JPH0242094B2 - - Google Patents

Info

Publication number
JPH0242094B2
JPH0242094B2 JP15211182A JP15211182A JPH0242094B2 JP H0242094 B2 JPH0242094 B2 JP H0242094B2 JP 15211182 A JP15211182 A JP 15211182A JP 15211182 A JP15211182 A JP 15211182A JP H0242094 B2 JPH0242094 B2 JP H0242094B2
Authority
JP
Japan
Prior art keywords
ring
weight
polymer
parts
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15211182A
Other languages
Japanese (ja)
Other versions
JPS5941326A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15211182A priority Critical patent/JPS5941326A/en
Publication of JPS5941326A publication Critical patent/JPS5941326A/en
Publication of JPH0242094B2 publication Critical patent/JPH0242094B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔〕 発明の背景 技術分野 本発明は重合体主鎖中に五員環と二重結合を持
つた剛性や剪断強度等の機械的特性に優れしかも
耐熱レベルの高い重合体に関する。 現在、石油化学工業においては、ナフサの分解
物のうち炭素数5のC5留分はほとんど利用され
ておらず、わずかにイソプレンが合成ゴム原料と
して工業的に利用されているにすぎなく、その大
半は燃料として消費されている。 先行技術 これらC5留分の中で最も含有量が多いのはシ
クロペンタジエンであり、このシクロペンタジエ
ンは反応性が高いためシクロペンテンあるいは、
ノルボルネン誘導体などの新規な高付加価値製品
としての利用展開が期待できるものである。 なかでもノルボルネン誘導体をモノマーとして
メタセシス触媒により開環重合させた重合体は、
新規なエンジニアリングプラスチツクとして興味
深い。 特にシクロペンタジエンとアクリル酸をデイー
ルス・アルダー反応させた5―ノルボルネン―2
―カルボン酸開環重合体は耐熱性の高いエンジニ
アリングプラスチツクとなる可能性を有するが、
強い極性のために開環重合しない。 そこで特開昭56−65018は、ノルボルネン誘導
体をエステル化合物としておき、これを開環重合
させた後加水分解し目的とする5―ノルボルネン
―2―カルボン酸誘導体の開環重合体を得る方法
を提案している。この重合体は剛性が高くかつ耐
衝撃性、耐熱性のバランスに優れた樹脂である
が、ハウジング分野・構造材分野等では、樹脂単
体としての剛性・耐熱性の向上が望まれている。 そこで本発明者らは、樹脂の製造研究をさらに
一歩進めることによつて上記の様な要求に対応し
た樹脂を開発するに至つた。 〔〕 発明の概要 要 旨 (1) 下記の一般式 一般式 で表わされる構成単位(A)と 一般式 で表わされる構成単位(B)とから基本的に構成さ
れ(但し、R1は水素原子、アルキル基または
フエニル基を、R2は水素原子またはアルキル
基を、R3はアルキル基を、R3はアルキル基を
表わす。)、かつ次記の(a)〜(c)の要件を具備する
重合体 (a) 極限粘度が0.3〜4.0であること。 (b) 上記構成単位(A)の含有量が全構成単位中の
90〜100重量%であること。 (c) 構成単位(A)および(B)における二重結合のト
ランス含有量が40%以上であること。 このような構造を有する開環重合体は、従来の
汎用エンジニアリングでは到達し得なかつた高い
剛性レベルを達成し、特に、剪断強度に優れタツ
ピング等の機械作業性に優れた樹脂材料を得るこ
とができる。 〔〕 発明の具体的説明 重合体 本発明の重合体は 一般式 で表わされる構成単位(A)と 一般式 で表わされる構成単位(B)とから基本的に構成され
る重合体であり、上記中R1は水素原子、炭素数
1〜20、好ましくは1〜8のアルキル基またはフ
エニル基を、好ましくは水素原子またはアルキル
基を、R2は水素原子またはR1と同じもしくは異
なるアルキル基を、R3はR1と同じもしくは異な
るアルキル基を表わすものであり、これら重合体
の剛性、成形性を保持するためには極限粘度が
