hardly soluble plutonium is separated and recovered from the sludge. The structure of the ion exchanger 2 may be either a batch type or a continuous column type.

スラッジを洗浄し、プルトニウム回収後の酸化性酸性洗
浄液は洗浄作用により酸化能力が低下ないしは喪失して
いる。すなわち、セリウム4価イオンはセリウム3価イ
オンに還元されている。このため、電解再生槽3におい
て陽極表面でセリウムは3価から4価イオンに酸化し、
再生される。
The oxidizing acidic cleaning solution after cleaning the sludge and recovering plutonium has reduced or lost its oxidizing ability due to the cleaning action. That is, tetravalent cerium ions are reduced to trivalent cerium ions. Therefore, in the electrolytic regeneration tank 3, cerium is oxidized from trivalent to tetravalent ions on the anode surface.
will be played.

再生された酸化性酸性洗浄液は再び洗浄器1でスラッジ
の洗浄に用いられる。電極としては白金電極ないしは白
金被覆電極が望ましい。
The regenerated oxidizing acidic cleaning liquid is used again in the cleaning device 1 to clean the sludge. The electrode is preferably a platinum electrode or a platinum-coated electrode.

洗浄器1で発生するオフガスは凝縮器4で水分を除去す
る6ルテニウムの一部は還元さ九2酸化ルテニウムとし
て凝縮器4で水とともに凝縮、回収される。脱水・乾燥
したオフガスは次に吸収器5に通される。吸収液には有
機溶媒を用いる。特に有機溶媒としては、炭素数が6か
ら12程度のパラフィン系炭化水素が効率良く4酸化ル
テニウムを還元、吸収できる。これら有機溶媒により揮
発性4酸化ルテニウムは還元され2酸化ルテニウムの微
粒子として有機溶媒中にトラップされる。吸収器5の構
造としては回分式バブリング法、スプレィ式吸収法、充
填塔法などがあるが、特に限定しない。吸収液中に分散
している2酸化ルテニウムの微粒子は液相フィルタ6で
濾過、除去される。
The off-gas generated in the washer 1 is removed in a condenser 4 to remove moisture. Part of the 6-ruthenium is reduced and condensed together with water in the condenser 4 as ruthenium 92 oxide and recovered. The dehydrated and dried off-gas is then passed through the absorber 5. An organic solvent is used for the absorption liquid. In particular, as an organic solvent, paraffinic hydrocarbons having about 6 to 12 carbon atoms can efficiently reduce and absorb ruthenium tetroxide. Volatile ruthenium tetroxide is reduced by these organic solvents and trapped in the organic solvent as fine particles of ruthenium dioxide. The structure of the absorber 5 includes a batch bubbling method, a spray absorption method, a packed column method, etc., but is not particularly limited. Fine particles of ruthenium dioxide dispersed in the absorption liquid are filtered and removed by a liquid phase filter 6.

ルテニウムを凝縮器4、吸収器5で除去した後のオフガ
スは吸収液の飛沫をデミスタ7で除去した後、放出する
After ruthenium has been removed in the condenser 4 and absorber 5, the off-gas is discharged after the droplets of the absorption liquid are removed in the demister 7.

上記実施例では酸化性酸性洗浄液としてセリウム−硝酸
洗浄液について説明したが、酸化剤はプルトニウム、ル
テニウムより酸化電位が高くかつ複数のイオン価数を有
する元素ないしは分子であればセリウムにこだわるもの
ではない。例えばビスマス、マンガンなどでもかまわな
い。
In the above embodiment, a cerium-nitric acid cleaning solution was described as the oxidizing acidic cleaning solution, but the oxidizing agent is not limited to cerium as long as it is an element or molecule that has a higher oxidation potential than plutonium or ruthenium and has multiple ionic valences. For example, bismuth, manganese, etc. may be used.

この実施例に係るスラッジの洗浄方法においては、セリ
ウム4価イオン−硝酸の酸化性酸性洗浄液の酸化力は従
来用いられてきた硝酸洗浄液の酸化力よりも非常に大き
いため、硝酸洗浄液で溶解することができなかった難溶
解性プルトニウムをPuO□(2−)イオンとして洗浄
液中に溶解する。また、ルテニウムも4酸化ルテニウム
に酸化し、気相中に揮発させることができる。
In the sludge cleaning method according to this embodiment, the oxidizing power of the oxidizing acidic cleaning solution of cerium tetravalent ions and nitric acid is much greater than that of the conventionally used nitric acid cleaning solution, so the sludge cannot be dissolved in the nitric acid cleaning solution. The poorly soluble plutonium that cannot be dissolved is dissolved in the cleaning solution as PuO□(2-) ions. Furthermore, ruthenium can also be oxidized to ruthenium tetraoxide and volatilized into the gas phase.

