JPH0241640A - Superconducting current collector - Google Patents
Superconducting current collectorInfo
- Publication number
- JPH0241640A JPH0241640A JP63186859A JP18685988A JPH0241640A JP H0241640 A JPH0241640 A JP H0241640A JP 63186859 A JP63186859 A JP 63186859A JP 18685988 A JP18685988 A JP 18685988A JP H0241640 A JPH0241640 A JP H0241640A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- commutator
- current collector
- fixing
- brush
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 62
- 238000001816 cooling Methods 0.000 claims abstract description 45
- 238000003860 storage Methods 0.000 claims abstract description 34
- 239000000126 substance Substances 0.000 claims abstract description 24
- 238000012546 transfer Methods 0.000 claims abstract description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000009415 formwork Methods 0.000 claims abstract description 7
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 7
- 239000010439 graphite Substances 0.000 claims abstract description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052709 silver Inorganic materials 0.000 claims abstract description 6
- 239000004332 silver Substances 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 84
- 229910052751 metal Inorganic materials 0.000 claims description 74
- 239000002184 metal Substances 0.000 claims description 74
- 238000004804 winding Methods 0.000 claims description 58
- 238000000576 coating method Methods 0.000 claims description 28
- 239000011248 coating agent Substances 0.000 claims description 27
- 239000000919 ceramic Substances 0.000 claims description 21
- 230000000694 effects Effects 0.000 claims description 19
- 239000012212 insulator Substances 0.000 claims description 19
- 230000003014 reinforcing effect Effects 0.000 claims description 19
- 238000009423 ventilation Methods 0.000 claims description 16
- 239000002131 composite material Substances 0.000 claims description 9
- 238000000465 moulding Methods 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 4
- 229910000679 solder Inorganic materials 0.000 claims description 4
- 238000007740 vapor deposition Methods 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 238000005498 polishing Methods 0.000 claims 2
- 239000002887 superconductor Substances 0.000 claims 2
- 239000010409 thin film Substances 0.000 claims 2
- 239000012671 ceramic insulating material Substances 0.000 claims 1
- 239000000289 melt material Substances 0.000 claims 1
- 230000002265 prevention Effects 0.000 claims 1
- 238000007493 shaping process Methods 0.000 abstract 1
- 238000002347 injection Methods 0.000 description 21
- 239000007924 injection Substances 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 239000007788 liquid Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000002826 coolant Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Motor Or Generator Current Collectors (AREA)
- Superconductive Dynamoelectric Machines (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は超電導集電装置、及び、超電導化した回転子、
並びに、超電導電子回路装置の切換スイッチに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a superconducting current collector, a superconducting rotor,
The present invention also relates to a changeover switch for a superconducting electronic circuit device.
従来、超電導化された回転電機の電機子巻線や界磁巻線
の電流授受を行う整流子の形成に関するものには、例え
ば特願昭62−31.19735号のように、整流子を
セラミックス材で形成するものがある。Conventionally, for the formation of a commutator that transfers current to and from armature windings and field windings of superconducting rotating electrical machines, the commutator has been made of ceramics, for example, as in Japanese Patent Application No. 19735/1983. Some are made of wood.
しかし、最近、国内外で超電導材の開発が凌ぎを削って
いる現状、当然整流子やスリップリングへの応用も考え
られているが、その具体的な配設構造については配慮さ
れていなかった。However, with the recent development of superconducting materials both domestically and internationally, applications to commutators and slip rings are naturally being considered, but no consideration has been given to the specific arrangement structure.
従来、回転電機の集電装置は直流機の整流子と交流機の
スリップリングに区分される。例えば直流機についてみ
ると、電機子巻線が常電導線で巻回されているため、集
電装置を構成している整流子や集電ブラシ等が常電導材
であっても大きな問題はなかった。しかし、薄膜化や高
電流密度化が有望とされる高温超電導’FAの出現によ
り、送電ケーブルや回転電機の高温超電導化が進められ
、特に回転電機では、回転子の電機子巻線や界磁巻線の
超電導化が進められ、この超電導化により電機子巻線、
界磁巻線と電源側との電流授受部となる集電装置の超電
導化が要求されるようになった。Conventionally, current collectors for rotating electric machines are divided into commutators for DC machines and slip rings for AC machines. For example, in a DC machine, the armature winding is wound with a normal conducting wire, so there is no big problem even if the commutator, current collecting brush, etc. that make up the current collector are made of normal conducting material. Ta. However, with the advent of high-temperature superconducting FA, which is promising for thinner films and higher current densities, high-temperature superconducting power transmission cables and rotating electric machines are progressing. Progress has been made in making the windings superconducting, and with this superconducting, armature windings,
There has been a demand for superconducting current collectors, which serve as the current transfer unit between the field winding and the power source.
しかし、この集電装置を超電導化すると、集電装置を構
成しているブラシの摺動振動により、整流子片に亀裂が
生して飛散する問題、また荒損発生による火花増大なる
問題が心配されている。However, if this current collector is made superconducting, there are concerns that the sliding vibration of the brushes that make up the current collector will cause cracks in the commutator pieces and cause them to scatter, and that sparks will increase due to rough damage. has been done.
本発明は以上の点に鑑みてなされたもので、その目的は
、整流子片の摺動振動による亀裂防止のための固定強化
と荒損防止の回れる超電導集電装置を提供することにあ
る。The present invention has been made in view of the above points, and its purpose is to provide a rotatable superconducting current collector that strengthens the fixation to prevent cracks caused by sliding vibration of commutator pieces and prevents damage. .
上記目的は、基本的には、上記超電導集電装置の構成を
、整流子胴の周部に前記整流子片を固定する固定部材を
一体的に配設してなる絶縁整流子胴を、回転軸に固設さ
れた固定リングに一体的に固定するとともに、前記固定
部材により超電導整流子片を前記絶縁整流子胴の周部に
一体的に固定することによって、超電導整流子を形成し
、かつ、前記整流子の周面を前記ブラシによる清らかな
摺接面とするこによって達成される。The above purpose basically consists of rotating an insulated commutator body in which a fixing member for fixing the commutator pieces is integrally arranged around the circumference of the commutator body in the configuration of the superconducting current collector. A superconducting commutator is formed by integrally fixing a superconducting commutator piece to a fixing ring fixed to a shaft and integrally fixing a superconducting commutator piece to a circumference of the insulated commutator body by the fixing member, and This is achieved by making the circumferential surface of the commutator a clean surface for sliding contact with the brush.
整流子胴は、具体的には、絶縁材、或いは金属材で形成
し、軸方向、径方向に連通した通気孔を有した絶縁整流
子胴、または金属整流子胴とする。Specifically, the commutator body is an insulated commutator body made of an insulating material or a metal material, and has ventilation holes communicating in the axial direction and the radial direction, or a metal commutator body.
また、固定部材は、整流子胴の周部に設けられた固定突
起、固定型枠、固定用突起付溝や、超電導物質を蒸着或
いは焼結させて超電導整流子片を一体的に形成するため
に整流子胴の周部に被覆された金属皮膜や絶縁皮膜等か
らなる。In addition, the fixing member includes a fixing protrusion provided on the circumference of the commutator body, a fixing mold, a groove with a fixing protrusion, and a superconducting commutator piece integrally formed by vapor-depositing or sintering a superconducting substance. It consists of a metal film, an insulating film, etc. that is coated around the commutator body.
さらに、前記超電導整流子の整流子胴の通気孔に連通し
た整流子胴の端部、または内径部に、例えば液体窒素な
どの冷却媒体を貯蔵する冷媒貯槽を設げ、前記冷媒貯槽
何畳の超電導整流子面を摺動する集電ブラシを、黒鉛ブ
ラシ、または銀ブラシで枠組のした型枠ブラシの内部に
超電導物質を埋設し、成形した超電導ブラシとすること
により集電効果が向上する。Furthermore, a refrigerant storage tank for storing a cooling medium such as liquid nitrogen is provided at the end or inner diameter part of the commutator body communicating with the ventilation hole of the commutator body of the superconducting commutator, The current collection effect is improved by using a superconducting brush that slides on the superconducting commutator surface as a superconducting brush that is formed by embedding a superconducting substance inside a form brush framed with graphite brushes or silver brushes.
(作 用〕
本発明の超電導集電装置は、上記のような構成とするこ
とにより、整流子の摺動面が非常に滑らかにでき、そし
て超電導物質の受&Jる機械振動BJ、超電導物質を固
定している整流子胴部全体及び固定部材で吸収、或いは
柔軟性がもたれ、耐振強度の高い超電導整流子片を形成
できるので、摺動振動発生が少なく亀裂侵入を防止でき
ろ。一方、超電導整流子面を摺動する集電ブラシは、上
記のように構成するこにより、前記超電導整流子面を非
常に滑らかに、そして摺動振動吸収のできる柔軟性のと
れる固定構造となっているため、整流子片の亀裂侵人防
lにや荒損発生防止ができろ。(Function) The superconducting current collector of the present invention has the above-described configuration, so that the sliding surface of the commutator can be made very smooth, and the mechanical vibration BJ received by the superconducting material and the superconducting material can be The entire fixed commutator body and the fixing member absorb or are flexible, making it possible to form a superconducting commutator piece with high vibration resistance, which reduces the generation of sliding vibration and prevents crack penetration.On the other hand, superconducting By configuring the current collector brush that slides on the commutator surface as described above, the superconducting commutator surface is made extremely smooth and has a flexible fixed structure that can absorb sliding vibrations. It should be possible to prevent cracks and breakage of the commutator pieces.