0.3〜4.0、特に好ましくは0.4〜3.0を有すること
が必要である。極限粘度が0.3未満であれば耐熱
性・剛性・耐衝撃性が悪く、極限粘度が4.0を越
えれば成形性が悪化する。 また、上記一般式中構成単位(A)の含有量は全構
成単位中の90〜100重量%であることが必要であ
る。上記構成単位(A)の含量が90重量%未満では剛
性及び剪断強度のレベルが不足し、かつ耐熱性の
レベルが低下する。 さらに、上記構成単位(A)および(B)における二重
結合のトランス含有量が40%以上であることが必
要である。トランス型が40%未満では耐熱性およ
び剛性が悪化する。 重合体の製法 本発明で用いられる5―ノルボルネン―2―カ
ルボン酸エステル誘導体は、一般にシクロペンタ
ジエンとアクリル酸エステル誘導体又はα―アル
キル置換アクリル酸エステル誘導体とをデイール
ス・アルダー反応させて合成される。 これらエステル基を有するノルボルネン誘導体
モノマー、例えば5―ノルボルネン―2―カルボ
ン酸メチル、5―ノルボルネン―2,2―カルボ
ン酸メチル、5―ノルボルネン―2―カルボン酸
エチル、5―ノルボルネン―2―カルボン酸オク
チル等は、さらに特開昭49−77999号明細書など
に記載されるメタセシス触媒により容易に開環重
合する。 メタセシス触媒としては、通常タングステン又
はモリブデン化合物が遷移金属成分として用いら
れ、特に、タングステン化合物は活性が高いので
好ましい。中でもタングステンのハロゲン化合物
が好適である。有機アルミニウム成分は特に制限
がなく、例えばトリエチルアルミニウム、ジエチ
ルアルミニウムモノクロライド、エチルアルミニ
ウムセスキクロライドが用いられる。第3成分種
としては、アルコールの様な酸素系配位子、ピリ
ジンの様なチツ素系配位子、トリフエニルホスフ
インの様なリン系配位子が用いられる。 溶媒としては、ハロゲン化炭化水素、芳香族系
炭化水素、ハロゲン化芳香族炭化水素が用いられ
るが、特にトルエンの様な芳香族炭化水素、クロ
ルベンゼンの様なハロゲン化芳香族炭化水素が高
いトランス含量体を得るのに適している。重合圧
力は大気圧で充分であり、特に加圧下で重合を行
なうこともできる。 重合温度は、−20℃から70℃の範囲で用いられ
るが、温度が低くすぎると活性が著しく低下し、
温度が高すぎるとトランス含量が低下し、目的物
は得られない。したがつて0℃〜40℃位の幅での
選択が好ましい。 目的とするトランス含有量40%以上の開環重合
体を得るには、モノマーに対する触媒の量を多く
し、重合温度を低温に保持し、あるいは、第3成
分種としてアルコールやチツ素系の配位子を選択
する等によつて可能である。 開環重合して得られた重合体は、 一般式 (但し、R1は水素原子、アルキル基またはフエ
ニル基を、R2は水素原子またはアルキル基を、
R3はアルキル基を表わす。) で表わされる繰返し単位から構成される5―ノル
ボルネン―2―カルボン酸エステル誘導体の開環
重合体で、極限粘度は0.4〜4.0のものが好まし
い。 しかしながらこの開環重合体自体はエステル置
換体であるために耐熱性は低く、耐熱性樹脂とし
ては実用に供さない。 従つて、こうして得られた開環重合体はエステ
ル基の加水分解処理に付される。 加水分解処理に特に制限はないが、次に示す方
法が工業的に有利である。 開環重体の溶解 前記エステル基を有する5―ノルボルネン―2
―カルボン酸エステルの開環重合体をケトン類、
テトラヒドロフラン、ジオキサン、ジメチルホル
ムアミド、ジメチルスルホキシド等の極性有機溶
媒を用いることによつて溶解する。これら有機溶
媒は前記開環重合体を溶解し、かつ水と相溶性の
有機溶媒であり、これらの有機溶媒を使用するこ
とにより、後記開環重合体を工業的に有利に加水
分解を行うことができる。 これら有機溶媒の使用量は、前記開環重合体の
種類・粘度によつて異なるが、重合体1重量部に
対し、5〜50重量部加えることが一般的である。
この程度の量を加えることによつて均一溶液とす
ることができる。 第一段加水分解 次いで開環重合体中のエステル基単位1モルに
対し、0.92〜3モルのアルカリを有機溶媒100重
量部に対し、10〜100重量部の水に溶解させ、こ
れを開環重合体溶液に逐次添加し、エステル基の
加水分解を行なう。 使用されるアルカリとしては、アルカリ金属又
はアルカリ土類金属との水酸化物及びこれ等の弱
酸との塩が用いられるが、これらアルカリの中で
特にアルカリ金属の水酸化物である水酸化ナトリ
ウム、水酸化カリウム、水酸化リチウム及び弱酸
との塩である炭酸ナトリウム、酢酸ナトリウム、
酢酸カリウム、炭酸カリウムが好ましい。 使用されるアルカリの量は、開環重合体中のエ
ステル基ユニツト1モルに対し第一段と第二段の
加水分解工程を合わせて0.92モル以上必要であ
る。アルカリの添加は第一段の加水分解工程で全
