JPH0242181B2 - - Google Patents

Info

Publication number
JPH0242181B2
JPH0242181B2 JP3863583A JP3863583A JPH0242181B2 JP H0242181 B2 JPH0242181 B2 JP H0242181B2 JP 3863583 A JP3863583 A JP 3863583A JP 3863583 A JP3863583 A JP 3863583A JP H0242181 B2 JPH0242181 B2 JP H0242181B2
Authority
JP
Japan
Prior art keywords
temperature
measurement
temperature sensor
measured
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3863583A
Other languages
Japanese (ja)
Other versions
JPS59163527A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3863583A priority Critical patent/JPS59163527A/en
Publication of JPS59163527A publication Critical patent/JPS59163527A/en
Publication of JPH0242181B2 publication Critical patent/JPH0242181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 本発明は、熱じよう乱消去形の表面温度測定方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring surface temperature using thermodynamic randomization.

測定対象面に温度センサを接触させて測定する
接触式の表面温度計では、センサ接触点で起る熱
じよう乱が原因して測定誤差を生ずる。従来、こ
の熱じよう乱に影響されない表面温度の測定方法
として、微分値零位法(微分値零位法による表面
温度の計測:計測自動制御学会論文集第11巻第3
号、自動化された微分値零位法による表面温度計
測:計測自動制御学会論文集第13巻第1号)によ
る表面温度測定法が知られている。しかし、この
零位法による測定は、温度センサを測定面に接触
させた瞬間のセンサの温度変化を利用して、セン
サが測定面の温度と等しくなるようにセンサを加
熱する操作を行つているために、数回の接触試行
を必要とする、連続測定ができないなどの欠点が
ある。
In contact-type surface thermometers that measure temperature by bringing the temperature sensor into contact with the surface to be measured, measurement errors occur due to thermal disturbances that occur at the sensor contact point. Conventionally, as a method for measuring surface temperature that is not affected by thermal disturbances, the zero differential method (measurement of surface temperature using the zero differential method: Transactions of the Society of Instrument and Control Engineers, Vol. 11, No. 3)
Surface temperature measurement using an automated zero-differential method: Transactions of the Society of Instrument and Control Engineers, Vol. 13, No. 1) is known. However, measurement using this zero-position method uses the temperature change of the sensor at the moment the temperature sensor contacts the measurement surface to heat the sensor so that it becomes equal to the temperature of the measurement surface. Therefore, it has drawbacks such as requiring several contact trials and not being able to perform continuous measurements.

本発明は、上記の従来の零位法による測定方法
と比較して、偏位法を採用しているために、1回
または2回の接触試行で測定できる、連続測定が
可能なものを作ることができるなどの利点を有す
る。
Compared to the conventional measurement method using the zero position method described above, the present invention adopts the deflection method, so that measurement can be performed in one or two contact trials and continuous measurement is possible. It has the following advantages:

次に、本発明の測定方法についてさらに具体的
に説明する。
Next, the measuring method of the present invention will be explained in more detail.

第1図のように、表面温度Ts、熱伝導率Kの
物体の測定対象面に、先端に感温部を有する温度
センサを接触させて、その導線部分の一部を加熱
炉で一定の温度Tに加熱する。この状態では、温
度センサの測定対象接触部と加熱部との間の熱抵
抗をr、測定対象から温度センサに流れる熱流を
Q、温度センサの測定対象接触点の温度をJ、温
度センサを接触させたことによつて生じた測定対
象面の熱じよう乱による接触点の温度変化を△T
とし、熱伝導以外の現象を無視すれば、Ts、K、
T、r、Q、J、△Tの間に次の関係が成立す
る。
As shown in Figure 1, a temperature sensor with a temperature-sensing section at the tip is brought into contact with the surface to be measured of an object having a surface temperature T s and a thermal conductivity K, and a part of the conductive wire is heated at a certain temperature in a heating furnace. Heat to temperature T. In this state, the thermal resistance between the contact part of the temperature sensor to be measured and the heating part is r, the heat flow flowing from the measurement target to the temperature sensor is Q, the temperature of the contact point of the temperature sensor to be measured is J, and the temperature sensor is △T
If phenomena other than heat conduction are ignored, T s , K,
The following relationship holds between T, r, Q, J, and ΔT.

△T=α・Q/K (1) Q=J−T/r (2) J=Ts+△T (3) ただし、αは熱伝導方程式を解いて求まる定数
(1)、(2)、(3)式からQ、△Tを消去すると次式が得
られる。
△T=α・Q/K (1) Q=J−T/r (2) J=T s +△T (3) However, α is a constant found by solving the heat conduction equation
By eliminating Q and ΔT from equations (1), (2), and (3), the following equation is obtained.

J−Ts=α/r・K(J−T) (4) (4)式の関係を利用すれば、T=Tlの条件での温
度センサ出力JlとTsの関係 Jl−Ts=α/r・K(Jl−Tl) (5) と、T=Thの条件での温度センサ出力JhとTs
関係 Jh−Ts=α/r・K(Jh−Th) (6) とから、α(r・K)を消去して得られる次式 Ts=Jl・Th−Jh・Tl/(Jl−Tl)−(Jh−Th)(7
) によつて、熱じよう乱のない状態の測定対象面の
温度Tsを求めることができる。
J-T s = α/r・K (J-T) (4) Using the relationship in equation (4), the relationship between temperature sensor output J l and T s under the condition of T = T l is J l − T s = α/r・K(J l −T l ) (5) and the relationship between temperature sensor output J h and T s under the condition of T=T h J h −T s = α/r・K( J h −T h ) (6), the following equation obtained by eliminating α(r・K) is T s = J l・T h −J h・T l /(J l −T l )−( J h −T h )(7
), the temperature T s of the surface to be measured without thermal disturbance can be determined.