以下、本発明の一実施例を図に沿って詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.
第1図、第2図において、超電導集電装置1は、主とし
て超電導整流子2、超電導整流子2を冷却する冷媒を貯
蔵する冷媒貯槽3、それに超電導整流子2面を摺動する
超電導ブラシ4より構成され、超電導整流子2は、超電
導電機子巻線5と電機子鉄心6で構成される回転子7と
一体化した回転軸8に強固に装着されている。超電導電
機子巻線5は、電機子鉄心6にスロット9を設けて装着
し、その上部に飛び出し防止のスロットキー10を装着
している。そして超電導電機子巻線5を備えた電機子鉄
心6に直結した回転軸8に装着される超電導整流子2ば
、冷却通気孔11を設けた絶縁整流子胴12の周部に所
要数の単片的な金属被膜13を設け、前記金属被膜13
の上部に超電導物質を蒸着、或いはスパッタリング法で
超電導整流子片14を形成している。超電導整流子片1
4の回転子7側の端部は、整流子胴端板15の溶着ポケ
ット16でインジウム超音波ハンダ17によって固定さ
れ、1に
こに超電導電機子巻線5の巻線端子18が溶着固定され
ている。そして所要数の超電導整流子片14で構成した
超電導整流子2の他端部には絶縁体19を介して冷媒貯
槽3が設りられている。このように構成された超電導整
流子2は回転軸8と一体化した固定板20と絶縁整流子
胴12に埋設した固定リング21をボルト22で締イ」
シ、回転軸8に強固に固定されている。また超電導整流
子2を摺動する超電導ブラシ4は、黒鉛ブラシ、或いは
恨ブラシで成形した型枠ブラシ23と超電導物質24で
形成され、その上部に超電導物質24を冷却する冷媒を
貯蔵する冷媒貯槽25が設げられている。冷媒貯槽25
には押し圧兼用の伸縮注入管2Gを介して主注入管27
が接続されている。ブラシリード線28は超電導物質2
4にインジウム超音波ハンダで溶着固定されている。1 and 2, a superconducting current collector 1 mainly includes a superconducting commutator 2, a refrigerant storage tank 3 that stores a refrigerant for cooling the superconducting commutator 2, and a superconducting brush 4 that slides on the two surfaces of the superconducting commutator. The superconducting commutator 2 is firmly attached to a rotating shaft 8 that is integrated with a rotor 7 that is composed of a superconducting armature winding 5 and an armature core 6. The superconducting armature winding 5 is attached to the armature core 6 through a slot 9, and a slot key 10 to prevent it from popping out is attached to the upper part of the slot 9. A superconducting commutator 2 mounted on a rotating shaft 8 directly connected to an armature core 6 having a superconducting armature winding 5 is provided with a required number of units on the circumference of an insulated commutator body 12 provided with cooling vents 11. A single metal coating 13 is provided, and the metal coating 13
A superconducting commutator piece 14 is formed by depositing a superconducting material on top of the commutator 14 or by sputtering. Superconducting commutator piece 1
The end of 4 on the rotor 7 side is fixed by indium ultrasonic solder 17 in the welding pocket 16 of the commutator body end plate 15, and the winding terminal 18 of the superconducting armature winding 5 is welded and fixed to 1. ing. A refrigerant storage tank 3 is provided at the other end of the superconducting commutator 2 made up of a required number of superconducting commutator pieces 14 via an insulator 19. The superconducting commutator 2 constructed in this way is constructed by fastening the fixing plate 20 integrated with the rotating shaft 8 and the fixing ring 21 embedded in the insulated commutator body 12 with bolts 22.
It is firmly fixed to the rotating shaft 8. Further, the superconducting brush 4 that slides the superconducting commutator 2 is formed of a molded brush 23 made of a graphite brush or a grating brush and a superconducting material 24, and a refrigerant storage tank for storing a refrigerant for cooling the superconducting material 24 is provided on the upper part of the superconducting brush 4. 25 are provided. Refrigerant storage tank 25
The main injection pipe 27 is connected to the main injection pipe 27 via the telescopic injection pipe 2G which also serves as a push pressure.
is connected. The brush lead wire 28 is made of superconducting material 2
4 is welded and fixed with indium ultrasonic solder.
以」−のように構成された超電導整流子2と超電導ブラ
シ4、それに冷媒貯槽25を備えた超電導集電装置1は
、回転子7例の電流授受部である超電導整流子2を、冷
却通気孔11を有した絶縁整流子胴12の周部に、超電
導ブラシ4の跳ね返り振動に対して柔軟性を与える金属
被膜13と、そして超電導整流子2面の凹凸を非常に小
さくでき、薄膜化して大電流がとれ、抵抗が零となる超
電導物質を固形化した超電導整流子片14で構成し、そ
の所要数の超電導整流子片14で構成した超電導整流子
2の端部に、超電導整流子片14を冷却する冷媒貯槽を
備えた冷媒冷却構造の整流子構造とし、そして超電導整
流子2面を摺動する超電導ブラシ4を、摺動振動によっ
て火花が発生しても超電導物質24以外の物で消滅でき
るように、黒鉛ブラシ、または銀ブラシの型枠ブラシを
設け、前記型枠ブラシ23の内に超電導物質24を埋設
して成形し、その上部に超電導物質24を冷却する冷媒
貯蔵の冷媒貯槽25を設けた構造とし、回転側と固定側
の電流授受を、超電導整流子2と超電導ブラシ4の超電
導物質同士で摺動させる構造としている。このため、こ
れまで問題となっていた摺動振動による亀裂侵入や荒損
発生なる問題を防止し、超電導整流子片14の固定強化
と、ブラシと整流子間の摩擦損失像滅の図れる優れた集
電装置を提供できる。The superconducting current collector 1, which includes a superconducting commutator 2, a superconducting brush 4, and a refrigerant storage tank 25, is configured as follows. A metal coating 13 is provided around the periphery of the insulating commutator body 12 having pores 11 to provide flexibility against the rebound vibrations of the superconducting brush 4, and the irregularities on the surface of the superconducting commutator 2 can be made extremely small. The superconducting commutator 2 is made up of superconducting commutator pieces 14 made of solidified superconducting material that can carry a large current and has zero resistance, and the superconducting commutator 2 is made up of the required number of superconducting commutator pieces 14. The commutator structure has a refrigerant cooling structure equipped with a refrigerant storage tank for cooling the superconducting brush 4, and the superconducting brush 4 sliding on the two surfaces of the superconducting commutator is made of a material other than the superconducting material 24 even if sparks are generated due to sliding vibration. A form brush such as a graphite brush or a silver brush is provided so that the superconducting material 24 can be extinguished, and a superconducting material 24 is embedded and molded in the forming brush 23, and a refrigerant storage tank for storing a refrigerant for cooling the superconducting material 24 is provided above the superconducting material 24. 25, and the superconducting materials of the superconducting commutator 2 and the superconducting brush 4 slide against each other to transfer current between the rotating side and the stationary side. Therefore, it is possible to prevent the problem of crack penetration and rough damage caused by sliding vibration, which has been a problem in the past, and to strengthen the fixation of the superconducting commutator pieces 14 and to eliminate friction loss between the brushes and the commutator. A current collector can be provided.
以上の実施例においては、絶縁整流子1]1ii112
の周部に整流子片の数と同数の金属被膜13を設け、金
属被膜13に超電導物質を蒸着、或いはスパッタリング
法で薄膜化して超電導整流子片14を形成し、所要数の
超電導整流子片14を配設して構成した超電導整流子2
の端部に冷媒貯槽3を設け、前記絶縁整流子胴12の冷
却通気孔11に冷媒、もくしは冷媒の蒸発ガスを通流さ
せ、同時に超電導整流子2の集電ブラシを超電導ブラシ
4にして摺動させて問題の解決を図っていた。しかし、
以上で記述したように金属被膜13を設けて超電導物質
を薄膜化する方法は、回転電機の大型化に伴う大電流集
電や、磁界の影響による超電導特性破壊が心配される。In the above embodiment, the insulated commutator 1]1ii112
The same number of metal coatings 13 as the number of commutator pieces are provided around the periphery of the metal coating 13, and a superconducting substance is deposited on the metal coating 13 or thinned by sputtering to form a superconducting commutator piece 14, and the required number of superconducting commutator pieces are formed. Superconducting commutator 2 configured by arranging 14
A refrigerant storage tank 3 is provided at the end of the insulated commutator body 12, and the refrigerant or evaporated gas of the refrigerant is made to flow through the cooling vent 11 of the insulated commutator body 12. At the same time, the current collecting brush of the superconducting commutator 2 is changed to the superconducting brush 4. They tried to solve the problem by sliding it. but,
As described above, in the method of thinning the superconducting material by providing the metal coating 13, there are concerns that the superconducting properties may be destroyed due to large current collection due to the increase in the size of the rotating electric machine or the influence of the magnetic field.