量加えてもよいし、第一段と第二段に分割して添
加してもよい。しかし第一段の加水分解工程で
は、エステル基に対してアルカリを0.35モル以上
使用するのが望ましい。 0.35モル未満では加水分解率が低くなり、第二
段の加水分解処理の際に開環重合体を水に溶解し
難くなる。 アルカリは、水溶液として添加するのが一般的
であるが、アルカリの濃度は特に制限はなく、水
の使用量が前述の有機溶媒と水との比の範囲にあ
ればよい。 加水分解温度は40〜200℃までの間で任意であ
るが、50〜80℃で充分に進行する。反応が進行す
ると反応系は開環重合体が析出して不均一となつ
てくる。 第二段加水分解 反応系が不均一になつたところで、水またはア
ルカリ水溶液を添加する。加熱して有機溶剤を留
去しながら添加してもよいし、また留去せずに直
接添加してもよい。添加する水の量は最低重合体
1重量部に対し、3重量部以上必要である。これ
以下であると水またはアルカリ水溶液を加えても
均一溶液にはならない。また有機溶媒が留去され
ていない系では第一段加水分解時に加えた水との
合計量が仕込まれた有機溶媒に対して等量以上必
要である。 加水分解温度は、第一段加水分解と同一範囲で
あれば、特に問題ない。 中 和 ついで開環重合体中のカルボン酸塩を酸を加え
ることによりカルボン酸基に変え、生成物を沈殿
として得る。酸成分としては、塩酸又は硝酸・酢
酸・硫酸等一般の酸であれば充分であり、その添
加量はカルボン酸塩に対し1〜10当量である。用
いる酸の濃度には特に限定はない。 生成物をスラリーとして得るには、撹拌下、特
に高速撹拌下でカルボン酸塩に対し、酸を0.2〜
0.7当量、好ましくは0.4〜0.6当量入れ、そのまま
約0.5〜3時間撹拌し、その後残りの酸成分を
徐々に添加すると良好な粉末状となる。 この中和反応で、所定量の酸成分を一度に系中
に添加すると、中和は可能となるがアルカリ残量
が増加し、生成物の流動性は低下しかつ着色しや
すい。 分析・物性測定 生成物の組成比は、赤外線吸収スペクトル法に
より定量化した。 トランス含有量は、 13C―NMRスペクトル法
の二重結合領域のスペクトルより定量化を行つ
た。 極限粘度(ηs/C)はテトラヒドロフラン中
(濃度0.1g/g)、30℃で測定した。 熱変形温度はJIS・K―7207−1974に、アイゾ
ツト衝撃強度はJIS・K―7110―1971(2mm厚試験
片3枚重ねね法)に、三点曲げ剛性はJIS・K―
7203―1973に、剪断強度はK―7214にもとづいて
各々測定した。 以下実施例にて詳細に説明する。 実施例 1 乾燥したフラスコを窒素で置換した後、溶媒と
してトルエンを400重量部、単量体として5―ノ
ルボルネン―2―カルボン酸エステルを100重量
部仕込み、液温を15℃とした。こののち六塩化タ
ングステンを2.6重量部添加し、ついで六塩化タ
ングステンに対し3倍モルのジエチルアルミニウ
ムモノクロライドを添加し、さらに六塩化タング
ステンに対し2倍モルのn―ブタノールを添加
し、10時間開環重合を行つた。重合反応終了後、
仕込みのトルエンに対し3倍容のメタノールに15
重量部の濃塩酸を加えて、この溶液をフラスコに
添付し、触媒分解を行つた。その後、テトラヒド
ロフランを良溶媒とし、メタノールを貧溶媒とし
て再沈精製法を二度行い、乾燥したところ、重合
体を99重量部得た。この重合体の極限粘度は0.55
であつた。トランス含量はあ55%であつた。 次に開環重合体100重量部を仕込み、その後ア
セトンを1000重量部いれ、温度を56℃に上げ、撹
拌下でポリマーを完全に溶解させる。次いで600
重量部の水に50重量部の苛性カリを溶解させ、こ
れを反応系の濃度が低下しないように徐々に開環
重合体のアセトン溶液に添加する。エステル加水
分解の進行とともに開環重合体は系中に析出す
る。 次に600重量部の水を系中に加え、反応温度を
一定に保ち1時間反応を継続する。水の添加後析
出していた開環重合体は溶液に溶け均一系とな
る。 ついで94重量部の酢酸を170重量部の水で希釈
して開環重合体の水溶液に添加する。半量まで添
加した段階で添加を一旦停止し、1時間撹拌を継
続し、その後残りの全量を添加すると開環重合体
は白色の粉末となつて沈殿する。これを過する
ことにより、目的とする5―ノルボルネン―2―
カルボン酸と5―ノルボルネン―2―カルボン酸
メチルの開環共重合体が得られた。 生成物の物性値を〔表1〕に示す。 実施例 2 実施例1の条件で苛性カリの量を50重量部から
37重量部に減少させた以外は実施例1と同様の手
法で反応させた。 生成物の物性値を〔表1〕に示す。 実施例 3 実施例1で用いた苛性カリの変りに苛性ソーダ
36重量部に変更した以外は実施例1と同様の仕込
み条件、反応条件でエステルの加水分解を行つ
