JPH05232296A - Removing method of phosphate in radioactive organic solvent - Google Patents

Removing method of phosphate in radioactive organic solvent

Info

Publication number
JPH05232296A
JPH05232296A JP3197792A JP3197792A JPH05232296A JP H05232296 A JPH05232296 A JP H05232296A JP 3197792 A JP3197792 A JP 3197792A JP 3197792 A JP3197792 A JP 3197792A JP H05232296 A JPH05232296 A JP H05232296A
Authority
JP
Japan
Prior art keywords
phosphate
organic solvent
adsorbent
radioactive organic
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3197792A
Other languages
Japanese (ja)
Inventor
Haruo Shibayama
治雄 柴山
Hisaaki Shimauchi
久明 嶋内
Kenji Kirishima
健二 桐嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3197792A priority Critical patent/JPH05232296A/en
Publication of JPH05232296A publication Critical patent/JPH05232296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To obtain a method for removing phosphate in a radioactive organic solvent in such a manner as not to produce clad. CONSTITUTION:A method for removing phosphate in a radioactive organic solvent used in a spent nuclear fuel recycling extraction process. An adsorbent prepared by mixing at least one kind or more of catalytic carriers such as activated alumina, silica gel and zeolite, in particular, with powder of a metal oxide such as ZnO, ZrO2, CaO or MgO is brought into contact with the phosphate at a temperature of 5 to 60 deg.C and at a liquid passing velocity SV of 0.5 to 4, whereby the phosphate can be removed by adsorption at a very high adsorption rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放射性有機溶媒特にウ
ランの精製工場や、使用済み核燃料再処理工場から発生
する放射性有機溶媒中のリン酸塩の除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing phosphate from a radioactive organic solvent, particularly a uranium refinery plant or a radioactive organic solvent generated from a spent nuclear fuel reprocessing plant.

【0002】[0002]

【従来の技術】従来、使用済み核燃料の再処理抽出工程
には、有機溶媒を用いるピュレックス法と呼ばれる溶媒
抽出法が利用されている。この方法では、まず、使用済
み核燃料を細かく剪断した後、硝酸溶液中でウラン、プ
ルトニウムおよび核分裂生成物を溶解する。このウラ
ン、プルトニウムおよび核分裂生成物を含んだ混合硝酸
溶液からウラン、プルトニウムおよび核分裂生成物に別
々に分離するために溶媒抽出法が用いられている。溶媒
抽出法で用いられる溶媒としては、トリブチルリン酸
[(C4H9O)3PO 、Tri-Butyl-Phosphate 、以下 TBPと略
す]をノルマル・ドデカン(n-Dodecane)等の炭化水素で
希釈した混合溶媒が使用されている。また、再処理工場
における溶媒抽出操作はパルスカラム、ミキサーセトラ
等の抽出装置を用いて実施されている。
2. Description of the Related Art Conventionally, a solvent extraction method called an Purex method using an organic solvent has been used in a reprocessing extraction step of spent nuclear fuel. In this method, first, the spent nuclear fuel is finely sheared, and then uranium, plutonium and fission products are dissolved in a nitric acid solution. A solvent extraction method is used to separate uranium, plutonium and fission products from the mixed nitric acid solution containing uranium, plutonium and fission products separately. As the solvent used in the solvent extraction method, tributyl phosphate [(C 4 H 9 O) 3PO, Tri-Butyl-Phosphate, abbreviated as TBP below] was diluted with a hydrocarbon such as normal dodecane (n-Dodecane). Mixed solvents are used. In addition, the solvent extraction operation in the reprocessing plant is carried out using an extraction device such as a pulse column or a mixer-settler.

【0003】ところで、再処理における有機溶媒は、極
めて高い放射線照射条件下で使用されると共に、酸化力
の強い薬品である硝酸の共存下で使用されるのが一般で
ある。このため、溶媒であるトリブチルリン酸は分解
し、下記のように変化することが知られている。
By the way, the organic solvent used in the reprocessing is generally used under the condition of extremely high radiation irradiation and is also used in the coexistence of nitric acid which is a strong oxidizing agent. Therefore, it is known that the solvent tributylphosphoric acid decomposes and changes as follows.