このような問題を解消し、前記実施例と同様な効果の得
られる方法として、第3図に示すような、整流子片の成
形方法を、絶縁整流子胴12に整流子片を固定する逆台
形状の固定溝を設け、固定溝に無数の物質固定穴を設け
た金属固定補強板を配設し、前記金属固定補強板を設け
た固定溝を超電導粉末材、或いは超電導温材で硬化成形
して超電導整流子片を構成する方法がある。In order to solve this problem and obtain the same effect as in the above embodiment, the method of forming the commutator pieces as shown in FIG. A trapezoidal fixing groove is provided, a metal fixing reinforcing plate with numerous material fixing holes is provided in the fixing groove, and the fixing groove provided with the metal fixing reinforcing plate is hardened and molded with superconducting powder material or superconducting hot material. There is a method of constructing a superconducting commutator piece using the following methods.
第3図に本発明の他の実施例を示す。第3図の実施例は
、前記冷却通気孔11を有した絶縁整流子胴12の外周
部に所要数の逆台形固定溝29を設け、前記逆台形固定
溝29の内に固定穴30を備えた金属固定補強板31を
敷設し、前記逆台形固定溝29を金属固定補強板31と
一体的に超電導物質32で埋設して厚くした単片状の超
電導整流子片33としたものである。FIG. 3 shows another embodiment of the invention. In the embodiment shown in FIG. 3, a required number of inverted trapezoidal fixing grooves 29 are provided on the outer periphery of the insulated commutator body 12 having the cooling vents 11, and fixing holes 30 are provided in the inverted trapezoidal fixing grooves 29. A metal fixed reinforcing plate 31 is laid down, and the inverted trapezoidal fixing groove 29 is buried integrally with the metal fixed reinforcing plate 31 with a superconducting material 32 to form a thick single-piece superconducting commutator piece 33.
以上のように構成すると、超電導整流子片33の単位面
積当りの電流密度からくになると共に、厚みが増すこと
から磁界侵入の受けにくい超電導整流子片33を形成で
きる他、補強材埋設構造であるため固定強化が図れ、遠
心力による飛散防止と超電導ブラシ4の跳ね返り振動も
吸収できるので信軌性向上を図ることができる。With the above configuration, the current density per unit area of the superconducting commutator piece 33 is reduced, the thickness is increased, so the superconducting commutator piece 33 is less susceptible to magnetic field penetration, and it is possible to form a reinforcing material embedded structure. Therefore, the fixation can be strengthened, scattering due to centrifugal force can be prevented, and rebound vibrations of the superconducting brush 4 can be absorbed, so that the reliability can be improved.
以上で記述した実施例においては、逆台形固定溝29に
金属固定補強板31を設け、超電導物質32で一体的に
埋設する構造としているため、前記金属固定補強板31
の裏部面の埋設斑が心配される。このような問題を解消
し、前記実施例と同様な効果の得られる方法として、第
4図に示すような、整流子片の成形を、前記絶縁整流子
胴12に固定用突起を設けた突起付固定溝を設け、突起
付固定溝に超電導粉末材、または超電導温材を注入硬化
して超電導整流子片を構成する方法がある。In the embodiment described above, the metal fixing reinforcing plate 31 is provided in the inverted trapezoidal fixing groove 29 and is integrally buried with the superconducting material 32, so that the metal fixing reinforcing plate 31
There is a concern about embedded spots on the back surface of the As a method for solving such problems and obtaining the same effect as in the above embodiment, the commutator pieces are formed by forming protrusions provided with fixing protrusions on the insulated commutator body 12, as shown in FIG. There is a method of forming a superconducting commutator piece by providing a fixing groove with a protrusion and injecting and hardening a superconducting powder material or a superconducting hot material into the fixing groove with a protrusion.
第4図に本発明のその他の第1の実施例を示す。FIG. 4 shows another first embodiment of the present invention.
第4図の実施例は、前記冷却通気孔11を有した絶縁整
流子胴12の外周部に、周方向から溝11方向に向かっ
て突きでた固定用突起34を設けた突起付固定溝35を
設番ノ、前記突起付固定溝35に超電導材を埋設した塊
状超電導整流子片36としたものである。In the embodiment shown in FIG. 4, a fixing groove 35 with a protrusion is provided with a fixing protrusion 34 protruding from the circumferential direction toward the groove 11 on the outer periphery of the insulated commutator body 12 having the cooling vent 11. The design number is a block superconducting commutator piece 36 in which a superconducting material is embedded in the fixing groove 35 with projections.
以上のように構成すると、前記突起付固定溝35は、超
電導物質を固定する固定用突起34を溝側面に設け、溝
中央部があいた構造となっていることから超電導物質の
注入が非常に容易となる他、固定用突起34が中央部に
向かって傾斜しているため、溝底部の空気が抜き易い構
造となっているので、超電導物質の埋設斑のない、そし
て固定強化の図れる塊状超電導整流子片36を得ること
ができると共に、前記実施例と同様な効果を維持するこ
とができる。With the above configuration, the protrusion-equipped fixing groove 35 has fixing protrusions 34 for fixing the superconducting material on the side surfaces of the groove and is open in the center of the groove, making it very easy to inject the superconducting material. In addition, since the fixing protrusion 34 is inclined toward the center, the structure allows air to be easily removed from the bottom of the groove, so that the superconducting material is not buried unevenly and the bulk superconducting rectification can be strengthened. The child piece 36 can be obtained, and the same effects as in the previous embodiment can be maintained.
以上の実施例では、整流子片を固定する溝に固定用突起
34や金属固定補強板31等の固定手段を設け、固定手
段と絶縁整流子胴12を超電導物質で一体的に埋設し、
前記絶縁整流子胴12の冷却通気孔11で間接的に冷却
していたが、超電導整流子片の厚みを増し、効果的に冷
却する方法として、第5図に示すような、異形状の不変
中を持った二重構造の整流子片固定溝とし、上下段一方
の溝に冷却管を兼用した物質固定管を配設し、物質固定
管を埋設して直接整流子片を冷却する方法もある。In the above embodiment, fixing means such as fixing protrusions 34 and metal fixing reinforcing plates 31 are provided in the grooves for fixing the commutator pieces, and the fixing means and the insulating commutator body 12 are integrally embedded with superconducting material.
Although indirect cooling was performed through the cooling vents 11 of the insulated commutator body 12, as a method of increasing the thickness of the superconducting commutator pieces and cooling them effectively, a method of increasing the thickness of the superconducting commutator pieces and cooling them effectively is to use an irregularly shaped unchangeable piece as shown in FIG. Another method is to use a double-structured commutator piece fixing groove with an inside, and install a substance fixing tube that also serves as a cooling pipe in one of the upper and lower grooves, and bury the substance fixing tube to directly cool the commutator piece. be.
第5図に本発明のその他の第2の実施例を示す。FIG. 5 shows another second embodiment of the present invention.
第5図の実施例は、前記絶縁整流子胴12に、異形状の
二段固定溝37を設け、前記二段固定溝37の下段溝3
8に冷媒、または冷気ガスを通流させる通流孔39を有
した冷却固定管40を配設し、前記冷却固定管40を超
電導物質で埋設した冷却孔付の二段超電導整流子片41
としたものである。In the embodiment shown in FIG. 5, an irregularly shaped two-stage fixing groove 37 is provided in the insulated commutator body 12, and a lower groove 3 of the two-stage fixing groove 37 is provided.
A two-stage superconducting commutator piece 41 with cooling holes is provided with a fixed cooling tube 40 having a flow hole 39 through which refrigerant or cold gas flows, and the fixed cooling tube 40 is embedded with a superconducting material.
That is.
以上のような構成にすると、前記二段超電導整流子片4
1は、冷却手段を備えた整流子片となっていることから
冷却効果がよく、超電導破壊時の回復応答性の優れた超
電導整流子片が得られる。With the above configuration, the two-stage superconducting commutator piece 4
Since No. 1 is a commutator piece equipped with a cooling means, a superconducting commutator piece with good cooling effect and excellent recovery response in the event of superconducting breakdown can be obtained.
また、以上で記述した実施例は固定強化を図ったもので
、整流子片の破損交換を考慮していなかったが、回転電
機の長寿命と汎用性を考えると、何らかの衝撃で超電導
整流子片が破損し、その時の交換容易なる構成方法につ
いても必要である。In addition, the embodiment described above was designed to strengthen the fixation, and did not take into account replacement of broken commutator pieces, but considering the long life and versatility of rotating electric machines, it is important to note that the superconducting commutator pieces may be damaged due to some kind of impact. There is also a need for a configuration method that allows for easy replacement in the event of damage.
第6図に本発明のその他の第3の実施例を示す。FIG. 6 shows another third embodiment of the present invention.