Ru+8Ce(4+)+4H,0=Ru04+80e(
3+)+8H(”)この結果、難溶解性プルトニウムは
洗浄液中に移行する。洗浄液に移行した陰イオン性のプ
ルトニウムは陰イオン交換樹脂によって回収することが
できる。
Ru+8Ce(4+)+4H,0=Ru04+80e(
3+)+8H('')As a result, the hardly soluble plutonium migrates into the cleaning solution.The anionic plutonium that migrates into the cleaning solution can be recovered by an anion exchange resin.

また、ガラス固化工程に持込みたくないスラッジ中のル
テニウムも酸化剤により揮発し、気相中に移行する。気
相中に移行した4酸化ルテニウムは水分を除去する凝縮
器4で一部還元し2酸化ルテニウムとして凝縮・回収さ
れる。凝縮器4を通過したルテニウムは次の有機溶媒を
用いたガス吸収器5で有機溶媒により還元され、2酸化
ルテニウム微粒子として有機溶媒中に回収される。二の
2酸化ルテニウム微粒子は、有機溶媒を液相フィルタ6
に通すことにより液相フィルタ6の表面上に除去・回収
することができる。
Moreover, ruthenium in the sludge, which is not desired to be brought into the vitrification process, is also volatilized by the oxidizing agent and transferred into the gas phase. The ruthenium tetroxide that has migrated into the gas phase is partially reduced in a condenser 4 that removes moisture, and is condensed and recovered as ruthenium dioxide. The ruthenium that has passed through the condenser 4 is reduced by the next gas absorber 5 using an organic solvent, and is recovered in the organic solvent as ruthenium dioxide fine particles. The second ruthenium dioxide fine particles filter the organic solvent through the liquid phase filter 6.
It can be removed and collected on the surface of the liquid phase filter 6 by passing it through the liquid phase filter 6.

清澄工程で除去したスラッジに含まれる雅溶解性プルト
ニウムは効率良く回収されるとともに、ガラス固化処理
上除去したいルテニウムも分離される。
The soluble plutonium contained in the sludge removed during the clarification process is efficiently recovered, and the ruthenium that should be removed during the vitrification process is also separated.

洗浄によってスラッジから洗浄液中に溶出したプルトニ
ウムとウランはイオン交換樹脂で回収される。
Plutonium and uranium eluted from the sludge into the cleaning solution are recovered using an ion exchange resin.

洗浄によってスラッジから気相中に揮発したルテニウム
を凝縮器と有機溶媒によるガス吸収器で回収し、有機溶
媒中に移行した粒子状酸化ルテニウムをフィルタで除去
する。
The ruthenium volatilized from the sludge into the gas phase by washing is recovered by a condenser and a gas absorber using an organic solvent, and the particulate ruthenium oxide that has migrated into the organic solvent is removed by a filter.

さらにスラッジを洗浄したことによって酸化機能が低下
した酸化性酸性洗浄液は電解槽で電解酸化反応によって
再生する。そのため、洗浄液の寿命は非常に長く、従来
の硝酸洗浄方法に比べていわゆる2次廃棄物量を減らす
ことができる。
Furthermore, the oxidizing acidic cleaning solution whose oxidizing function has been degraded by cleaning the sludge is regenerated by an electrolytic oxidation reaction in an electrolytic cell. Therefore, the life of the cleaning liquid is very long, and the amount of so-called secondary waste can be reduced compared to the conventional nitric acid cleaning method.

〔発明の効果〕〔Effect of the invention〕

本発明によればプルトニウムを高い効率で回収すること
ができるため、製品の歩留り、計量管理上の問題を解決
することができる。また、ルテニウムを洗浄工程で分離
・除去できるため、スラッジをガラス固化する場合ガラ
ス溶融炉の設計並びに操作条件が非常に容易になる。
According to the present invention, plutonium can be recovered with high efficiency, so problems in product yield and measurement management can be solved. Furthermore, since ruthenium can be separated and removed in the cleaning process, the design and operating conditions of the glass melting furnace when vitrifying sludge are greatly simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係る燃料再処理におけるスラッジの洗浄方
法の一実施例を示す流れ線図である。 1・・・洗浄器 2・・・イオン交換器 3・・・電解再生槽 4・・凝縮器 5・・・吸収器 6・・・液相フィルタ 7・・・デミスタ
The figure is a flow chart showing an embodiment of the sludge cleaning method in fuel reprocessing according to the present invention. 1... Cleaner 2... Ion exchanger 3... Electrolytic regeneration tank 4... Condenser 5... Absorber 6... Liquid phase filter 7... Demister