【0004】即ち、W.Davis and A.H.Kibbey: ORNL-TM-
3062(1970)によると、 ここで、R はブチル基である。
That is, W. Davis and AHKibbey: ORNL-TM-
According to 3062 (1970) Here, R is a butyl group.

【0005】このようにして生成する溶媒分解生成物に
より再処理プロセス全般に様々な問題が生じることが知
られている。トリブチルリン酸の分解生成物はウランお
よびジルコニウム等の核分裂生成物の一部と、安定な錯
体を形成し易く、分配係数に影響を与え、ウランやプル
トニウムの純度低下や損失を招くと言われている。ま
た、ウラン、プルトニウムおよび核分裂生成物と、トリ
ブチルリン酸の分解物であるジブチルリン酸、モノブチ
ルリン酸やリン酸等が反応し、錯体を形成すると、沈澱
物を生成し、液液界面に蓄積したり、これら沈殿物が原
因となってエマルジョンを安定化させることにより生成
する界面クラッドの問題が指摘されている。
It is known that the solvent decomposition products thus produced cause various problems in the overall reprocessing process. It is said that the decomposition product of tributyl phosphate easily forms a stable complex with a part of fission products such as uranium and zirconium, affects the partition coefficient, and leads to deterioration of purity and loss of uranium and plutonium. There is. Also, when uranium, plutonium and fission products react with dibutyl phosphate, which is a decomposition product of tributyl phosphate, monobutyl phosphate, phosphoric acid, etc., to form a complex, a precipitate is formed and accumulates at the liquid-liquid interface. It has been pointed out that the problem of the interfacial clad generated by stabilizing the emulsion caused by these precipitates.

【0006】これまでの再処理工場で処理する使用済み
核燃料は、原子炉での燃焼度が比較的低いものであり、
溶媒中の分解生成物量も比較的少なく、トリブチルリン
酸分解生成物としてもジブチルリン酸を中心に考えてお
くことで十分とされていた。しかし、最近、原子力発電
の経済性向上等を目的とした高燃焼度化が進められつつ
ある。このため、今後の使用済み核燃料再処理では溶媒
中の劣化生成物量が増加することが考えられる。特に核
分裂生成物濃度の増加による溶媒に対する放射線照射量
の上昇に伴い、トリブチルリン酸の分解生成物であるジ
ブチルリン酸の他、モノブチルリン酸およびリン酸の生
成量も無視し得ないものと考えられる。
The spent nuclear fuel processed in the reprocessing plant so far has a relatively low burnup in the nuclear reactor,
The amount of decomposition products in the solvent was also relatively small, and it was considered sufficient to consider dibutyl phosphoric acid as the decomposition product of tributyl phosphoric acid. However, recently, high burnup has been promoted for the purpose of improving the economical efficiency of nuclear power generation. Therefore, it is considered that the amount of deteriorated products in the solvent will increase in the future reprocessing of spent nuclear fuel. In particular, it is considered that the amount of monobutyl phosphoric acid and phosphoric acid produced in addition to dibutyl phosphoric acid, which is a decomposition product of tributyl phosphoric acid, cannot be neglected as the irradiation dose to the solvent increases due to the increase in the fission product concentration.