第6図の実施例は、前記冷却通気孔11を備えた絶縁整
流子胴12の外周部に、外径部から内径部に広がりを持
つ異巾の逆台形固定溝42を設け、前記逆台形固定溝4
2に、無数の固定穴43を設けた金属固定板44を超電
導物質で埋設して成形した複合超電導整流子片45を嵌
合配設したものである。In the embodiment shown in FIG. 6, an inverted trapezoidal fixing groove 42 of different widths that spreads from the outer diameter part to the inner diameter part is provided on the outer circumference of the insulated commutator body 12 provided with the cooling vent 11, and the inverted trapezoid shape Fixed groove 4
2, a composite superconducting commutator piece 45 formed by embedding a metal fixing plate 44 provided with numerous fixing holes 43 with a superconducting material is fitted and disposed.
以上のような構成にすると、前記絶縁整流子胴12の逆
台形固定溝42と複合超電導整流子片45は別個に製作
し、着脱嵌合構造となっているため、超電導整流子46
を構成している内の複合超電導整流子片45が破損した
時の対策が容易にでき、短時間で超電導整流子46の再
使用ができることから、汎用性の高い超電導整流子46
を得ることができる。With the above configuration, the inverted trapezoidal fixing groove 42 of the insulated commutator body 12 and the composite superconducting commutator piece 45 are manufactured separately and have a detachable fitting structure, so that the superconducting commutator 46
The superconducting commutator 46 is a highly versatile superconducting commutator 46 because countermeasures can be easily taken when the composite superconducting commutator pieces 45 that constitute the component are damaged, and the superconducting commutator 46 can be reused in a short time.
can be obtained.
同時に複合超電導整流子片45は単品で製作できること
から製作作業性の向上を図ることもできる。At the same time, since the composite superconducting commutator piece 45 can be manufactured as a single item, it is possible to improve the manufacturing efficiency.
上記第6図に示すその他、第3の実施例では、整流子片
の単品成形製作についてのもので、通常使用される整流
子片は、数十枚から数百枚の整流子片が絶縁整流子胴1
2に配列されるため、集合分割成形構造が効果的である
。集合分割成形構造を次に記述する。In addition to the above shown in FIG. 6, the third embodiment concerns the single-piece molding of commutator pieces, and the commutator pieces normally used include tens to hundreds of commutator pieces that are insulated and rectified. Baby torso 1
2, the set-divided molding structure is effective. The set division molding structure is described next.
第7図に本発明のその他の第4の実施例を示す。FIG. 7 shows another fourth embodiment of the present invention.
第7図の実施例は、前記複合超電導整流子片45を数個
まとめて固定成形した嵌合構造のもので、前記冷却通気
孔11を有した絶縁整流子胴12の周部に、複数個の固
定溝47を設け、前記固定溝47に、超電導整流子片4
8を数個まとめて固定した金属リング板49の固定突起
50を嵌合するようにしたものである。そして前記超電
導整流子片48はセラミック絶縁体51を介して金属リ
ング板49に固定し、前記金属リング板49の内周部に
設けた固定突起5oの冷却通気孔52で冷却するように
構成している。The embodiment shown in FIG. 7 has a fitting structure in which several composite superconducting commutator pieces 45 are fixedly molded together. A fixing groove 47 is provided, and a superconducting commutator piece 4 is provided in the fixing groove 47.
A fixing protrusion 50 of a metal ring plate 49 to which several pieces 8 are fixed together is fitted into the fixing protrusion 50. The superconducting commutator piece 48 is fixed to a metal ring plate 49 via a ceramic insulator 51, and is configured to be cooled by a cooling vent 52 of a fixed protrusion 5o provided on the inner circumference of the metal ring plate 49. ing.
以上のように構成すると、超電導整流子片48をある程
度まとめて成形した、分割整流子53の組立構造として
いるため、破損交換作業性の改善と製作作業時間の改善
を図りつつ、前記実施例と同様な効果が得られる。With the above configuration, the assembled structure of the divided commutator 53 is obtained by molding the superconducting commutator pieces 48 together to a certain extent, so that it is possible to improve the workability of replacing damaged parts and the manufacturing time, while improving the structure of the above-mentioned embodiment. A similar effect can be obtained.
以上の実施例において、整流子胴を絶縁材とした場合の
整流子片の構成について説明してきたが、整流子胴を金
属材で成形しても効果的な超電導整流子を形成すること
ができる。In the above embodiments, the structure of the commutator piece was explained when the commutator body was made of an insulating material, but an effective superconducting commutator can also be formed even if the commutator body is made of a metal material. .
第8図に本発明のその他の第5の実施例を示す。FIG. 8 shows another fifth embodiment of the present invention.
第8図の実施例は、前記絶縁整流子胴12の代わりに金
属整流子胴54とし、前記金属整流子胴54に冷媒通気
孔55を設けたその外周部にセラミック絶縁体56を被
覆し、前記セラミック絶縁体56に超電導物質を蒸着、
或いはスパッタリング法で固着させ、所要数の超電導整
流子片57を設けた超電導整流子2としたものである。In the embodiment shown in FIG. 8, a metal commutator body 54 is used instead of the insulating commutator body 12, and a ceramic insulator 56 is coated on the outer periphery of the metal commutator body 54 provided with refrigerant vent holes 55. depositing a superconducting material on the ceramic insulator 56;
Alternatively, the superconducting commutator 2 may be fixed using a sputtering method to provide a required number of superconducting commutator pieces 57.
以上のように金属整流子胴54の周部にセラミンク絶縁
体56を設け、その周部に超電導整流子片57を設けた
超電導整流子2としても、固定強化や超電導整流子2面
の凹凸変形防止を図ることができるため、前記実施例と
同様、超電導整流子片57の亀裂飛散防止や荒損防止に
効果がある。As described above, the superconducting commutator 2 in which the ceramic insulator 56 is provided around the periphery of the metal commutator body 54 and the superconducting commutator pieces 57 are provided around the periphery can also be used to strengthen the fixation and deform the irregularities on the surface of the superconducting commutator 2. Since this can be prevented, it is effective in preventing cracks from scattering and damage to the superconducting commutator pieces 57, as in the embodiments described above.
上記実施例では金属整流子胴54の周部にセラミック絶
縁体56を設け、前記セラミック絶縁体56に超電導物
質を蒸着、或いはスパッタリング法で超電導整流子片5
7を構成していたが、前記金属整流子胴54に整流子片
の固定溝を設け、その固定溝に金属型枠で成形した型枠
成形構造の超電導整流子片を嵌合装着する構造でも、前
記実施例と同様の効果を得ることができる。In the above embodiment, a ceramic insulator 56 is provided around the periphery of the metal commutator body 54, and a superconducting material is deposited on the ceramic insulator 56 by vapor deposition or sputtering to form the superconducting commutator piece 5.
7, but it is also possible to have a structure in which a fixing groove for the commutator piece is provided in the metal commutator body 54, and a superconducting commutator piece having a molded structure formed by a metal mold is fitted into the fixing groove. , it is possible to obtain the same effects as in the above embodiment.
第9図に本発明のその他の第6の実施例を示す。FIG. 9 shows another sixth embodiment of the present invention.
第9図の実施例は、前記金属整流子胴54の周部に所要
数のタブティール状の固定溝58を設け、前記固定溝5
8を含む金属整流子胴54の周部をセラミック絶縁体5
6で被覆し、絶縁した固定溝58に、金属型枠59と超
電導物質60で成形した型枠成形超電導整流子片61を
嵌合装着し、構成した超電導整流子2としたものである
。In the embodiment shown in FIG. 9, a required number of tab teal-shaped fixing grooves 58 are provided on the circumference of the metal commutator body 54, and the fixing grooves 58 are
The circumferential portion of the metal commutator body 54 including the ceramic insulator 5
A mold-molded superconducting commutator piece 61 formed of a metal mold 59 and a superconducting substance 60 is fitted into a fixing groove 58 coated and insulated with a metal mold 59 to form a superconducting commutator 2.
以上のような構成にすると、前記型枠成形超電導整流子
片61は金属の型枠で強固に収納固定されるので、亀裂
が侵入し飛散することがない。この他、型枠成形超電導
整流子片61と金属整流子胴54は、別個に分割して製
作できるため作業能率が向上できると共に、破損時の交
換作業が容易となることから、特に大形機の整流子構成
に効果的である。With the above configuration, the mold-molded superconducting commutator pieces 61 are firmly housed and fixed in the metal mold, so that cracks will not enter and scatter. In addition, the mold-molded superconducting commutator piece 61 and the metal commutator body 54 can be manufactured separately, which improves work efficiency and facilitates replacement in the event of damage, especially for large machines. This is effective for commutator configurations.