た。 生成物の物性値を〔表1〕に示す。 実施例 4 実施例1で用いた5―ノルボルネン―2―カル
ボン酸メチル単量体の代りに、5―ノルボルネン
―2―カルボン酸オクチル単量体に変更し、開環
重合体を得た。生成物は97重量部で、極限粘度
0.62で、トランス含量50%であつた。 実施例1と同様の仕込み条件、反応条件で加水
分解を行つた。 生成物の物性値を〔表1〕に示す。 実施例 5 実施例1で用いた5―ノルボルネン―2―カル
ボン酸メチル単量体の代りに、3―フエニル―5
―ノルボルネン―2―カルボン酸メチル単量体に
変更し、開環重合体を得た。生成物は37重量部
で、極限粘度0.43で、トランス含量53%であつ
た。 実施例1と同様の仕込み条件、反応条件で加水
分解を行つた。 生成物の物性値を〔表1〕に示す。 実施例 6 実施例1で用いた開環重合条件のうち、n―ブ
タノールを2,6ルチジンに変更した所、87重量
部で極限粘度0.65、トランス含量74%の開環重合
体ごを得た。 実施例1と同様の仕込み条件、反応条件で加水
分解を行つた。 生成物の物性値を〔表1〕に示す。 実施例 7 実施例1で用いた開環重合条件のうち、六塩化
タングステンを2.1重量部、重合温度を5℃、反
応時間を16時間に変更したところ、65重量部で極
限粘度1.2、トランス含量43%の開環重合体を得
た。 実施例1と同様の仕込み条件、反応条件で加水
分解を行つた。 生成物の物性値を〔表1〕に示す。 比較例 1 実施例1で用いた開環重合条件のうち、六塩化
タングステンを0.3重量部に、アルキルアルミニ
ウムの種類をトリエチルアルミニウムに、溶媒を
トルエンからクロルベンゼンに、重合温度を40℃
に変更したところ、98重量部で極限粘度1.4、ト
ランス含量35%の開環重合体が得られた。 実施例1と同様の仕込み条件、反応条件で加水
分解を行つた。 生成物の物性値を〔表2〕に示す。 比較例 2 実施例1の開環重合系に分子量調整剤として
1,5―ヘキサジエンを六塩化タングステンに対
して5.0モル添加したところ、71重量部で極限粘
度0.28、トランス含量48%の開環重合体が得られ
た。 実施例1と同様の仕込み条件、反応条件で加水
分解を行つた。 生成物の物性値を〔表2〕に示す。 比較例 3 実施例1の条件で苛性カリの量を50重量部から
30重量部に減少させた以外は実施例1と同様の手
法で反応させた。 生成物の物性値を〔表2〕に示す。
[] BACKGROUND TECHNICAL FIELD OF THE INVENTION The present invention relates to a polymer having a five-membered ring and a double bond in the polymer main chain, which has excellent mechanical properties such as rigidity and shear strength, and has a high level of heat resistance. Currently, in the petrochemical industry, the C5 fraction of naphtha decomposition products, which has 5 carbon atoms, is hardly used, and only a small amount of isoprene is used industrially as a raw material for synthetic rubber. Most of it is consumed as fuel. Prior Art Among these C 5 fractions, the highest content is cyclopentadiene, which has high reactivity, so cyclopentene or
It is expected that it will be used as a new high value-added product such as norbornene derivatives. Among them, polymers produced by ring-opening polymerization using norbornene derivatives as monomers using metathesis catalysts are
Interesting as a new engineering plastic. In particular, 5-norbornene-2 produced by the Diels-Alder reaction of cyclopentadiene and acrylic acid.