【0007】このような溶媒劣化の問題については、商
業用再処理工場では使用した溶媒を再使用する場合に
は、溶媒中に生成した劣化物を取り除くことで対応して
いる。このような溶剤中の劣化生成物を取り除く工程が
溶媒洗浄工程あるいは溶媒再生工程と呼ばれる工程であ
る。これまでの最も一般的に用いられている溶媒洗浄方
法は、炭酸ナトリウム水溶液、水酸化ナトリウム等を用
いたアルカリ洗浄方法であり、実際には炭酸ナトリウム
水溶液、水酸化ナトリウム水溶液や硝酸水溶液等を併用
する方法が一般的である。ところが、アルカリ洗浄時
に、有機相と水相の界面にクラッドと呼ばれるものが生
成し、洗浄工程において問題となることが指摘されてい
る。このようなクラッドが生成すると、洗浄効率が低下
すると共に、洗浄装置における界面制御が困難となる可
能性もある。このため、溶媒の洗浄時にクラッドが生成
しないような方法を確立することが重要な課題となって
いた。然しながら、これまでは溶媒洗浄工程におけるク
ラッドの生成原因についても不明な点が多く、これを防
止する方法は殆ど報告されていないのが現状であった。
[0007] Such a problem of solvent deterioration is dealt with in a commercial reprocessing plant by removing a deteriorated product generated in the solvent when the solvent used is reused. The step of removing the deterioration product in the solvent is called a solvent washing step or a solvent regeneration step. The most commonly used solvent cleaning method up to now is an alkaline cleaning method using sodium carbonate aqueous solution, sodium hydroxide, etc. Actually, sodium carbonate aqueous solution, sodium hydroxide aqueous solution, nitric acid aqueous solution, etc. are used together. The method is generally used. However, it has been pointed out that what is called a clad is generated at the interface between the organic phase and the aqueous phase during the alkali cleaning, which causes a problem in the cleaning process. When such a clad is formed, the cleaning efficiency is lowered and the interface control in the cleaning device may be difficult. For this reason, it has been an important subject to establish a method in which the clad is not generated during the cleaning of the solvent. However, until now, there are many unclear points regarding the cause of the clad formation in the solvent cleaning step, and there has been almost no report on a method for preventing this.

【0008】従来、これらの問題を解決する方法として
は、当該抽出溶媒を分別蒸留し、抽出剤と希釈剤とを回
収し、再使用する方法およびイオン交換樹脂による劣化
物の除去法が存在するのみであった。しかし、この分別
蒸留およびイオン交換樹脂法は高度の技術を要し、コス
トの掛かる方法であった。
Conventionally, as a method for solving these problems, there are a method of fractionating and distilling the extraction solvent to recover the extractant and the diluent, and a method of reusing the extractant and a method of removing a deteriorated product by an ion exchange resin. Was only. However, the fractional distillation and the ion-exchange resin method require sophisticated techniques and are costly methods.

【0009】[0009]

【発明が解決しようとする課題】本発明は、放射性有機
溶媒中のリン酸塩をクラッドが生成しないように除去す
る方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for removing phosphate in a radioactive organic solvent so that the cladding does not form.

【0010】[0010]

【課題を解決するための手段】ウランの精製工場や使用
済み核燃料再処理抽出工程で使用した放射性有機溶媒
を、活性アルミナ、シリカゲル、ゼオライト等の触媒担
体のうち少なくとも一種以上と、金属酸化物粉末とを混
合した吸着剤とを、5 〜60℃、通液速度SVを0.5〜4 で
接触させることにより、前記有機溶媒に含まれるリン酸
塩を除去するようにしたことを特徴とするものである。
[Means for Solving the Problems] The radioactive organic solvent used in the uranium refinery and the spent nuclear fuel reprocessing extraction step is at least one or more catalyst carriers such as activated alumina, silica gel, zeolite, and metal oxide powder. The adsorbent mixed with and is brought into contact with the adsorbent at a temperature of 5 to 60 ° C. and a liquid flow rate SV of 0.5 to 4 to remove the phosphate contained in the organic solvent. is there.

【0011】[0011]

【作用】本発明は、使用済み核燃料再処理抽出工程で使
用した放射性有機溶媒中のリン酸塩を吸着除去しようと
するものであるが、この放射性有機溶媒中にはジブチル
リン酸の他、モノブチルリン酸やリン酸と云う劣化物ば
かりでなく、使用する希釈剤によっては希釈剤自体の劣
化物も含まれる。更に、これらの劣化物と核分裂生成物
(HPO4 2- / ZrO2+ ) との錯体や、懸濁粒子(PO4 3-/U
O2 2+,2HPO4 2- /u4+ )も存在する。
The present invention is intended to adsorb and remove the phosphate in the radioactive organic solvent used in the spent nuclear fuel reprocessing and extraction step. In this radioactive organic solvent, dibutyl phosphoric acid and monobutyl phosphoric acid are contained. Not only deterioration products such as phosphoric acid and phosphoric acid but also deterioration products of the diluent itself are included depending on the diluent used. In addition, these degradation products and fission products
(HPO 4 2- / ZrO 2+ ) complex and suspended particles (PO 4 3- / U
O 2 2+ , 2HPO 4 2- / u 4+ ) also exists.