以上の実施例では、冷媒貯槽3を整流子胴の端部に設け
、固定側から任意に冷媒、例えば液体窒素を注入し、絶
縁整流子胴12、或いは金属整流子胴54に設けた軸方
向の冷却通気孔11、または冷媒通気孔55から軸方向
に通流させ、超電導整流子2を構成している超電導整流
子片14,33.48.57、塊状超電導整流子片36
、二段超電導整流子片41、複合超電導整流子片45、
型枠成形超電導整流子片61等を冷却していた。しかし
、冷媒は任意に蒸発して前記冷却通気孔11、冷媒通気
孔55以外の冷媒貯槽3の開放部、即ち冷媒注入口62
部からの蒸発がかなり大きいものと思われる。この蒸発
ガスを有効に利用する構造としたのが第10図に示す、
整流子胴の内径部に設ける構造である。In the embodiments described above, the refrigerant storage tank 3 is provided at the end of the commutator body, and a refrigerant such as liquid nitrogen is optionally injected from the fixed side, and the refrigerant storage tank 3 is provided at the end of the commutator body 54 in the axial direction. The superconducting commutator pieces 14, 33, 48, and 57, and the lumpy superconducting commutator pieces 36 that constitute the superconducting commutator 2 are made to flow in the axial direction from the cooling vent 11 or the coolant vent 55.
, two-stage superconducting commutator piece 41, composite superconducting commutator piece 45,
The mold-molded superconducting commutator pieces 61 and the like were being cooled. However, the refrigerant evaporates arbitrarily, and the refrigerant is removed from the open portion of the refrigerant storage tank 3 other than the cooling vent 11 and the refrigerant vent 55, that is, the refrigerant inlet 62.
It is thought that evaporation from the area is quite large. A structure that effectively utilizes this evaporated gas is shown in Figure 10.
This is a structure provided on the inner diameter part of the commutator body.
第10図に本発明のその他の第7の実施例を示す。FIG. 10 shows another seventh embodiment of the present invention.
第10図の実施例は、超電導整流子片の構成でなく、超
電導整流子片の冷却構成についてのもので、ここでは金
属整流子胴54の周部にセラミンク絶縁体56を設け、
前記セラミック絶縁体56に超電導物質を蒸着法、また
はスパッタリング法で超電導整流子片57を構成した例
の冷却構造としたもので、超電導整流子片57の冷却を
、前記超電導整流子片57の底部近傍の金属整流子胴5
4に、軸方向に貫通した軸方向通気孔63を設け、その
内周部に冷媒貯槽64を配設している。そして冷媒貯槽
64の外周壁部に冷却突起65を設け、前記冷却突起6
5に複数個の前記軸方向通気孔63に連通した径方向通
気孔66が設けられている。冷媒貯槽64への冷媒注入
は、回転軸67に注入孔68を設け、前記注入孔68か
ら冷媒貯槽64に連通した通流孔69が設けられ、軸端
から任意に冷媒、例えば液体窒素が注入できるようにな
っている。The embodiment shown in FIG. 10 is not about the structure of superconducting commutator pieces but about the cooling structure of superconducting commutator pieces.
The cooling structure is such that the superconducting commutator piece 57 is constructed by depositing a superconducting substance on the ceramic insulator 56 by vapor deposition or sputtering. Nearby metal commutator shell 5
4 is provided with an axial ventilation hole 63 that penetrates in the axial direction, and a refrigerant storage tank 64 is disposed on the inner circumference thereof. Cooling protrusions 65 are provided on the outer peripheral wall of the refrigerant storage tank 64.
5 is provided with a radial ventilation hole 66 communicating with the plurality of axial ventilation holes 63. In order to inject the refrigerant into the refrigerant storage tank 64, an injection hole 68 is provided in the rotating shaft 67, a communication hole 69 is provided which communicates with the refrigerant storage tank 64 from the injection hole 68, and a refrigerant such as liquid nitrogen is optionally injected from the shaft end. It is now possible to do so.
以上のように構成された実施例は、回転軸67の注入孔
68から注入された冷媒貯槽64の液体窒素、または貯
蔵した液体窒素の蒸発ガスは、回転遠心力作用と金属整
流子胴54の軸方向通気孔63の開口部70のファン作
用で抵抗なく通気されるため、注入側に逆流することは
なく、注入貯蔵した液体窒素の有効利用と、冷却作用の
優れた超電導整流子2を構成することができる。In the embodiment configured as described above, the liquid nitrogen in the refrigerant storage tank 64 injected from the injection hole 68 of the rotating shaft 67 or the evaporated gas of the stored liquid nitrogen is caused by the rotational centrifugal force and the metal commutator body 54. Since the fan action of the opening 70 of the axial ventilation hole 63 allows ventilation without resistance, there is no backflow to the injection side, and the superconducting commutator 2 is configured to effectively utilize the liquid nitrogen that has been injected and stored and has an excellent cooling effect. can do.
第1図〜第10図の実施例では、直流機の整流子を対称
に記述したが、交流機のスリップリングを対象にするこ
とも出来る。In the embodiments shown in FIGS. 1 to 10, the commutator of a DC machine is described symmetrically, but a slip ring of an AC machine can also be used.
以下、交流機のスリップリングを対象とした実施例を図
に沿って詳細に説明する。第11図において、超電導ス
リップリング71は、冷媒貯槽72と、前記冷媒貯槽7
2の外周部に所要数の固定環73を設け、固定環73の
外周部に固定芯線74を固定し、その周面全体を絶縁被
膜75で覆い、絶縁した固定芯線74を超電導物質76
で埋設し固定環73と一体化して構成している。そして
、以」二のように構成した超電導スリップリング71は
、超電導界磁巻線77を有した界磁鉄心78と一体化し
た回転軸79ルこ装着し、前記超電導スリップリング7
1と超電導界磁巻線77を超電導渡り線80で接続され
ている。Hereinafter, an embodiment targeting a slip ring of an alternating current machine will be described in detail with reference to the drawings. In FIG. 11, a superconducting slip ring 71 is connected to a refrigerant storage tank 72 and the refrigerant storage tank 7.
2, a fixed core wire 74 is fixed to the outer periphery of the fixed ring 73, the entire circumference is covered with an insulating coating 75, and the insulated fixed core wire 74 is covered with a superconducting material 76.
The fixed ring 73 is embedded therein and integrated with the fixed ring 73. The superconducting slip ring 71 configured as described below is attached to a rotating shaft 79 integrated with a field core 78 having a superconducting field winding 77, and the superconducting slip ring 71
1 and the superconducting field winding 77 are connected by a superconducting crossover wire 80.
超電導スリップリング71の冷却は、まず冷媒を回転軸
79の注入孔81から通流孔82を介して冷媒貯槽72
に注入貯蔵し、冷媒貯槽72の冷媒は、前記冷媒貯槽7
2から固定環73、絶縁被膜75を貫通した無数の冷却
孔83に到達し、前記超電導スリップリング71が効率
よく冷却されるように構成されている。To cool the superconducting slip ring 71, first, the refrigerant is passed from the injection hole 81 of the rotating shaft 79 to the refrigerant storage tank 72 through the flow hole 82.
The refrigerant in the refrigerant storage tank 72 is injected and stored in the refrigerant storage tank 7.
2 to numerous cooling holes 83 passing through the fixed ring 73 and the insulating coating 75, so that the superconducting slip ring 71 is efficiently cooled.
以上のように構成される超電導スリップリング71は、
冷媒貯槽72の外周に固定環73を設け、前記固定環7
3に溶着固定した固定芯線74を超電導物質76で埋設
し固定環73と一体にしているので、固定弱体化するこ
とはなく、前記超電導整流子2で得られた効果と同様、
固定強化を図りなから、ブラシとスリップリング間の摩
擦損失低減を図ることができる。と共に超電導スリップ
リング71を構成している超電導物質76を冷媒で直接
冷却できる構造となっているので、冷却効果のよい超電
導スリツブリンク7Iを提イ共できる。The superconducting slip ring 71 configured as described above is
A fixed ring 73 is provided on the outer periphery of the refrigerant storage tank 72, and the fixed ring 7
Since the fixed core wire 74 welded and fixed to the commutator 3 is embedded in the superconducting material 76 and integrated with the fixed ring 73, the fixation is not weakened, and the same effect as that obtained with the superconducting commutator 2 is obtained.
Since the fixation is strengthened, friction loss between the brush and the slip ring can be reduced. In addition, since the structure is such that the superconducting material 76 constituting the superconducting slip ring 71 can be directly cooled with a refrigerant, the superconducting slip ring 7I with good cooling effect can be provided.
第11図の実施例の超電導スリップリング71の構成は
、冷媒貯槽72の周部に金属製の固定環73を設け、前
記固定環73に固定芯線74を設け、前記固定芯線74
で超電導物質76を固定する構造として超電導スリンプ
リング71を構成しているが、第12図に示すような、
冷媒貯槽72の周部にセラミック絶縁体84を設け、そ
の周部に固定環73を配設し、前記固定環73に金網状
のリング十字鋼材85を設け、前記リング十字鋼材85
を超電導物質76で埋設して固定環73と一体にした超
電導スリップリング71の構造、或いは第13回に示す
ように、前記固定環73の外周に、無数の固定穴86を
有した物質固定用突起87を備え、外周方向に開放した
リングボックス環88を溶着固定し、前記物質固定用突
起87を備えたリングボックス環88に超電導物質76
を注入埋設した、ボンクス成形超電導スリップリング8
9の成形構造としても前記実施例と同様の効果が得られ
る。The structure of the superconducting slip ring 71 of the embodiment shown in FIG.
The superconducting sling ring 71 is constructed as a structure for fixing the superconducting substance 76, but as shown in FIG.