熱じよう乱消去形の表面温度測定方法は、この
原理に基づくもので、1組の温度センサで加熱温
度Tを変えて測定するか、加熱温度が異なる2組
の温度センサで同時測定する方法で得られる測定
値Jl、Tl、Jh、Thから、熱じよう乱のない状態の
測定対象面の温度Tsを求める。
The surface temperature measurement method of thermal distortion elimination type is based on this principle, and is measured by changing the heating temperature T using one set of temperature sensors, or by measuring simultaneously using two sets of temperature sensors with different heating temperatures. From the measured values J l , T l , J h , and T h obtained in , the temperature T s of the surface to be measured without thermal disturbance is determined.

なお、この測定方法では、熱じよう乱のない状
態の表面温度を精度よく求めるには、|Th−Tl
が数十K以下になる条件で、TsをTlからThの範
囲の温度に選んで測定することが望ましい。
Note that with this measurement method, to accurately determine the surface temperature without thermal disturbances, |T h −T l |
It is desirable to measure T s at a temperature in the range of T l to T h under conditions where the temperature is several tens of K or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定原理図である。 1……測定対象面、2……温度センサ感温部、
3……温度センサ導線部、4……加熱炉。
FIG. 1 is a diagram showing the measurement principle of the present invention. 1...Measurement target surface, 2...Temperature sensor temperature sensing part,
3...Temperature sensor conductor section, 4...Heating furnace.

Claims (1)

【特許請求の範囲】[Claims] 1 測定対象面に温度センサを接触させた際に生
ずる熱じよう乱による測定面の温度変化を、温度
Tlの熱源を有する温度センサの測定値Jlと温度Th
の熱源有する温度センサの測定値Jh、または、温
度Tlの熱源を有する温度センサの測定値Jlと温度
Tlの熱源を温度Thとしたときの測定値Jhを用い
て、測定値Jl、Jhと温度Tl、Thとによつて消去
し、熱じよう乱のない状態の表面温度が求められ
るようにしたことを特徴とする熱じよう乱消去形
の表面温度測定方法。
1 The temperature change on the measurement surface due to the thermal disturbance that occurs when the temperature sensor is brought into contact with the measurement surface is
Measured value J l and temperature T h of a temperature sensor with a heat source of T l
The measured value J h of a temperature sensor with a heat source of temperature T l, or the measured value J l of a temperature sensor with a heat source of temperature T l and temperature
Using the measured value J h when the heat source of T l is at the temperature T h , erase by the measured values J l , J h and the temperatures T l , T h to obtain a surface with no thermal disturbance. A method for measuring a surface temperature using a heat-induced randomization method, characterized in that the temperature can be determined.
JP3863583A 1983-03-09 1983-03-09 Surface temperature measuring method of thermal agitation eliminating type Granted JPS59163527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3863583A JPS59163527A (en) 1983-03-09 1983-03-09 Surface temperature measuring method of thermal agitation eliminating type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3863583A JPS59163527A (en) 1983-03-09 1983-03-09 Surface temperature measuring method of thermal agitation eliminating type

Publications (2)

Publication Number Publication Date
JPS59163527A JPS59163527A (en) 1984-09-14
JPH0242181B2 true JPH0242181B2 (en) 1990-09-20

Family

ID=12530696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3863583A Granted JPS59163527A (en) 1983-03-09 1983-03-09 Surface temperature measuring method of thermal agitation eliminating type

Country Status (1)

Country Link
JP (1) JPS59163527A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2580806B1 (en) * 1985-04-19 1987-06-26 Gouault Jean THERMOMETRIC PROBE FOR MEASURING SURFACE TEMPERATURES, PARTICULARLY SKIN
DE59910916D1 (en) * 1999-01-22 2004-11-25 Jury Anatolievich Popov METHOD FOR ABSOLUTELY DETERMINING THE HEAT CONDUCTIVITY OF SOLIDS, AND DEVICE FOR THEIR USE

Also Published As

Publication number Publication date
JPS59163527A (en) 1984-09-14

Similar Documents

Publication Publication Date Title
US4338563A (en) Corrosion measurement with secondary temperature compensation
US3321974A (en) Surface temperature measuring device
US4877329A (en) Method and apparatus for measuring the dew point of a gas
US2759354A (en) Isothermal systems for gas analysis
CA2011659A1 (en) Measuring sensor for fluid state determination and method for measurement using such sensor
US3731187A (en) Temperature compensated fouling measuring method and apparatus
US3354720A (en) Temperature sensing probe
US2924771A (en) Method and apparatus for identifying metals
JPH0242181B2 (en)
JP3953170B2 (en) Specific heat measurement method and differential scanning calorimeter
US3313140A (en) Automatic calibration of direct current operated measuring instruments
US3279256A (en) Thermal measuring apparatus
JPS58105047A (en) Monolithic type temperature-humidity sensor
US1238468A (en) Method for determining heat ratios.
US3514998A (en) D.c. circuit for operating asymmetric thermopile
SU901851A1 (en) Method of determination of thermal converter thermal lag index
JPS62148845A (en) Device for simultaneously measuring thermal and temperature conductivity of flat deformable material
JPS5923369B2 (en) Zero-level heat flow meter
JPS6129447B2 (en)
US3457785A (en) Temperature measurements
JPS59184829A (en) Thermometer
SU832434A1 (en) Device for thermoelectric testing of metals and alloys
JPS62235554A (en) Measurement of moisture in castable refractory
RU2026537C1 (en) Pressure gauge
SU440570A1 (en) The method of calibration of surface thermopile