【0012】本発明において、吸着剤として活性アルミ
ナ、シリカゲル、ゼオライト等の触媒担体のうち少なく
とも一種以上と、金属酸化物粉末とを混合した吸着剤に
よる吸着時の放射性有機溶媒の温度を高くすると、前記
劣化物の除去率は低下し、劣化物と核分裂生成物との錯
体や懸濁粒子の除去率は上昇する。このことから、活性
アルミナ、シリカゲル、ゼオライト等の触媒担体と劣化
物との吸着は物理的吸着と考えられ、上記金属酸化物粉
末と劣化物と、核分裂生成物との錯体や懸濁粒子との吸
着は化学的吸着と考えられる。
In the present invention, when the temperature of the radioactive organic solvent at the time of adsorption by the adsorbent, which is a mixture of at least one of catalyst carriers such as activated alumina, silica gel and zeolite as the adsorbent, and the metal oxide powder, is raised, The removal rate of the deteriorated substances decreases, and the removal rate of the suspended particles and the complex of the deteriorated products and the fission products increases. From this, it is considered that the adsorption of the catalyst carrier such as activated alumina, silica gel, zeolite and the deteriorated product is a physical adsorption, and the metal oxide powder and the deteriorated product, the complex of the fission product and the suspended particles. Adsorption is considered chemical adsorption.

【0013】本発明において、吸着時の放射性有機溶媒
の温度を 5〜60℃とするのは、吸着機構の異なるリン酸
塩や、このリン酸との錯体や懸濁物質を確実に除去する
ためである。即ち、温度が 5℃未満では物理吸着の効果
は低下しないが化学吸着速度が著しく低下し、リン酸と
核分裂生成物との錯体や懸濁物質の除去が不十分とな
る。また60℃を越えると、化学吸着速度は早くなるが、
物理吸着における脱離速度が大きくなり、結果としてリ
ン酸塩の吸着が不十分になるからである。
In the present invention, the temperature of the radioactive organic solvent at the time of adsorption is set to 5 to 60 ° C. in order to surely remove the phosphate having a different adsorption mechanism, the complex with phosphoric acid and the suspended substance. Is. That is, if the temperature is lower than 5 ° C, the effect of physical adsorption does not decrease, but the chemisorption rate remarkably decreases, and the complex of phosphoric acid and fission product and the suspended matter are insufficiently removed. If the temperature exceeds 60 ° C, the chemisorption rate will increase,
This is because the desorption rate in physical adsorption increases, resulting in insufficient adsorption of phosphate.

【0014】又、放射性有機溶媒の希釈剤として、一般
的に用いられているノルマル・ドデカン( n-Dodecane、
引火点73.9℃) の引火点が低いことから、あまり放射性
有機溶媒の温度を高くすることは、引火の危険性を増す
ため避けることが好ましい。
Further, n-Dodecane, which is generally used as a diluent for radioactive organic solvents,
Since the flash point (flash point 73.9 ° C) is low, it is preferable to avoid raising the temperature of the radioactive organic solvent too much because it increases the risk of ignition.

【0015】また、例えば、金属酸化物粉末として酸化
亜鉛粉末を用いた場合のリン酸塩の除去の吸着機構を考
えると、ZnO の微細化された粉体において粒子表面は結
合が切断されているため、高エネルギー状態にある。こ
のような活性エネルギーを下げる工程でリン酸塩吸着性
が現れるものと考えられる。これらの金属酸化物の吸着
剤を使用するに際して、余りに細かい粒径のものを使用
すると通液速度(SV)が低下し、リン酸塩除去に時間が
かかり効率的でなく、反対に余り粗大なものを使用する
と、上記のような吸着性能が低下し、リン酸塩の除去が
不十分になる。そのため金属酸化物の吸着剤の粒径は 5
〜100 ミクロンとすることが好ましい。
Considering, for example, the adsorption mechanism for phosphate removal when zinc oxide powder is used as the metal oxide powder, the bond on the particle surface of ZnO fine powder is broken. Therefore, it is in a high energy state. It is considered that phosphate adsorption is exhibited in the process of lowering the active energy. When using an adsorbent for these metal oxides, if the particle size is too small, the liquid passing rate (SV) will decrease, and it will take time to remove the phosphate, which is inefficient and, conversely, too coarse. If one is used, the adsorption performance as described above will be deteriorated and the phosphate will be insufficiently removed. Therefore, the particle size of the metal oxide adsorbent is 5
It is preferably -100 micron.