A ceramic insulator 84 is provided around the periphery of the refrigerant storage tank 72 , a fixed ring 73 is arranged around the periphery, a ring cross steel material 85 in the form of a wire mesh is provided on the fixed ring 73 , and the ring cross steel material 85
The structure of a superconducting slip ring 71 in which a superconducting material 76 is buried and integrated with a fixed ring 73, or as shown in the 13th article, a material fixing structure having numerous fixing holes 86 on the outer periphery of the fixed ring 73. A ring box ring 88 provided with a protrusion 87 and open toward the outer circumference is welded and fixed, and a superconducting material 76 is attached to the ring box ring 88 provided with the substance fixing protrusion 87.
Bonx molded superconducting slip ring 8
The same effects as in the above embodiment can also be obtained with the molding structure No. 9.
以上では回転電機の電流授受部となる集電装置を構成し
ている整流子、およびスリ・ノブリング、それに相対す
る集電ブラシの超電導化について記述したきたが、以上
のような実施例から容易に推測できる構造的なもの、ま
た、前記超電導整流子2や超電導スリップリング71の
ように直接電流を流す導体ではなく、電磁作用を利用し
たものであるが、前記実施例と同様な構成的観点から多
様化すると、回転電機の管形回転子が上げられる。Above, we have described the superconductivity of the commutator, the pickpocket ring, and the current collector brush that composes the current collector that serves as the current exchange part of the rotating electric machine. Although it is a structural thing that can be assumed, and it is not a conductor that directly passes current like the superconducting commutator 2 and the superconducting slip ring 71, but uses electromagnetic action, from the same structural point of view as the above embodiment. When diversifying, tubular rotors for rotating electric machines are mentioned.
管形回転子の超電導化は、超電導物質のもつ特有のマイ
スナー効果を利用して電気的特性の向上を狙ったもので
あるが、これを得るためには前記実施例と同様に、篭形
巻線を超電導巻線とした場合、回転遠心力に耐える固定
方法として問題があった。このような問題を解決し、電
気的特性向上の図れる、即ち、入力損失低減の図れる構
造としたのが第14図である。The aim of making a tubular rotor superconducting is to improve its electrical characteristics by utilizing the Meissner effect, which is unique to superconducting materials. When using superconducting windings as wires, there was a problem in fixing the wires to withstand rotational centrifugal force. FIG. 14 shows a structure in which such problems are solved and the electrical characteristics can be improved, that is, the input loss can be reduced.
以下、本発明の一実施例を図に沿って詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.
第14図において、超電導回転子90は、軸方向冷媒注
入孔91と径方向注入孔92を備えた回転軸93と、前
記回転軸93に冷媒貯槽94を有した回転子鉄心95を
固定し、前記回転子鉄心95の外周部に、物質注入穴9
6を設けた補強板97を放射状に複数個配設し、補強板
97を備えた回転子鉄心95の外周部を超電導物質98
で包囲し、超電導篭形巻線99を形成している。そして
超電導物質98の冷却は、回転子鉄心95に設けた冷媒
通気孔100に冷媒貯槽94から冷媒を注入して冷却す
る構造となっている。In FIG. 14, a superconducting rotor 90 has a rotating shaft 93 having an axial coolant injection hole 91 and a radial injection hole 92, and a rotor core 95 having a coolant storage tank 94 fixed to the rotating shaft 93. A material injection hole 9 is provided on the outer circumference of the rotor core 95.
A plurality of reinforcing plates 97 provided with the reinforcing plates 97 are arranged radially, and the outer periphery of the rotor core 95 provided with the reinforcing plates 97 is covered with a superconducting material 98.
, to form a superconducting cage-shaped winding 99. The superconducting material 98 is cooled by injecting a refrigerant from a refrigerant storage tank 94 into a refrigerant vent 100 provided in the rotor core 95.
以上のように構成された超電導回転子90の超電導篭形
巻線99ば、無数の物質注入穴96を有した補強板97
で強固に固定されているため、回転遠心力に対する固定
強化はもとより、電気的特性を害うことなく、信頼性の
ある頑丈な超電導回転子90を提供できる。The superconducting cage-shaped windings 99 of the superconducting rotor 90 configured as described above and the reinforcing plate 97 having numerous material injection holes 96
Since the superconducting rotor 90 is firmly fixed, it is possible to provide a reliable and sturdy superconducting rotor 90 that not only strengthens the fixation against rotational centrifugal force but also does not impair electrical characteristics.
以上の実施例においては、超電導篭形巻線99の固定強
化を、物質注入穴96を設けた補強板97を埋設して行
っていた。しかし、超電導物質98の厚みが薄い場合に
は効果的であるが、厚みが増すと固定不足になる心配が
ある。このような問題を解消し、前記実施例と同様な効
果の得られる方法として、第15図に示すような、回転
子鉄心95の外周に巻線溝を切り、その両端部に補強材
入りの環状ガイド板を設け、巻線溝と環状ガイド板を超
電導物質で一体埋設する方法がある。In the embodiments described above, the superconducting cage-shaped winding 99 is fixed and strengthened by embedding a reinforcing plate 97 provided with a material injection hole 96. However, although this is effective when the thickness of the superconducting material 98 is thin, there is a concern that it may become insufficiently fixed when the thickness increases. As a method to solve this problem and obtain the same effect as in the embodiment described above, as shown in FIG. There is a method of providing an annular guide plate and burying the winding groove and the annular guide plate integrally with a superconducting material.
第15図に本発明の他の実施例を示す。第15図におい
て、本実施例の超電導回転子90は、回転子鉄心95に
凹部101と凸部102の径方向に中広を持った巻線溝
103を設け、さらに巻線溝103の両端部に十字形芯
線104を有したL形ガイド板105を設け、前記巻線
溝103とL形ガイド板105を超電導物質98で埋設
した、型枠成形超電導篭形巻線106としたものである
。FIG. 15 shows another embodiment of the present invention. In FIG. 15, the superconducting rotor 90 of this embodiment has a winding groove 103 having a wide center in the radial direction of a concave portion 101 and a convex portion 102 in a rotor core 95, and further has both ends of the winding groove 103. An L-shaped guide plate 105 having a cross-shaped core wire 104 is provided, and the winding groove 103 and the L-shaped guide plate 105 are embedded with superconducting material 98 to form a mold-molded superconducting cage-shaped winding 106.
以上のように構成すると、型枠成形超電導篭形巻線10
6を形成している超電導物質98は、巻線溝103の凹
部101をなしている中広部分と十字形芯線104を有
したL形ガイド板105で強固に固定されるので、厚み
を持った超電導の篭形巻線としても、なんら心配するこ
となく、固定強化と入力損失低減に効果的な超電導回転
子90を提供できる。With the above configuration, the mold-molded superconducting cage-shaped winding 10
The superconducting material 98 forming the wire winding groove 103 is firmly fixed by the L-shaped guide plate 105 which has the wide part forming the recess 101 of the winding groove 103 and the cross-shaped core wire 104. A superconducting rotor 90 that is effective in strengthening fixation and reducing input loss can be provided without any concerns even when using superconducting cage-shaped windings.
以上、これまでは回転電機の集電装置と管形回転子の実
施例について記述してきたが、以上のような構成を静止
機器部品への応用として、例えば半導体素子回路に超電
導材を使った超電導電子回路と、電源回路に超電導材を
使った超電導電源回路の回路切換スインチに応用できる
。Up to now, we have described examples of current collectors and tubular rotors for rotating electric machines, but the above configuration can be applied to stationary equipment components, such as superconducting devices using superconducting materials in semiconductor element circuits. It can be applied to circuit switching switches for electronic circuits and superconducting power supply circuits that use superconducting materials in the power supply circuit.
超電導電子回路と超電導電源回路の切換スイ・ソチの構
成は、前記回転電機の集電装置を静止機器に置き代えた
ようなもので、超電導化すると、切換摺動部の火花損傷
防止や誘導信号の侵入防止ができる。The configuration of Sui-Sochi, which switches between superconducting electronic circuits and superconducting power supply circuits, is similar to replacing the current collector of the rotating electric machine with a stationary device. can prevent intrusion.
以下、本発明の一実施例を回に沿って詳細に説明する。Hereinafter, one embodiment of the present invention will be described in detail step by step.
第16図において、超電導電子回路SCCと超電導電源
回路SCPの切換操作をする切換スイ・ンチ107は、
冷媒注入孔108を有した超電導成形カバー109の内
部に、リング冷却孔110を備えた絶縁固定基板111
を設け、前記絶縁固定基板111の内周部に金属被膜1
12を配設し、この金属被膜112に超電導物質を被覆
した超電導電子回路端子板113と超電導電源回路端子
板114を設けている。In FIG. 16, the switching switch 107 for switching between the superconducting electronic circuit SCC and the superconducting power supply circuit SCP is as follows:
An insulating fixed substrate 111 with a ring cooling hole 110 inside a superconducting molded cover 109 having a coolant injection hole 108
A metal coating 1 is provided on the inner circumference of the insulating fixed substrate 111.
12, and a superconducting electronic circuit terminal board 113 and a superconducting power supply circuit terminal board 114 in which the metal coating 112 is coated with a superconducting substance are provided.