- Carboxylic acid ring-opening polymers have the potential to become highly heat-resistant engineering plastics, but
Due to its strong polarity, it does not undergo ring-opening polymerization. Therefore, JP-A No. 56-65018 proposed a method of preparing a norbornene derivative as an ester compound, subjecting it to ring-opening polymerization, and then hydrolyzing it to obtain the desired ring-opening polymer of a 5-norbornene-2-carboxylic acid derivative. are doing. This polymer is a resin with high rigidity and an excellent balance of impact resistance and heat resistance, but in the housing field, structural material field, etc., it is desired to improve the rigidity and heat resistance of the resin itself. Therefore, the present inventors have developed a resin that meets the above-mentioned requirements by taking their resin manufacturing research one step further. [] Summary of the invention (1) The following general formula General formula Constituent unit (A) represented by and general formula (However, R 1 is a hydrogen atom, an alkyl group or a phenyl group, R 2 is a hydrogen atom or an alkyl group, R 3 is an alkyl group , represents an alkyl group) and satisfies the following requirements (a) to (c): (a) The intrinsic viscosity is 0.3 to 4.0. (b) The content of the above structural unit (A) in all structural units
Must be 90-100% by weight. (c) The trans content of double bonds in structural units (A) and (B) is 40% or more. Ring-opened polymers with such a structure can achieve a high level of rigidity that could not be achieved with conventional general-purpose engineering, and in particular, it is possible to obtain resin materials with excellent shear strength and excellent mechanical workability such as tapping. can. [] Detailed description of the invention Polymer The polymer of the present invention has the general formula Constituent unit (A) represented by and general formula It is a polymer basically composed of the structural unit (B) represented by the following, where R 1 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms, or a phenyl group, preferably a phenyl group. R 2 represents a hydrogen atom or an alkyl group that is the same as or different from R 1 , and R 3 represents an alkyl group that is the same or different from R 1 , and maintains the rigidity and moldability of these polymers. In order to do this, the intrinsic viscosity is
It is necessary to have from 0.3 to 4.0, particularly preferably from 0.4 to 3.0. If the intrinsic viscosity is less than 0.3, heat resistance, rigidity, and impact resistance will be poor, and if the intrinsic viscosity exceeds 4.0, moldability will deteriorate. Further, the content of the structural unit (A) in the above general formula needs to be 90 to 100% by weight of all the structural units. If the content of the above-mentioned structural unit (A) is less than 90% by weight, the level of rigidity and shear strength will be insufficient, and the level of heat resistance will decrease. Furthermore, it is necessary that the trans content of double bonds in the structural units (A) and (B) is 40% or more. If the transformer type is less than 40%, heat resistance and rigidity will deteriorate. Method for producing polymer The 5-norbornene-2-carboxylic acid ester derivative used in the present invention is generally synthesized by subjecting cyclopentadiene to an acrylic ester derivative or an α-alkyl-substituted acrylic ester derivative through a Diels-Alder reaction. Norbornene derivative monomers having these ester groups, such as methyl 5-norbornene-2-carboxylate, methyl 5-norbornene-2,2-carboxylate, ethyl 5-norbornene-2-carboxylate, 5-norbornene-2-carboxylic acid Octyl and the like are further easily ring-opening polymerized using metathesis catalysts described in JP-A-49-77999 and the like. As a metathesis catalyst, tungsten or molybdenum compounds are usually used as the transition metal component, and tungsten compounds are particularly preferred because they have high activity. Among these, tungsten halogen compounds are preferred. The organoaluminum component is not particularly limited, and for example, triethylaluminum, diethylaluminum monochloride, and ethylaluminum sesquichloride are used. As the third component species, oxygen-based ligands such as alcohols, nitrogen-based ligands such as pyridine, and phosphorus-based ligands such as triphenylphosphine are used. As the solvent, halogenated hydrocarbons, aromatic hydrocarbons, and halogenated aromatic hydrocarbons are used. In particular, aromatic hydrocarbons such as toluene and halogenated aromatic hydrocarbons such as chlorobenzene have high trans Suitable for obtaining esters. Atmospheric pressure is sufficient as the polymerization pressure, and the polymerization can also be carried out under increased pressure. The polymerization temperature used is in the range of -20℃ to 70℃, but if the temperature is too low, the activity will decrease significantly.
If the temperature is too high, the trans content will decrease and the desired product will not be obtained. Therefore, it is preferable to select the temperature within a range of about 0°C to 40°C. In order to obtain the target ring-opened polymer with a trans content of 40% or more, the amount of catalyst relative to the monomer must be increased, the polymerization temperature must be kept low, or alcohol or nitrogen-based compounds must be used as the third component. This is possible by selecting the order of magnitude. The polymer obtained by ring-opening polymerization has the general formula (However, R 1 is a hydrogen atom, an alkyl group, or a phenyl group, R 2 is a hydrogen atom or an alkyl group,
R 3 represents an alkyl group. ) is a ring-opening polymer of a 5-norbornene-2-carboxylic acid ester derivative composed of repeating units represented by the formula, and preferably has an intrinsic viscosity of 0.4 to 4.0. However, since this ring-opened polymer itself is an ester substituted product, its heat resistance is low and it cannot be used practically as a heat-resistant resin. Therefore, the ring-opened polymer thus obtained is subjected to a hydrolysis treatment of the ester groups. Although there are no particular restrictions on the hydrolysis treatment, the following method is industrially advantageous. Dissolution of ring-opened heavy substance 5-norbornene-2 having the above ester group
- Ring-opening polymers of carboxylic acid esters are converted into ketones,
It is dissolved by using polar organic solvents such as tetrahydrofuran, dioxane, dimethylformamide, dimethyl sulfoxide, etc. These organic solvents dissolve the ring-opening polymer and are compatible with water, and by using these organic solvents, the ring-opening polymer described below can be industrially advantageously hydrolyzed. Can be done. The amount of these organic solvents to be used varies depending on the type and viscosity of the ring-opening polymer, but is generally 5 to 50 parts by weight per 1 part by weight of the polymer.