【0016】本発明において、吸着剤として金属酸化物
粉末と活性アルミナ、シリカゲル、ゼオライト等の触媒
担体の混合吸着剤を用いたので、化学的吸着および物理
的吸着の両方の吸着機構を具備するのみならず、使用材
料を安価に入手し易い効果がある。
In the present invention, since the mixed adsorbent of the metal oxide powder and the catalyst carrier such as activated alumina, silica gel, zeolite is used as the adsorbent, it has only the adsorption mechanism of both chemical adsorption and physical adsorption. In addition, there is an effect that the used material can be easily obtained at low cost.

【0017】[0017]

【実施例】先ず第1の実施例について説明する。粒径55
〜105 ミクロン、細孔容積0.6cm3/g、比表面積125m2/g
のシリカゲル担体80g と粒径 5〜100 ミクロンの各金属
酸化物粉末(住友金属鉱山株式会社製)2gとを混ぜた吸
着剤を層高15cmになるようにカラムに充填し、リン酸換
算で48mg/ リットルの割合で含む23℃の使用済み放射性
有機溶媒を通液速度SV=2で前記カラムに通液し、脱リン
酸放射性有機溶媒を得た。リン酸塩吸着後の吸着剤に溶
離液として硝酸を用いて溶離させ、この溶離液中のリン
酸濃度を化学分析法で定量し、吸着剤に吸着されたリン
酸塩の吸着率を得た結果を表2に示す。
EXAMPLE First, a first example will be described. Particle size 55
~ 105 micron, pore volume 0.6 cm 3 / g, specific surface area 125 m 2 / g
The adsorbent mixed with 80 g of silica gel carrier and 2 g of each metal oxide powder (Sumitomo Metal Mining Co., Ltd.) with a particle size of 5 to 100 microns was packed in a column so that the bed height would be 15 cm, and 48 mg in terms of phosphoric acid. The used radioactive organic solvent at a temperature of 23 ° C./liter was passed through the column at a liquid flow rate SV = 2 to obtain a dephosphorized radioactive organic solvent. Nitric acid was used as the eluent to elute the adsorbent after phosphate adsorption, and the concentration of phosphoric acid in this eluent was quantified by chemical analysis to obtain the adsorption rate of phosphate adsorbed on the adsorbent. The results are shown in Table 2.

【0018】次に第2の実施例につき説明する。粒径80
〜100 ミクロン、細孔容積0.3cm3/g、比表面積120m2/g
の活性アルミナ担体100gと粒径 5〜100 ミクロンの各金
属酸化物粉末(住友金属鉱山株式会社製)2gとを混ぜた
吸着剤を層高10cmになるようにカラムに充填し、リン酸
換算で48mg/ リットルの割合で含む23℃の使用済み放射
性有機溶媒を通液速度SV=0.5で前記カラムに通液し、脱
リン酸放射性有機溶媒を得た。リン酸塩吸着後の吸着剤
に溶離液として硝酸を用いて溶離させ、この溶離液中の
リン酸濃度を化学分析法で定量し、吸着剤に吸着された
リン酸塩の吸着率を得た結果を表2に示す。
Next, a second embodiment will be described. Particle size 80
~ 100 micron, pore volume 0.3 cm 3 / g, specific surface area 120 m 2 / g
Adsorbent mixed with 100 g of activated alumina carrier and 2 g of each metal oxide powder (Sumitomo Metal Mining Co., Ltd.) with a particle size of 5 to 100 microns was packed in a column so that the bed height would be 10 cm, and converted to phosphoric acid. The used radioactive organic solvent contained at a ratio of 48 mg / liter at 23 ° C. was passed through the column at a liquid flow rate SV = 0.5 to obtain a dephosphorized radioactive organic solvent. Nitric acid was used as the eluent to elute the adsorbent after phosphate adsorption, and the concentration of phosphoric acid in this eluent was quantified by chemical analysis to obtain the adsorption rate of phosphate adsorbed on the adsorbent. The results are shown in Table 2.