そして超電導電子回路端子板113と超電導電源回路端
子板114は、切換操作ツマミ115の回転軸116に
固定されている任意回転の、絶縁体の周部を金属被膜で
被覆し、その周部を超電導物質で被覆した超電導集電体
117の回転移動により、順次切換されるよう構成され
、切換スイッチ107ば冷媒ボール(図示しない)に挿
入されることにより、超電導成形カバー109の冷媒浸
漬と同時に冷媒注入孔108からリング冷却孔110に
冷媒が注入し、切換スイッチ107は超電導スイッチと
なる。The superconducting electronic circuit terminal board 113 and the superconducting power supply circuit terminal board 114 are made by coating the circumferential part of an insulator fixed to the rotating shaft 116 of the switching operation knob 115 with a metal coating, and coating the circumferential part of the insulator with a metal coating. The switches are configured to be sequentially switched by rotational movement of the superconducting current collector 117 coated with a substance, and by inserting the changeover switch 107 into a refrigerant ball (not shown), the refrigerant can be injected at the same time as the superconducting molded cover 109 is immersed in the refrigerant. Refrigerant is injected into the ring cooling hole 110 from the hole 108, and the changeover switch 107 becomes a superconducting switch.
以上のように構成された切換スイッチ107は、火花や
熱に強く、非常に硬い超電導物質同士の摺動切換になる
他、前記超電導電子回路端子板113と超電導電源回路
端子板114が超電導成形カバー109に収納されるこ
とから、端子切換摺動面に火花を発生したり、また、誘
導信号の侵入がなく、端子損傷防止と誘導侵入防止に効
果的な超電導切換スイッチを提供することができる。The changeover switch 107 configured as described above is resistant to sparks and heat, and is a sliding switch between very hard superconducting materials, and the superconducting electronic circuit terminal board 113 and the superconducting power supply circuit terminal board 114 are covered by a superconducting molded cover. 109, there is no generation of sparks on the terminal switching sliding surface, and there is no intrusion of induced signals, making it possible to provide a superconducting changeover switch that is effective in preventing terminal damage and intrusion.
上記第1図〜第16図に示す本発明の超電導集電装置の
実施例は、液体窒素等の冷却媒体による冷却により、超
電導状態となる低温超電導物質を用いた超電導集電装置
に関するものであったが、これらの効果と同様な効果と
簡略化が図れ、将来、最も効果的で汎用性のあるものと
して考えられるのは、第17図、第18図に示すような
、常温で超電導を示す高温超電導物質を用いた超電導集
電装置である。The embodiments of the superconducting current collector of the present invention shown in FIGS. 1 to 16 above relate to a superconducting current collector using a low-temperature superconducting material that becomes superconducting when cooled with a cooling medium such as liquid nitrogen. However, the most effective and versatile technology in the future that can achieve similar effects and simplification as these is the one that exhibits superconductivity at room temperature, as shown in Figures 17 and 18. This is a superconducting current collector using high-temperature superconducting materials.
第17図、第18図は、回転軸201 と一体化した、
軸方向通気孔202と径方向通気孔203を有した金属
整流子胴204とし、前記金属整流子胴204の周部に
セラミックス絶縁部205を設け、そのセラミックス絶
縁部205に高温超電導物質を蒸着、またはスパックリ
ング法で固定して超電導整流子片206を形成し、前記
超電導整流子片206端部の端板207にインジウム超
音波トンダ部の固定端子部208を設け、電機子巻線リ
ート線209を溶着させる高温超電導整流子210とな
っている。FIG. 17 and FIG. 18 show a rotary shaft integrated with the rotating shaft 201.
A metal commutator body 204 having an axial ventilation hole 202 and a radial ventilation hole 203 is provided, a ceramic insulating part 205 is provided around the circumference of the metal commutator body 204, and a high-temperature superconducting material is vapor-deposited on the ceramic insulating part 205. Alternatively, a superconducting commutator piece 206 is formed by fixing by a spackle method, and a fixed terminal part 208 of an indium ultrasonic tonter part is provided on the end plate 207 at the end of the superconducting commutator piece 206, and the armature winding wire 209 is fixed. This is a high-temperature superconducting commutator 210 that welds.
以上のように構成することにより、前記実施例の冷媒貯
槽機構を構成したものと同様の効果が得られる。また木
案は、冷媒貯槽が不要で、金属整流子胴204の端板2
07の径方向通気孔203のファン作用で、高温超電導
整流子210を冷却することから、金属整流子胴に無数
の通気孔を設けるので、小型軽量↓こして機能向上が図
るため、将来の実用他案の1つとして期待できるもので
ある。By configuring as described above, effects similar to those obtained by configuring the refrigerant storage tank mechanism of the embodiment described above can be obtained. In addition, the wooden plan does not require a refrigerant storage tank, and the end plate 2 of the metal commutator body 204
Since the high temperature superconducting commutator 210 is cooled by the fan action of the radial ventilation holes 203 of 07, numerous ventilation holes are provided in the metal commutator body, which makes it smaller and lighter and improves functionality, making it suitable for future practical use. This is a promising alternative.
本発明の超電導集電装置によれば、超電導整流子片は、
整流子胴に対し、超電導整流子片の底部、或いは超電導
整流子片の周部、内部で頑丈に或いは一体的に固定され
、かつ超電導物質に伝達される回転振動は、超電導物質
の固定部材である金属被膜や絶縁皮膜、或いは固定補強
板や固定用突起の柔軟性によって吸収されるので、亀裂
侵入防止に効果がある。また、集電ブラシは、電流授受
部となる超電導物質を黒鉛ブラシ、或いは銀ブラシ等の
型枠ブラシで被覆していることから発生アークは型枠ブ
ラシで消滅される。同時に摺動給電部は非常に硬い超電
導物質同士で給電摺動できるため、損傷摩耗が大巾に改
善できるので、整流子面の凹凸発生がなくなり、ブラシ
の跳ね返り振動による火花発生防止と荒損防止に効果が
ある。According to the superconducting current collector of the present invention, the superconducting commutator pieces are
The rotary vibration that is firmly or integrally fixed to the commutator body at the bottom of the superconducting commutator piece or the circumferential part of the superconducting commutator piece, and that is transmitted to the superconducting material is transmitted to the fixed member of the superconducting material. Since it is absorbed by the flexibility of a certain metal coating, insulating coating, fixing reinforcing plate, or fixing protrusion, it is effective in preventing cracks from entering. Furthermore, since the current collecting brush covers the superconducting material serving as the current transfer portion with a formwork brush such as a graphite brush or a silver brush, the generated arc is extinguished by the formwork brush. At the same time, since the sliding power supply part can feed power by sliding between very hard superconducting materials, damage and wear can be greatly improved, eliminating unevenness on the commutator surface, preventing sparks caused by rebound vibration of the brush, and preventing rough damage. is effective.
また、超電導回転子については、超電導物質に穴付の補
強板を埋設した篭形巻線となっているのて、固定強化は
勿論、作業性の改善と電力損失低域に効果的である。Furthermore, the superconducting rotor is a cage-shaped winding with reinforcing plates with holes embedded in the superconducting material, which is effective in strengthening the fixation, improving workability, and reducing power loss.
さらに、超電導切換スイッチについても前記集電装置と
同様に、静止側の回路端子板と移動側の接点となる集電
体を、非常に硬い超電導物質同士の摺動切換となるため
、火花発生による端子板損傷が防止されると共に、電子
回路端子板と電源回路端子板を、超電導物質で成形した
超電導カッ\−の内に収納するため、超電導物質の持つ
特有のマイスナー効果により、周辺外部からの誘導信号
を跳ね返すことができるので、シールド効果がある。Furthermore, in the case of a superconducting changeover switch, as with the current collector, the current collector, which is the contact point between the circuit terminal plate on the stationary side and the moving side, is switched by sliding between very hard superconducting materials, so sparks cannot be generated. In addition to preventing damage to the terminal board, since the electronic circuit terminal board and the power circuit terminal board are housed in a superconducting cup made of superconducting material, the unique Meissner effect of superconducting material prevents interference from outside the surrounding area. It has a shielding effect because it can reflect the induced signal.