By adding this amount, a homogeneous solution can be obtained. First stage hydrolysis Next, 0.92 to 3 moles of alkali per mole of ester group units in the ring-opening polymer are dissolved in 10 to 100 parts by weight of water to 100 parts by weight of organic solvent, and this is used to open the ring. It is added sequentially to the polymer solution to hydrolyze the ester groups. As the alkali used, hydroxides of alkali metals or alkaline earth metals and salts of these with weak acids are used, and among these alkalis, sodium hydroxide, which is a hydroxide of alkali metals, is particularly used. Potassium hydroxide, lithium hydroxide and salts with weak acids, sodium carbonate, sodium acetate,
Potassium acetate and potassium carbonate are preferred. The amount of alkali used in the first and second hydrolysis steps is required to be at least 0.92 mol per mol of ester group unit in the ring-opening polymer. The alkali may be added in its entirety in the first stage hydrolysis step, or may be added in divided amounts in the first stage and second stage. However, in the first hydrolysis step, it is desirable to use 0.35 mol or more of alkali based on the ester group. If it is less than 0.35 mol, the hydrolysis rate will be low, making it difficult to dissolve the ring-opened polymer in water during the second-stage hydrolysis treatment. The alkali is generally added as an aqueous solution, but the concentration of the alkali is not particularly limited as long as the amount of water used falls within the above-mentioned ratio of organic solvent to water. Although the hydrolysis temperature is arbitrary between 40 and 200°C, the hydrolysis proceeds satisfactorily at 50 to 80°C. As the reaction progresses, the ring-opened polymer precipitates out of the reaction system and the reaction system becomes non-uniform. Second stage hydrolysis When the reaction system becomes non-uniform, water or aqueous alkaline solution is added. The organic solvent may be added while being heated to distill off the organic solvent, or may be added directly without being distilled off. The amount of water added must be at least 3 parts by weight per 1 part by weight of the polymer. If it is less than this, even if water or aqueous alkaline solution is added, a homogeneous solution will not be obtained. In addition, in a system in which the organic solvent is not distilled off, the total amount including the water added during the first-stage hydrolysis must be equal to or more than the amount of the organic solvent charged. There is no particular problem with the hydrolysis temperature as long as it is within the same range as the first stage hydrolysis. Neutralization Then, the carboxylic acid salt in the ring-opening polymer is converted into a carboxylic acid group by adding an acid, and the product is obtained as a precipitate. As the acid component, general acids such as hydrochloric acid, nitric acid, acetic acid, and sulfuric acid are sufficient, and the amount added is 1 to 10 equivalents relative to the carboxylic acid salt. There are no particular limitations on the concentration of the acid used. To obtain the product as a slurry, add 0.2 to 0.2 to
Add 0.7 equivalent, preferably 0.4 to 0.6 equivalent, stir for about 0.5 to 3 hours, and then gradually add the remaining acid component to obtain a good powder. In this neutralization reaction, if a predetermined amount of the acid component is added to the system at once, neutralization becomes possible, but the residual amount of alkali increases, the fluidity of the product decreases, and it is likely to be colored. Analysis/Measurement of Physical Properties The composition ratio of the product was quantified by infrared absorption spectroscopy. The trans content was quantified from the spectrum of the double bond region of 13 C-NMR spectroscopy. The intrinsic viscosity (ηs/C) was measured in tetrahydrofuran (concentration 0.1 g/g) at 30°C. Heat deformation temperature is determined by JIS K-7207-1974, Izotsu impact strength is determined by JIS K-7110-1971 (lap method of three 2 mm thick test pieces), and three-point bending rigidity is determined by JIS K-7110-1971.
7203-1973, the shear strength was measured based on K-7214, respectively. This will be explained in detail in Examples below. Example 1 After purging a dry flask with nitrogen, 400 parts by weight of toluene as a solvent and 100 parts by weight of 5-norbornene-2-carboxylic acid ester as a monomer were charged, and the liquid temperature was adjusted to 15°C. After that, 2.6 parts by weight of tungsten hexachloride was added, then diethylaluminum monochloride was added in an amount of 3 times the mole of tungsten hexachloride, and then n-butanol was added in an amount of 2 times the mole of tungsten hexachloride, and the mixture was left open for 10 hours. Ring polymerization was performed. After the polymerization reaction is completed,
15 to 3 times the volume of methanol to the toluene used in preparation.
