JPH0242103A - Pressure reducing turbine and steam compressor - Google Patents

Pressure reducing turbine and steam compressor

Info

Publication number
JPH0242103A
JPH0242103A JP19207788A JP19207788A JPH0242103A JP H0242103 A JPH0242103 A JP H0242103A JP 19207788 A JP19207788 A JP 19207788A JP 19207788 A JP19207788 A JP 19207788A JP H0242103 A JPH0242103 A JP H0242103A
Authority
JP
Japan
Prior art keywords
steam
pressure reducing
turbine
reducing turbine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19207788A
Other languages
Japanese (ja)
Inventor
Takuji Fujikawa
卓爾 藤川
Masaatsu Fukuda
福田 征孜
Hidehiko Idaka
英彦 伊高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19207788A priority Critical patent/JPH0242103A/en
Publication of JPH0242103A publication Critical patent/JPH0242103A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the number of shaft sheet portions to aim at reduction of loss due to steam leak by arranging the pressure reducing turbine and the steam compressor of a thermal power generation plant as a bisymmetrical double-flow type and constructing it in a way that they are housed in a casing formed integral therewith. CONSTITUTION:A steam inlet 1 is provided at the central portion of a pressure reducing valve, steam flowing in the steam inlet 1 bisymmetrically flows both sides and then it flows out a pair of, left and right, steam outlets 2, 2, in a such way, the pressure reducing turbine is constructed as a double-flow type. A steam inlet 3 and a steam outlet 4 are provided at both end sides of the pressure reducing turbine via dummy rings 9 and also steam compressors providing stator blades and rotor blades are bisymmetrically arranged and the pressure reducing turbine and the casing 11 of the pressure reducing turbine and the steam compressor are integrally formed. Grand rings 10 are provided outside the steam compressor. The casings 11 are positioned at bearing stands by keys 14. Further, a rotor 15 is held by a bearing 13 as one body with the pressure reducing turbine portion and a steam compressor portion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、変圧運転する超臨界圧火力発電プラントの効
率を、負荷の広い範囲にわたって高く維持させるために
設けられる。減圧タービンおよび蒸気圧縮機の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is provided to maintain high efficiency over a wide range of loads in a supercritical pressure thermal power plant operated at variable pressure. Concerning improvements in pressure reducing turbines and steam compressors.

〔従来の技術〕[Conventional technology]

火力発電プラントではプラントの効率を高めるために蒸
気条件の向上がなさil、現在では主蒸気圧力246 
kg/cyt21! 、  主蒸気温度538℃、再熱
蒸気温度538℃ないし566℃の超臨界圧プラントが
数多く建設されている。こhらのプラントを定格負荷で
連続運転する場合は上記の蒸気条件で何等問題ないが、
起動停止や低負荷への負荷変動の頻度が多くなると、上
記の蒸気条件のままではタービンの調速段出口部の温健
変化が大きくなり、ロータの熱応力の問題が出て来る。
In thermal power plants, there is no improvement in steam conditions to increase plant efficiency, and currently the main steam pressure is 246
kg/cyt21! Many supercritical pressure plants with main steam temperature of 538°C and reheat steam temperature of 538°C to 566°C have been constructed. When these plants are operated continuously at rated load, there is no problem with the above steam conditions, but
If the frequency of start-up/shutdown and load changes to low loads increases, the temperature change at the outlet of the governor stage of the turbine will increase if the above steam conditions remain unchanged, and the problem of thermal stress in the rotor will arise.

負荷変化によるタービン調速段出口部の温度変化を軽減
するためには、負荷に応じて主蒸気圧力を変化させる方
法が適している。この方法を変圧運転法と呼ぶ。
In order to reduce temperature changes at the outlet of the turbine governor stage due to load changes, a method of changing the main steam pressure according to the load is suitable. This method is called variable voltage operation method.