Claims (1)

【特許請求の範囲】[Claims] 使用済み燃料を解体、切断し、硝酸で溶解処理したのち
、清澄工程で除去したスラッジを強酸化性酸性洗浄液で
洗浄処理することを特徴とする燃料再処理におけるスラ
ッジの洗浄方法。
A method for cleaning sludge in fuel reprocessing, which comprises dismantling and cutting spent fuel, dissolving it in nitric acid, and then cleaning the sludge removed in a clarification process with a strongly oxidizing acidic cleaning solution.
JP19213588A 1988-08-02 1988-08-02 Cleaning method for sludge in fuel reprocessing Pending JPH0242397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19213588A JPH0242397A (en) 1988-08-02 1988-08-02 Cleaning method for sludge in fuel reprocessing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19213588A JPH0242397A (en) 1988-08-02 1988-08-02 Cleaning method for sludge in fuel reprocessing

Publications (1)

Publication Number Publication Date
JPH0242397A true JPH0242397A (en) 1990-02-13

Family

ID=16286266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19213588A Pending JPH0242397A (en) 1988-08-02 1988-08-02 Cleaning method for sludge in fuel reprocessing

Country Status (1)

Country Link
JP (1) JPH0242397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062737A (en) * 2012-09-19 2014-04-10 Mitsubishi Heavy Ind Ltd Method and apparatus for detoxifying incineration ash containing radioactive cesium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588505A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Semi-permeable composite membrane
JPS6125608A (en) * 1984-07-14 1986-02-04 Agency Of Ind Science & Technol Separating film for water-soluble organic material and separation of water-soluble organic material utilizing the membrane
JPS6193802A (en) * 1984-10-15 1986-05-12 Agency Of Ind Science & Technol Separation of liquid mixture
JPS6295105A (en) * 1985-10-16 1987-05-01 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Method for coating composite reverse osmosis membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588505A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Semi-permeable composite membrane
JPS6125608A (en) * 1984-07-14 1986-02-04 Agency Of Ind Science & Technol Separating film for water-soluble organic material and separation of water-soluble organic material utilizing the membrane
JPS6193802A (en) * 1984-10-15 1986-05-12 Agency Of Ind Science & Technol Separation of liquid mixture
JPS6295105A (en) * 1985-10-16 1987-05-01 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Method for coating composite reverse osmosis membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062737A (en) * 2012-09-19 2014-04-10 Mitsubishi Heavy Ind Ltd Method and apparatus for detoxifying incineration ash containing radioactive cesium

Similar Documents

Publication Publication Date Title
US5322644A (en) Process for decontamination of radioactive materials
US3393981A (en) Method of decomposing a nuclear fuel in a fused salt system by using nitric oxide
WO2011016916A2 (en) Compositions and methods for treating nuclear fuel
Netter Reprocessing of spent oxide fuel from nuclear power reactors
JPH0242397A (en) Cleaning method for sludge in fuel reprocessing
JPH0319520B2 (en)
Jubin Spent fuel reprocessing
JPS6141994A (en) Method for recovering value uranium in extracting reprocessing process for spent nuclear fuel
JP2549532B2 (en) Precipitation separation method for transuranium elements
JP3310765B2 (en) High-level waste liquid treatment method in reprocessing facility
US4394269A (en) Method for cleaning solution used in nuclear fuel reprocessing
Arm Flowsheet Evaluation of Dissolving Used Nuclear Fuel in PUREX Solvent
JP3113033B2 (en) Method for separating ruthenium and technetium in radioactive solution and reprocessing process for spent nuclear fuel using the same
US3792154A (en) Removal of iodine from nitric acid solutions
JPH03120499A (en) Treatment of high-level waste
Ackerman et al. Waste removal in pyrochemical fuel processing for the Integral Fast Reactor
JP2858640B2 (en) Reprocessing of spent nuclear fuel under mild conditions
JP7235601B2 (en) Method for separating lanthanides from radioactive solutions
Viala et al. Advanced Purex process for the new French reprocessing plants
Bradley et al. Recovering uranium from graphite fuel elements
JPH05232296A (en) Removing method of phosphate in radioactive organic solvent
Benker et al. Demonstration of Integrated PostIrradiation Process Steps forMultikilogram Amounts of Low-and High-Burnup Used Nuclear Fuels
US2865737A (en) Method of purifying uranium metal
Brown et al. Developing a Recovery Column for Mo-99 from Highly Concentrated Uranyl Nitrate Solutions
Tedder et al. Methods for separating actinides from reprocessing and refabrication plant wastes