Part by weight of concentrated hydrochloric acid was added, and this solution was attached to a flask for catalytic decomposition. Thereafter, the reprecipitation purification method was performed twice using tetrahydrofuran as a good solvent and methanol as a poor solvent, followed by drying to obtain 99 parts by weight of a polymer. The intrinsic viscosity of this polymer is 0.55
It was hot. The trans content was 55%. Next, 100 parts by weight of the ring-opening polymer is charged, followed by 1000 parts by weight of acetone, the temperature is raised to 56°C, and the polymer is completely dissolved under stirring. then 600
Fifty parts by weight of caustic potassium is dissolved in parts by weight of water, and this is gradually added to the acetone solution of the ring-opening polymer so as not to reduce the concentration of the reaction system. As ester hydrolysis progresses, the ring-opened polymer precipitates in the system. Next, 600 parts by weight of water was added to the system, and the reaction was continued for 1 hour while keeping the reaction temperature constant. After the addition of water, the precipitated ring-opened polymer dissolves in the solution and becomes a homogeneous system. Then, 94 parts by weight of acetic acid are diluted with 170 parts by weight of water and added to the aqueous solution of the ring-opening polymer. When half of the amount has been added, the addition is temporarily stopped, stirring is continued for 1 hour, and then the remaining amount is added, causing the ring-opened polymer to precipitate as a white powder. By passing this, the target 5-norbornene-2-
A ring-opened copolymer of carboxylic acid and methyl 5-norbornene-2-carboxylate was obtained. The physical property values of the product are shown in [Table 1]. Example 2 Under the conditions of Example 1, the amount of caustic potash was changed from 50 parts by weight.
The reaction was carried out in the same manner as in Example 1 except that the amount was reduced to 37 parts by weight. The physical property values of the product are shown in [Table 1]. Example 3 Caustic soda was used instead of the caustic potash used in Example 1.
Ester hydrolysis was carried out under the same charging conditions and reaction conditions as in Example 1, except that the amount was changed to 36 parts by weight. The physical property values of the product are shown in [Table 1]. Example 4 The methyl 5-norbornene-2-carboxylate monomer used in Example 1 was replaced with an octyl 5-norbornene-2-carboxylate monomer to obtain a ring-opened polymer. The product is 97 parts by weight and has an intrinsic viscosity of
0.62, and the trans content was 50%. Hydrolysis was carried out under the same charging conditions and reaction conditions as in Example 1. The physical property values of the product are shown in [Table 1]. Example 5 Instead of the 5-norbornene-2-carboxylic acid methyl monomer used in Example 1, 3-phenyl-5
-Norbornene-2-carboxylic acid methyl monomer was used to obtain a ring-opened polymer. The product weighed 37 parts by weight, had an intrinsic viscosity of 0.43, and a trans content of 53%. Hydrolysis was carried out under the same charging conditions and reaction conditions as in Example 1. The physical property values of the product are shown in [Table 1]. Example 6 Among the ring-opening polymerization conditions used in Example 1, when n-butanol was changed to 2,6-lutidine, a ring-opening polymer with an intrinsic viscosity of 0.65 and a trans content of 74% was obtained at 87 parts by weight. . Hydrolysis was carried out under the same charging conditions and reaction conditions as in Example 1. The physical property values of the product are shown in [Table 1]. Example 7 When the ring-opening polymerization conditions used in Example 1 were changed to 2.1 parts by weight of tungsten hexachloride, the polymerization temperature to 5°C, and the reaction time to 16 hours, the intrinsic viscosity was 1.2 and the trans content was 65 parts by weight. 43% ring-opened polymer was obtained. Hydrolysis was carried out under the same charging conditions and reaction conditions as in Example 1. The physical property values of the product are shown in [Table 1]. Comparative Example 1 Among the ring-opening polymerization conditions used in Example 1, tungsten hexachloride was changed to 0.3 parts by weight, the type of aluminum alkyl was changed to triethylaluminum, the solvent was changed from toluene to chlorobenzene, and the polymerization temperature was 40°C.
When the amount was changed to 98 parts by weight, a ring-opened polymer with an intrinsic viscosity of 1.4 and a trans content of 35% was obtained. Hydrolysis was carried out under the same charging conditions and reaction conditions as in Example 1. The physical property values of the product are shown in [Table 2]. Comparative Example 2 When 5.0 mol of 1,5-hexadiene was added to the ring-opening polymerization system of Example 1 as a molecular weight regulator based on tungsten hexachloride, a ring-opening polymer with an intrinsic viscosity of 0.28 and a trans content of 48% was obtained at 71 parts by weight. A combination was obtained. Hydrolysis was carried out under the same charging conditions and reaction conditions as in Example 1. The physical property values of the product are shown in [Table 2]. Comparative Example 3 Under the conditions of Example 1, the amount of caustic potash was changed from 50 parts by weight.
The reaction was carried out in the same manner as in Example 1 except that the amount was reduced to 30 parts by weight. The physical property values of the product are shown in [Table 2].