変圧運転法をボイラを含めた全プラントに適用すると、
低負荷時の給水圧力低下による給水ポンプ動力低減の利
得が得られるので、蒸気加減弁の絞り損失低減、その他
の利得とあわせて、タービン側には熱応力低減の他に効
率向上の利得も生じる。ところがボイラ側にとっては、
火炉の圧力を変化させると火炉の温度が変化し、ボイラ
の熱応力の問題が生ずる。
When the variable pressure operation method is applied to the entire plant including the boiler,
The gain of reducing feed water pump power due to the drop in feed water pressure at low loads can be obtained, so in addition to reducing the throttling loss of the steam control valve and other gains, the turbine side also gains gains in efficiency improvement in addition to thermal stress reduction. . However, for the boiler side,
Changing the furnace pressure changes the furnace temperature, creating boiler thermal stress problems.

そこで1部分負荷時にボイラ火炉の圧力を保持したまま
主蒸気の圧力を低下させるため、−次過熱器と二次過熱
器との間に減圧弁(BT弁)を配設することが行なわれ
ていた。
Therefore, in order to reduce the main steam pressure while maintaining the boiler furnace pressure during partial load, a pressure reducing valve (BT valve) is installed between the secondary superheater and the secondary superheater. Ta.

この減圧弁による圧力の損失はそのままプラント効率の
低下となるので、減圧弁の代りに減圧タービンを配設し
、こねに蒸気を流して発1!機を駆動し動力を回収した
り、第3図に示されるように、この減圧タービン(2)
で別体の蒸気圧縮機061を駆動して低温再熱蒸気を圧
縮したりして、プラント効率を改善することが提案され
ていた。
The loss of pressure caused by this pressure reducing valve will directly reduce the efficiency of the plant, so a pressure reducing turbine is installed in place of the pressure reducing valve, and steam is passed through the kneader to generate 1! This pressure reducing turbine (2) is used to drive the machine and recover power, as shown in Figure 3.
It has been proposed to drive a separate vapor compressor 061 to compress low-temperature reheated steam to improve plant efficiency.

減圧弁の代りに減圧タービンを配設して蒸気圧縮機を駆
動し、低温再熱蒸気を圧縮すると1回転数一定の発電機
を駆動する場合と比較して、減圧タービンの回転数が固
定されないので、負荷の広い範囲にわたって減圧タービ
ンを高効率に保つことができる。また重量が比較的群い
減圧タービンと蒸気圧縮機のセット?過熱器や再熱器の
あるボイラ上部に容易に設置できるから、配管が簡単に
なって、ボイラ鉄骨を補強して重量の大きい発電機をボ
イラ高所に設置したり、大きな蒸気配管を引き廻したり
しなくてすみ、ボイラの購造上有利工 であり、さらに配管のメカ損失も小さくなる等の利点が
ある。
When a pressure-reducing turbine is installed instead of a pressure-reducing valve to drive a steam compressor and compress low-temperature reheated steam, the rotation speed of the pressure-reducing turbine is fixed compared to driving a generator with a constant rotation speed. This allows the reduced pressure turbine to maintain high efficiency over a wide range of loads. Also, is it a set of a pressure reducing turbine and a steam compressor that are relatively heavy? Since it can be easily installed above the boiler where the superheater or reheater is located, piping is simplified, making it possible to reinforce the boiler steel frame and install a heavy generator high above the boiler, or to route large steam piping. This method is advantageous in terms of boiler purchasing, as it eliminates the need for pipework, and also reduces mechanical losses in piping.

なお第3図において、 (211はエコノマイザ、のけ
火炉、のけ−次過熱器、へは減圧タービン蒸気加減弁、
@は補助過熱器、(281は二次過熱器、(至)は高圧
タービン、(至)は主タービン蒸気加減弁、C31)は
高圧パイ、6ス弁、O3け低温再熱蒸気管逆止弁、c!
3け再熱器、04)はインタセプト弁、09は中圧ター
ビン。
In Fig. 3, (211 is an economizer, a draft furnace, and a draft superheater; 211 is a pressure-reducing turbine steam control valve;
@ is the auxiliary superheater, (281 is the secondary superheater, (to) is the high pressure turbine, (to) is the main turbine steam control valve, C31) is the high pressure pipe, 6 valve, O3 low temperature reheat steam pipe check Ben, c!
3-piece reheater, 04) is an intercept valve, and 09 is an intermediate pressure turbine.