【0019】[0019]

【発明の効果】本発明の方法によれば、ウランの精製工
場や使用済み核燃料再処理工場から発生する放射性有機
溶媒中のリン酸塩を、放射性有機溶媒中より容易、かつ
簡単に高い効率で吸着除去できる。また、リン酸塩の除
去された放射性有機溶媒から、更にウラン等を抽出する
場合には、本発明の方法を用いて、繰り返して使用する
ことが可能である。このように、利用範囲が広く、工業
的にも有意義な放射性有機溶媒中のリン酸塩除去方法で
ある。
According to the method of the present invention, the phosphate in the radioactive organic solvent generated from the uranium refinery and the spent nuclear fuel reprocessing plant can be easily and easily produced with high efficiency as compared with the radioactive organic solvent. Can be removed by adsorption. Further, when uranium or the like is further extracted from the radioactive organic solvent from which the phosphate has been removed, it can be repeatedly used by using the method of the present invention. Thus, it is a method of removing phosphate in a radioactive organic solvent which has a wide range of applications and is industrially significant.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ウランの精製工場や使用済み核燃料再処
理抽出工程で使用した放射性有機溶媒を、活性アルミ
ナ、シリカゲル、ゼオライト等の触媒担体のうち少なく
とも一種以上と、金属酸化物粉末とを混合した吸着剤と
を、5 〜60℃、通液速度SVを0.5 〜4 で接触させること
により、前記有機溶媒に含まれるリン酸塩を除去するよ
うにした放射性有機溶媒中のリン酸塩除去方法。
1. A radioactive organic solvent used in a uranium refinery or a spent nuclear fuel reprocessing / extracting step is mixed with at least one or more catalyst carriers such as activated alumina, silica gel and zeolite, and a metal oxide powder. A method for removing a phosphate in a radioactive organic solvent, which comprises removing the phosphate contained in the organic solvent by bringing the adsorbent into contact with the adsorbent at a liquid flow rate SV of 0.5 to 4 at 5 to 60 ° C.
【請求項2】 前記金属酸化物粉末は、酸化亜鉛(ZnO)
、酸化カルシウム(CaO)、酸化ジルコニウム(ZrO2)、酸
化マグネシウム(MgO) およびそれらの混合物から選択さ
れた1つであることを特徴とする請求項1記載の吸着
剤。
2. The metal oxide powder is zinc oxide (ZnO)
The adsorbent according to claim 1, which is one selected from the group consisting of calcium oxide (CaO), zirconium oxide (ZrO 2 ), magnesium oxide (MgO) and mixtures thereof.
【請求項3】 前記活性アルミナ、シリカゲル、ゼオラ
イト等の触媒担体は、粒径50〜150 ミクロン、比表面積
100m2/g以上、細孔容積 0.3cm3/g 以上の物であること
を特徴とする請求項1記載の触媒担体。
3. The catalyst carrier such as activated alumina, silica gel or zeolite has a particle size of 50 to 150 microns and a specific surface area.
The catalyst carrier according to claim 1, which has a pore volume of 0.3 cm 3 / g or more and 100 m 2 / g or more.
【請求項4】 前記吸着剤の金属酸化物粉末は、上記有
機溶媒中のリン酸塩と反応し、リン酸塩の生成を行わし
め、その結果得られたリン酸塩を吸着剤に吸着せしめる
ことを特徴とする請求項1記載の吸着剤。
4. The metal oxide powder of the adsorbent reacts with a phosphate in the organic solvent to form a phosphate, and the resulting phosphate is adsorbed on the adsorbent. The adsorbent according to claim 1, wherein:
【請求項5】 前記放射性有機溶媒のアルキル基の炭素
数は 4〜8 であるトリアルキルリン酸を抽出剤として用
いることを特徴とする請求項1記載の放射性有機溶媒。
5. The radioactive organic solvent according to claim 1, wherein a trialkylphosphoric acid in which the alkyl group of the radioactive organic solvent has 4 to 8 carbon atoms is used as an extractant.
JP3197792A 1992-02-19 1992-02-19 Removing method of phosphate in radioactive organic solvent Pending JPH05232296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3197792A JPH05232296A (en) 1992-02-19 1992-02-19 Removing method of phosphate in radioactive organic solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197792A JPH05232296A (en) 1992-02-19 1992-02-19 Removing method of phosphate in radioactive organic solvent