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記の一般式 一般式 で表わされる構成単位(A)と 一般式 で表わされる構成単位(B)とから基本的に構成され
(但し、R1は水素原子、アルキル基またはフエニ
ル基を、R2は水素原子またはアルキル基を、R3
はアルキル基を表わす。)、かつ次記の(a)〜(c)の要
件を具備する重合体 (a) 極限粘度が0.3〜4.0であること。 (b) 上記構成単位(A)の含有量が全構成単位中の90
〜100重量%であること。 (c) 構成単位(A)および(B)における二重結合のトラ
ンス含有量が40%以上であること。
[Claims] 1 The following general formula General formula Constituent unit (A) represented by and general formula (where R 1 is a hydrogen atom, an alkyl group, or a phenyl group, R 2 is a hydrogen atom or an alkyl group, and R 3 is a
represents an alkyl group. ), and a polymer that satisfies the following requirements (a) to (c): (a) An intrinsic viscosity of 0.3 to 4.0. (b) The content of the above structural unit (A) is 90% of the total structural units.
~100% by weight. (c) The trans content of double bonds in structural units (A) and (B) is 40% or more.
JP15211182A 1982-09-01 1982-09-01 Polymer having excellent rigidity Granted JPS5941326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15211182A JPS5941326A (en) 1982-09-01 1982-09-01 Polymer having excellent rigidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15211182A JPS5941326A (en) 1982-09-01 1982-09-01 Polymer having excellent rigidity

Publications (2)

Publication Number Publication Date
JPS5941326A JPS5941326A (en) 1984-03-07
JPH0242094B2 true JPH0242094B2 (en) 1990-09-20

Family

ID=15533294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15211182A Granted JPS5941326A (en) 1982-09-01 1982-09-01 Polymer having excellent rigidity

Country Status (1)

Country Link
JP (1) JPS5941326A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04153079A (en) * 1990-10-18 1992-05-26 Digital Sutoriimu:Kk Erasable and rewritable paper, printing ink and printing apparatus and erasing apparatus using them
JPH04202898A (en) * 1990-11-22 1992-07-23 Fukui Pref Gov Chromic patterned paper and its production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232718A (en) * 1985-08-05 1987-02-12 Nippon Telegr & Teleph Corp <Ntt> Binarization method for analog signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04153079A (en) * 1990-10-18 1992-05-26 Digital Sutoriimu:Kk Erasable and rewritable paper, printing ink and printing apparatus and erasing apparatus using them
JPH04202898A (en) * 1990-11-22 1992-07-23 Fukui Pref Gov Chromic patterned paper and its production

Also Published As

Publication number Publication date
JPS5941326A (en) 1984-03-07

Similar Documents

Publication Publication Date Title
Gaylord et al. Poly-2, 3-and 2, 7-Bicyclo [2.2. 1] hept-2-enes: Preparation and Structures of Polynorbornenes
JP6218059B2 (en) Process for producing aromatic polyketone and aromatic polyketone
WO1989006253A1 (en) Hydrogenated derivative of ring-opening copolymer and process for its production
WO2008044640A1 (en) β-PINENE POLYMER AND PROCESS FOR PRODUCTION THEREOF
JP3264442B1 (en) Novel regioregular copolymer and method for producing the same
US3080350A (en) Preparation of polyvinyl alcohol
EP0002279B1 (en) Process for preparing polymers of cyclopentadiene and bicycloheptene mixtures
JPH0762065A (en) Production of novel polycarbonate resin and novel polycarbonate resin
JPH0242094B2 (en)
US4412044A (en) Ring-opened norbornyl polymers
CN110790852B (en) Process for direct catalytic polymerization of ethylene with 1, 2-disubstituted polar internal olefins and products thereof
JPH0242095B2 (en)
CN112876665B (en) Method for synthesizing polyester or polyether ester containing polyunsaturated side group by using rare earth catalyst and post-modification method thereof
JPS642610B2 (en)
JPH07179575A (en) Tetracyclododecene polymer and its production
JPH0321620A (en) New polyacetal copolymers of trioxane and glycidyl ester derivatives
JPS643219B2 (en)
JP2001122950A (en) Compound having functional group at both ends and method for producing the same
US6177539B1 (en) Aliphatic polyester and process for the production thereof
JP2005126372A (en) Norbornene-based compound having crosslinkable group and polymer derived therefrom
JPH0124289B2 (en)
JP5145642B2 (en) Sulfur-containing cyclic olefin resin and process for producing the same
JP3273848B2 (en) 2-Cyanobicyclo [2.2.1] -5-heptene polymer and method for producing the same
JP2000143728A (en) Vinyl ester oligomer
TW552274B (en) Epoxide-containing norbornene monomer and its polymer