(至)は低圧・Zイパス弁、c3ηは復水器、(至)は
低圧タービン、c(1は発電機、(41は復水ポンプ、
0Dは低圧ヒータ、(42)は脱気器、 (4′3は給
水ポンプ、 (441は高圧ヒータ、O5) 、 (4
(:J 、 (4η、(4□□□は遮断弁、(4■は減
圧弁、ら■はバイパス弁である。
(to) is the low pressure/Z pass valve, c3η is the condenser, (to) is the low pressure turbine, c (1 is the generator, (41 is the condensate pump,
0D is a low pressure heater, (42) is a deaerator, (4'3 is a water pump, (441 is a high pressure heater, O5), (4
(:J, (4η, (4□□□ is a cutoff valve, (4■ is a pressure reducing valve, and ra■ is a bypass valve.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

減圧弁の代りに減圧タービンを配設して蒸気圧縮機を駆
動し、低温再熱蒸気を圧縮する場合、減圧タービンと蒸
気圧縮機を別体とすると、各々のグランド環(ロータと
車室の間の軸シール部分)における蒸気の漏洩量が多く
なり、損失が増える。
When a pressure-reducing turbine is installed instead of a pressure-reducing valve to drive a steam compressor to compress low-temperature reheated steam, if the pressure-reducing turbine and steam compressor are separate, each gland ring (rotor and casing) The amount of steam leaking at the shaft seal between the two ends increases, resulting in increased loss.

また減圧−一ピンと蒸気圧縮機を別体とすると。Also, if the decompression pin and vapor compressor are separated.

広い空間分必要とし機器の配置上不利となる。It requires a large space, which is disadvantageous in terms of equipment placement.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記従来の課題を解決するために、変圧運転
火力発電プラントの一次過熱器と二次過熱器と連結する
管路の途中に弁と複流型の減圧タービンとを並列に配設
するとともに、同減圧タービンの両端に七ねそれ蒸気圧
m機を対称に連結し。
In order to solve the above-mentioned conventional problems, the present invention arranges a valve and a double-flow pressure reducing turbine in parallel in the middle of a pipe connecting the primary superheater and the secondary superheater of a variable voltage operating thermal power plant. At the same time, seven steam pressure machines are symmetrically connected to both ends of the same pressure reducing turbine.

かつ上記減圧タービンの単室と上記蒸気圧縮機の工室と
を一体に形成したことを特徴とする減圧タービンおよび
蒸気圧縮機を提案するものである。
The present invention also proposes a reduced pressure turbine and a steam compressor, characterized in that the single chamber of the reduced pressure turbine and the working chamber of the steam compressor are integrally formed.

〔作 用〕[For production]

本発明は上記のように構成されでいるので、グラン1−
゛の漏洩蒸気量が低減し、効率が改善される。
Since the present invention is configured as described above, Grand 1-
The amount of leaked steam is reduced and efficiency is improved.

またスラストが完全にバランスし、信頼性が高まる。さ
らに全体をコンパクトにすることができ。
The thrust is also perfectly balanced, increasing reliability. Furthermore, the whole can be made more compact.

配置上有利となる。This is advantageous in terms of placement.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す縦断面図である。この
図において、(1)は減圧タービンの蒸気入口、(2+
Vi減圧タービンの蒸気出口、(3)は蒸気圧縮機の蒸
気入口、(4)は蒸気圧縮機の蒸気出口、X51はME
Eタービンのノズル、(6)は減圧タービンの動舅。
FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention. In this figure, (1) is the steam inlet of the pressure reducing turbine, (2+
Vi steam outlet of the pressure reducing turbine, (3) is the steam inlet of the steam compressor, (4) is the steam outlet of the steam compressor, X51 is the ME
The nozzle of the E-turbine, (6) is the moving leg of the pressure-reducing turbine.