Publications (1)

Publication Number Publication Date
JPH05232296A true JPH05232296A (en) 1993-09-07

Family

ID=12346010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197792A Pending JPH05232296A (en) 1992-02-19 1992-02-19 Removing method of phosphate in radioactive organic solvent

Country Status (1)

Country Link
JP (1) JPH05232296A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504940A (en) * 2000-07-29 2004-02-19 ユニバーシテイ・オブ・ニユーキヤツスル Improved method for separating oil and water
KR100884004B1 (en) * 2008-08-18 2009-02-17 테크밸리 주식회사 An apparatus for processing waste radioactive organic solvent
CN115073819A (en) * 2022-06-15 2022-09-20 兰州瑞朴科技有限公司 Aluminum phosphate salt flame retardant based on growth nucleus and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504940A (en) * 2000-07-29 2004-02-19 ユニバーシテイ・オブ・ニユーキヤツスル Improved method for separating oil and water
KR100884004B1 (en) * 2008-08-18 2009-02-17 테크밸리 주식회사 An apparatus for processing waste radioactive organic solvent
CN115073819A (en) * 2022-06-15 2022-09-20 兰州瑞朴科技有限公司 Aluminum phosphate salt flame retardant based on growth nucleus and preparation method and application thereof
CN115073819B (en) * 2022-06-15 2024-05-03 兰州瑞朴科技有限公司 Growth-nucleus-based aluminum phosphate flame retardant, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP0550221B1 (en) Process for decontamination of radioactive materials
JP2977744B2 (en) Separation method of trivalent actinides and rare earth elements
US6843921B2 (en) Method of separation and recovery of elements from radioactive liquid wastes
KR100387877B1 (en) Process for decontaiminating radioactive materials
EP0089185A3 (en) Dissolution of pu02 or np02 using electrolytically regenerated reagents
JPS60187897A (en) Method of treating nuclear fuel
JPH05232296A (en) Removing method of phosphate in radioactive organic solvent
US4741857A (en) Method of purifying neutral organophosphorus extractants
JPS6141994A (en) Method for recovering value uranium in extracting reprocessing process for spent nuclear fuel
US4394269A (en) Method for cleaning solution used in nuclear fuel reprocessing
RU2229178C2 (en) METHOD FOR RECOVERING SPENT NUCLEAR FUEL (ALTERNATIVES), Np(VI)-\lang1033\f1 TO\lang1049\f0 -Np(V) REDUCER, Pu(IV)-TO-Pu(III) REDUCER, AND JOINED Np(VI)-TO-Np(V) AND Pu(IV)-TO- (Pu(III) REDUCER
Mailen et al. Solvent cleanup and degradation: A survey and recent ORNL results
JP3113033B2 (en) Method for separating ruthenium and technetium in radioactive solution and reprocessing process for spent nuclear fuel using the same
US4469629A (en) Method for extracting fluoride ions from a nuclear fuel solution
JP3049320B1 (en) Plutonium separation and recovery method
JP3341235B2 (en) Reprocessing of spent fuel
Mailen et al. Solvent degradation and cleanup: a survey and recent ORNL studies
Tallent et al. Solvent cleanup using base-treated silica gel solid adsorbent
JPH03120499A (en) Treatment of high-level waste
Moore et al. Separation of protactinium from thorium in nitric acid solutions by solvent extraction with tributyl phosphate or by adsorption on pulverized unfired vycor glass or silica gel
JPS63188693A (en) Purification of tributyl phosphate
Mailen et al. Improved Purex solvent scrubbing methods
Akhmatov et al. Methods for Recovering Molybdenum from High-Level Raffinate of Extraction Reprocessing of NPP Spent Fuel
Mailen et al. Review of recent ORNL studies in solvent cleanup and diluent degradation. Consolidated Fuel-Reprocessing Program
Tallent et al. Method for cleaning solution used in nuclear-fuel reprocessing.[DOE patent application]