(71Vi蒸気圧縮機の静翼、(8)は蒸気圧縮機の動
異である。
(Stator blade of 71Vi vapor compressor, (8) is the movement of the vapor compressor.

このように本実施例の減圧タービンは、中央に俯大した
蒸気が左右対称に両側へ俯り、る複流型である。そして
との複流型の減圧タービンの外側に。
As described above, the pressure reducing turbine of this embodiment is of a double-flow type in which the steam that rises in the center is symmetrically downward to both sides. and on the outside of the double-flow type pressure reducing turbine.

ダミー環(9)を介して左右対称に、そねぞh蒸気圧縮
機の静翼(7)と動翼(8)が配設されている。減圧タ
ービンと蒸気圧縮機の車室t11)は一体に形成さねて
いる。
The stator blades (7) and rotor blades (8) of the steam compressor are arranged symmetrically with a dummy ring (9) in between. The pressure reducing turbine and the steam compressor casing t11) are integrally formed.

蒸気圧縮機の外側にはグランド環(1(1が配設されと
が一体に形成され、軸受台α2の中に設けらねた軸受(
13)によって支持される。
A gland ring (1) is disposed on the outside of the vapor compressor, and a bearing (1) is formed integrally with the bearing stand (α2).
13).

単室αBの中央に設けられた減圧タービンの蒸気入口H
)l−1、前記第3図で例示された発電プラントの減圧
タービン蒸気加減弁(ハ)の出口に、蒸気出口(2)は
遮断弁0eの入口に、それぞれ連通される。また蒸気圧
縮機の蒸気入口(31は遮断弁(47)の出口に。
Steam inlet H of the pressure reducing turbine provided in the center of the single chamber αB
) l-1, the steam outlet (2) is communicated with the outlet of the pressure reducing turbine steam control valve (c) of the power plant illustrated in FIG. 3, and the steam outlet (2) is communicated with the inlet of the cutoff valve Oe. Also, the steam inlet of the vapor compressor (31 is the outlet of the shutoff valve (47)).

蒸気出口(4)は遮断弁(侶の入口にそhぞれ連通され
る。
The steam outlets (4) communicate with the inlets of the shutoff valves.

そうすると部分負荷時には、ボイラの一次過熱器のを出
た蒸気は減圧タービン(2沿の主蒸気止弁(4つ。
Then, during partial load, the steam exiting the boiler's primary superheater is transferred to the pressure reducing turbine (2 main steam stop valves (4)).

蒸気加減弁器を通って減圧タービン蒸気入口(1)に導
ひかれる。この蒸気は複流の減圧タービンノズル(5)
、動翼(6)を通ってロータ(1りを駆動して蒸気出口
(2)から排出され、遮断弁G161を通り補助過熱器
(5)を経て二次過熱器(至)へ流れる。一方、高圧タ
ービン器を出た低温再熱蒸気は遮断弁(4ηを通って蒸
気圧縮機蒸気入口(3)に導びかれる。この蒸気は蒸気
圧縮機静g (71、動翼(8)を通って圧縮され、蒸
気出口(4)から排出され、遮断弁(48)を通って再
熱器G3へ流れる。
The steam is led through a steam regulator to the pressure reducing turbine steam inlet (1). This steam is transferred to a double-flow reduced pressure turbine nozzle (5)
, passes through the rotor blades (6), drives the rotor (1), is discharged from the steam outlet (2), passes through the shutoff valve G161, passes through the auxiliary superheater (5), and flows to the secondary superheater (to). , the low-temperature reheated steam leaving the high-pressure turbine is led to the steam compressor steam inlet (3) through the isolation valve (4η). The steam is compressed and discharged through the steam outlet (4) and flows through the isolation valve (48) to the reheater G3.

このようにして、ボイラ火炉のの圧力を保持したまま、
主蒸気の圧力を減圧タービンQ(イ)で低下させて高圧
タービン翰の熱応力を低減し、その低下圧力分を蒸気圧
縮機(至)で回収する。
In this way, while maintaining the pressure in the boiler furnace,
The pressure of the main steam is reduced by the pressure reducing turbine Q (a) to reduce the thermal stress of the high pressure turbine blade, and the reduced pressure is recovered by the steam compressor (to).

本実施例においては、減圧タービンと蒸気圧縮機の車室
が一体に形成さね、また左右対称の複流型となっている
ので、グラフトの漏洩量が大幅に低減する。これを図面
により説明する。第2図(a)は従来の単流で二車室の
場合、第2図(blは本実施例の検流で一車室の場合に
ついて、それぞれ機器配置を概念的に示しだ図である。
In this embodiment, the casings of the pressure reducing turbine and the steam compressor are integrally formed and are of a symmetrical double-flow type, so that the amount of leakage from the graft is significantly reduced. This will be explained using drawings. Figure 2 (a) is a diagram conceptually showing the equipment arrangement for the conventional single-flow, two-chamber case, and Figure 2 (bl is the present embodiment's galvanometer, single-chamber case). .

図中Tけ減圧タービン、 Compは蒸気圧縮機を示す
。またA 、 B。
In the figure, T indicates a pressure reducing turbine, and Comp indicates a steam compressor. Also A and B.

C,Dけそれぞれ減圧タービン入口、同じく出口。C and D are respectively the inlet and outlet of the decompression turbine.

蒸気圧縮機出口、同じく入口のグランPをそれぞh示す
Gran P at the outlet and inlet of the vapor compressor are shown by h, respectively.

今、従来の場合(第2図(a))について、A、B。Now, for the conventional case (Fig. 2(a)), A and B.

C,D各部の圧力と漏洩量を例示すると。An example of the pressure and leakage amount at each part of C and D.

のように、漏洩量の合計は加〜38t/hとなり、この
漏洩量による損失は約)000〜2,000 kWと試
算される。−万1本実施例の場合(第2図(b))には
、複流型の減圧タービンが用いられるのでA部の漏洩は
起こらない。また0部では、B部の圧力の方が高くBか
らCへ漏洩するが、0部からの漏洩は無くなる。したが
って漏洩量は9〜18 t/hとなり、この漏洩量によ
る損失は約500〜LOOOkWに半減する。
The total amount of leakage is approximately 38 t/h, and the loss due to this amount of leakage is estimated to be approximately 1,000 to 2,000 kW. - In the case of this embodiment (FIG. 2(b)), since a double flow type pressure reducing turbine is used, leakage in section A will not occur. Further, at part 0, the pressure in part B is higher and leaks from B to C, but there is no leakage from part 0. Therefore, the leakage amount is 9 to 18 t/h, and the loss due to this leakage amount is halved to about 500 to LOOOkW.

次に減圧タービンと蒸気圧縮機に作用するスラストにつ
いて述べる。本実施例では減圧タービンは複流型なので
、減圧タービンに作用するスラストは、左右対称のター
ビン部分同士で相殺される。
Next, we will discuss the thrust that acts on the pressure reducing turbine and steam compressor. In this embodiment, the pressure reducing turbine is a double flow type, so the thrust acting on the pressure reducing turbine is canceled out between the symmetrical turbine parts.

また、蒸気圧縮機も左右対称に配置されているので、そ
れぞす1に作用するスラストは互いに相殺される。した
がってスラストは完全にバランスする。
Furthermore, since the vapor compressors are also arranged symmetrically, the thrusts acting on each one cancel each other out. The thrust is therefore perfectly balanced.

〔発明の効果〕〔Effect of the invention〕

本発明においては、減圧タービンと蒸気圧縮機を左右対
称の複流型に配置し、これを一体に形成された車苗内に
収めることによって、軸シール部の数を低減することが
できるため、蒸気の漏洩による損失が低減される。また
、複流型配置と(−たことにより、スラストが完全にバ
ランスするから。
In the present invention, by arranging the decompression turbine and the steam compressor in a symmetrical double-flow type and housing them in an integrally formed chassis, the number of shaft seals can be reduced. Loss due to leakage is reduced. Also, due to the double flow type arrangement (-), the thrust is perfectly balanced.

軸受を簡略化することができる。さらに、車室を一体化
したことにより、配置上広い面積を必要とせず有利であ
る。
The bearing can be simplified. Furthermore, since the compartment is integrated, it does not require a large area for arrangement, which is advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、第2図(a
)fblけ本発明の詳細な説明するための図、第3図は
本発明が適用される火力発電プラントの一例を示す系統
図である。 り・・・減圧タービンの蒸気人口; 2)・・・減圧タービンの蒸気出口; 3)・・・蒸気圧縮機の蒸気人口; 4)・・・蒸気圧縮機の蒸気出口; 5)・・・減圧タービンのノズル; 6)・・・減圧タービンの動翼; (7)・・・蒸気圧縮機の静罫; (8)・・・蒸気圧縮機の動翼; (9)・・・ダミー環;0α・・・グランド環;(II
)・・・車室;      (13・・・軸受台;(l
り・・・軸受;     I・・・キー;霞・・・ロー
タ;引)・・・エコノマイザ;(2z・・・火炉:C3
1・・・−次週p!8器:e41・・・減圧タービン:
  cp51・・・減圧タービン蒸気加減弁;C61・
・・蒸気圧縮機;  罰・・・補助過熱器;(281・
・・二次過熱器;  翰・・・高圧タービン;■・・・
主タービン蒸気加減弁: C31)・・・高圧バイパス弁; (132・・・低温再熱蒸気管逆上弁:G′!I・・・
再熱器:     C34+・・・インタセプト弁;(
至)・・・中圧タービン;S6)・・・低圧バイパス弁
;C171・・・復水器;    ■・・・低圧タービ
ン;G9・・・発電欅;(11・・・復水ポンプ;(4
1)・・・低圧ヒータ;(4z・・・脱気器;(4,1
・・・給水ポンプ;   (,141・・・高圧ヒータ
;(ハ)、 (46) 、 <47) 、 (431・
・・遮断弁;(49・・・減圧弁;    ■・・・バ
イノ々ス弁代 埋入 弁理士  坂 間   暁 外2名 第2図 (b)
FIG. 1 is a vertical sectional view showing one embodiment of the present invention, and FIG.
FIG. 3 is a system diagram showing an example of a thermal power plant to which the present invention is applied. ri...steam population of the pressure reducing turbine; 2)...steam outlet of the pressure reducing turbine; 3)...steam population of the steam compressor; 4)...steam outlet of the steam compressor; 5)... Nozzle of pressure-reducing turbine; 6)... Moving blade of pressure-reducing turbine; (7)... Static line of steam compressor; (8)... Moving blade of steam compressor; (9)... Dummy ring ;0α...Grand ring; (II
)...Car compartment; (13...Bearing stand; (l
R...Bearing; I...Key; Kasumi...Rotor; Pull)...Economizer; (2z...Furnace: C3
1...-next week p! 8 units: e41...Reducing turbine:
cp51...Reducing turbine steam control valve; C61.
...Vapor compressor; Punishment...Auxiliary superheater; (281.
...Secondary superheater; Kan...High pressure turbine; ■...
Main turbine steam control valve: C31)...High pressure bypass valve; (132...Low temperature reheat steam pipe reverse valve: G'!I...
Reheater: C34+...Intercept valve; (
To)...Intermediate pressure turbine; S6)...Low pressure bypass valve; C171...Condenser; ■...Low pressure turbine; G9...Power generation key; (11...Condensate pump; ( 4
1)...Low pressure heater; (4z...Deaerator; (4,1
...Water pump; (,141...High pressure heater; (c), (46), <47), (431.
...Shutoff valve; (49...Reducing valve; ■...Binosu valve fee embedded Patent attorney Sakama Akigai 2 people Figure 2 (b)

Claims (1)

【特許請求の範囲】[Claims] 変圧運転火力発電プラントの一次過熱器と二次過熱器と
連結する管路の途中に弁と複流型の減圧タービンとを並
列に配設するとともに、同減圧タービンの両端にそれぞ
れ蒸気圧縮機を対称に連結し、かつ上記減圧タービンの
車室と上記蒸気圧縮機の車室とを一体に形成したことを
特徴とする減圧タービンおよび蒸気圧縮機。
A valve and a double-flow pressure-reducing turbine are installed in parallel in the middle of the pipeline connecting the primary superheater and secondary superheater of a variable-pressure operating thermal power plant, and a steam compressor is installed at each end of the pressure-reducing turbine. A reduced pressure turbine and a steam compressor, characterized in that the reduced pressure turbine and the vapor compressor have a casing integrally formed with the casing of the reduced pressure turbine and the vapor compressor.
JP19207788A 1988-08-02 1988-08-02 Pressure reducing turbine and steam compressor Pending JPH0242103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19207788A JPH0242103A (en) 1988-08-02 1988-08-02 Pressure reducing turbine and steam compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19207788A JPH0242103A (en) 1988-08-02 1988-08-02 Pressure reducing turbine and steam compressor

Publications (1)

Publication Number Publication Date
JPH0242103A true JPH0242103A (en) 1990-02-13

Family

ID=16285256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19207788A Pending JPH0242103A (en) 1988-08-02 1988-08-02 Pressure reducing turbine and steam compressor

Country Status (1)

Country Link
JP (1) JPH0242103A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087126A1 (en) * 2009-01-30 2010-08-05 株式会社日立製作所 Power plant
CN107131132A (en) * 2017-04-27 2017-09-05 西安交通大学 A kind of supercritical carbon dioxide axial flow compressor is with axle stream to turning turbine cross-compound arrangement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087126A1 (en) * 2009-01-30 2010-08-05 株式会社日立製作所 Power plant
JP2010174755A (en) * 2009-01-30 2010-08-12 Hitachi Ltd Power plant
US8695347B2 (en) 2009-01-30 2014-04-15 Hitachi, Ltd. Power plant
CN107131132A (en) * 2017-04-27 2017-09-05 西安交通大学 A kind of supercritical carbon dioxide axial flow compressor is with axle stream to turning turbine cross-compound arrangement

Similar Documents

Publication Publication Date Title
US4961310A (en) Single shaft combined cycle turbine
TW384351B (en) Combined cycle power generation plant and operating method thereof
US5809783A (en) Method and apparatus of conversion of a reheat steam turbine power plant to a non-reheat combined cycle power plant
US5649416A (en) Combined cycle power plant
US20080245071A1 (en) Thermal power plant
Church Steam turbines
JPH06264763A (en) Combined plant system
JP5517785B2 (en) Steam turbine and method for adjusting thrust of steam turbine
JPS60261905A (en) Gland seal controller of steam turbine
JPH0242103A (en) Pressure reducing turbine and steam compressor
US4628693A (en) Casing for district heating turbine
EP1666699B1 (en) Combined cycle power plant with gas and steam turbo groups
US3486686A (en) Pressure exchangers
JPH02196101A (en) Thrust reducing device for steam turbine
US968839A (en) Elastic-fluid turbine.
US1476801A (en) Turbine
JPS6131283B2 (en)
US2322598A (en) Elastic fluid turbine arrangement
US845980A (en) Steam-turbine.
JPS63167001A (en) Reaction turbine
JPH04171202A (en) Steam turbine power generating plant
JPS5936643Y2 (en) steam turbine
JPH08200010A (en) Composite power plant and method for operating the same
JPH0553922B2 (en)
SU1160060A1 (en) Steam turbine double-flow cylinder