第1図は本発明の実施例を示す集電装置の要部破断斜視
図、第2図は第1図の本発明の縦断面図、第3回は本発
明の他の実施例を示す要部縦断面図、第4回は本発明の
その他の第1の実施例を示す要部縦断面図、第5図は本
発明のその他の第2の実施例を示す要部縦断面図、第6
図は本発明のその他の第3の実施例を示す要部縦断面図
、第7図は本発明のその他の第4の実施例を示すNU立
要部縦断面図、第8図は本発明のその他の第5の実施例
を示し要部縦断面図、第9図は本発明のその他の第6の
実施例を示す要部縦断面図、第10図は本発明のその他
の第7の実施例を示す要部縦断面図、第11図は本発明
の実施例を示すスリップリングの破断斜視図、第12図
は本発明の他の実施例を示すスリップリングの部分構成
断面図、第13図は本発明のその他の実施例を示すスリ
ップリングの部分構成断面図、第14図は本発明の実施
例を示す回転子の破断斜視図、第15図は本発明の他の
実施例を示す回転子の破断斜視図、第16図は本発明の
実施例を示す切換スイッチの一部破断斜視回、第17図
は、常温で超電導を示す高温超電導物質を用いた超電導
集電装置を構成する高温超電導整流子の斜視図、第18
図は第17図に示す高温超電導整流子の断面図である。
1・・・超電導集電装置、2・・・超電導整流子、3・
・・冷媒貯槽、4・・・超電導ブラシ、5・・・超電導
電機子巻線、6・・・電機子鉄心、7・・・回転子、8
・・・回転軸、9・・・スロット、10・・・スロット
キー、11・・・冷却通気孔、12・・・絶縁整流子胴
、13・・・金属被膜、14・・・超電導整流子片、1
5・・・整流子胴端板、16・・・溶着ボケッ1〜.1
7・・・インジウム超音波ハンダ、18・・・巻線端子
、19・・・絶縁体、20・・・固定板、21・・・固
定リング、22・・・ホルト、23・・・型枠ブラシ、
24・・・超電導物質、25・・・冷媒貯槽、26・・
・伸縮注入管、27・・・主注入管、28・・ブラシリ
ード線、29・・・逆台形固定溝、30・・・固定穴、
31・・・金属固定補強板、32・・・超電導物質、3
3・・・超電導整流子片、34・・・固定用突起、35
・・・突起付固定溝、36・・・塊状超電導整流子片、
37・・・二段固定溝、38・・・下段溝、39・・・
通流孔、40・・・冷却固定管、41・・・二段超電導
整流子片、42・・・逆台形固定溝、43・・・固定穴
、44・・・金属固定板、45・・・複合超電導整流子
片、46・・・超電導整流子、47・・・固定溝、48
・・・超電導整流子片、49・・・金属リング板、50
・・・固定突起、5L 56.84・・・セラミック絶
縁体、52・・・冷却通気孔、53・・・分割整流子、
54・・・金属整流子胴、55・・・冷媒通気孔、57
・・・超電導整流子片、5日・・・固定溝、59・・・
金属型枠、6076、98・・・超電導物質、61・・
・型枠成形超電導整流子片、62・・・冷媒注入口、6
3・・・軸方向通気孔、64.72゜94・・・冷媒貯
槽、65・・・冷却突起、66・・・径方向通気孔、6
7 79、93.116・・・回転軸、68.81・・
・注入孔、69・・・通流孔、70・・・開口部、71
・・・超電導スリップリング、73・・・固定環、74
・・・固定芯線、75・・・絶縁被膜、77・・・超電
導界磁巻線、78・・・界磁鉄心、80・・・超電導渡
り線、82・・・通流孔、83・・・冷却孔、85・・
・リング十字網材、86・・・固定穴、87・・・物質
固定用突起、88・・・リングボックス環、89・・・
ボンクス成形超電導スリップリング、90・・・超電導
回転子、91・・・軸方向冷媒注入孔、92・・・径方
向注入孔、95・・・回転子鉄心、96・・・物質注入
穴、97・・・補強板、99・・・超電導界磁巻線、1
00・・・冷媒通気孔、101・・・凹部、102・・
・凸部、103・・・巻線溝、104・・・十字形芯線
、105・・・■、形ガイド板、106・・・型枠成形
超電導篭形巻線、SCC・・・超電導電子回路、sep
・・・超電導電源回路、107・・・切換スイッチ、1
08・・・冷媒注入孔、109・・・超電導成形カバー
、110・・・リング冷却孔、111・・・絶縁固定基
板、112・・・金属被膜、113・・・超電導電子回
路端子板、114・・・超電導電源回路端子板、115
・・・切換操作ツマミ、117・・・超電導集電体、2
01・・・回転軸、202・・・軸方向通気孔、203
・・・径方向通気孔、204・・・金属整流子胴、20
5・・・セラミックス絶縁部、206・・・超電導整流
子片、207・・・端板、208・・・固定端子部、2
09・・・電機子巻線リード線、210・・・高温超電
導整流子。Fig. 1 is a cutaway perspective view of main parts of a current collector showing an embodiment of the present invention, Fig. 2 is a longitudinal sectional view of the present invention shown in Fig. 1, and Part 3 is a main part showing another embodiment of the present invention. Part 4 is a longitudinal sectional view of a main part showing another first embodiment of the present invention. Fig. 5 is a longitudinal sectional view of a main part showing another second embodiment of the invention. 6
FIG. 7 is a vertical sectional view of the main part of NU showing another fourth embodiment of the present invention, and FIG. FIG. 9 is a vertical cross-sectional view of main parts showing another fifth embodiment of the present invention, FIG. 9 is a longitudinal cross-sectional view of main parts showing another sixth embodiment of the present invention, and FIG. FIG. 11 is a cutaway perspective view of a slip ring showing an embodiment of the present invention; FIG. 12 is a partial cross-sectional view of a slip ring showing another embodiment of the present invention; FIG. Fig. 13 is a partial cross-sectional view of a slip ring showing another embodiment of the present invention, Fig. 14 is a cutaway perspective view of a rotor showing an embodiment of the invention, and Fig. 15 is a cross-sectional view of a slip ring showing another embodiment of the invention. 16 is a partially cutaway perspective view of a changeover switch showing an embodiment of the present invention, and FIG. 17 shows a superconducting current collector using a high-temperature superconducting material that exhibits superconductivity at room temperature. Perspective view of a high temperature superconducting commutator, No. 18
The figure is a sectional view of the high temperature superconducting commutator shown in FIG. 17. 1... superconducting current collector, 2... superconducting commutator, 3...
... Refrigerant storage tank, 4... Superconducting brush, 5... Superconducting armature winding, 6... Armature core, 7... Rotor, 8
...Rotating shaft, 9...Slot, 10...Slot key, 11...Cooling vent, 12...Insulated commutator body, 13...Metal coating, 14...Superconducting commutator Piece, 1
5... Commutator body end plate, 16... Welding blur 1~. 1
7... Indium ultrasonic solder, 18... Winding terminal, 19... Insulator, 20... Fixing plate, 21... Fixing ring, 22... Holt, 23... Formwork brush,
24...Superconducting material, 25...Refrigerant storage tank, 26...
・Extensible injection pipe, 27... Main injection pipe, 28... Brush lead wire, 29... Inverted trapezoid fixing groove, 30... Fixing hole,
31... Metal fixed reinforcing plate, 32... Superconducting material, 3
3... Superconducting commutator piece, 34... Fixing protrusion, 35
...fixing groove with protrusion, 36...massive superconducting commutator piece,
37...Two-stage fixing groove, 38...Lower stage groove, 39...
Flow hole, 40... Cooling fixed tube, 41... Two-stage superconducting commutator piece, 42... Inverted trapezoid fixing groove, 43... Fixing hole, 44... Metal fixing plate, 45...・Composite superconducting commutator piece, 46... Superconducting commutator, 47... Fixing groove, 48
...Superconducting commutator piece, 49...Metal ring plate, 50
... Fixed protrusion, 5L 56.84 ... Ceramic insulator, 52 ... Cooling vent, 53 ... Split commutator,
54... Metal commutator body, 55... Refrigerant vent, 57
...Superconducting commutator piece, 5 days...Fixing groove, 59...
Metal formwork, 6076, 98...Superconducting material, 61...
・Form molded superconducting commutator piece, 62... Refrigerant inlet, 6
3... Axial ventilation hole, 64.72°94... Refrigerant storage tank, 65... Cooling projection, 66... Radial ventilation hole, 6
7 79, 93.116... Rotating axis, 68.81...
- Injection hole, 69... Communication hole, 70... Opening, 71
...Superconducting slip ring, 73...Fixed ring, 74
... fixed core wire, 75 ... insulation coating, 77 ... superconducting field winding, 78 ... field iron core, 80 ... superconducting crossover wire, 82 ... communication hole, 83 ...・Cooling hole, 85...
・Ring cross mesh material, 86...Fixing hole, 87...Protrusion for fixing substance, 88...Ring box ring, 89...
Bonx molded superconducting slip ring, 90... Superconducting rotor, 91... Axial refrigerant injection hole, 92... Radial injection hole, 95... Rotor core, 96... Material injection hole, 97 ... Reinforcement plate, 99 ... Superconducting field winding, 1
00... Refrigerant vent, 101... Recess, 102...
・Convex portion, 103...Winding groove, 104...Cross-shaped core wire, 105...■, Shape guide plate, 106...Form molded superconducting cage-shaped winding, SCC...Superconducting electronic circuit , sep
...Superconducting power supply circuit, 107...Selector switch, 1
08... Refrigerant injection hole, 109... Superconducting molded cover, 110... Ring cooling hole, 111... Insulating fixed substrate, 112... Metal coating, 113... Superconducting electronic circuit terminal plate, 114 ...Superconducting power supply circuit terminal board, 115
...Switching operation knob, 117...Superconducting current collector, 2
01... Rotating shaft, 202... Axial ventilation hole, 203
... Radial ventilation hole, 204 ... Metal commutator body, 20
5... Ceramic insulation part, 206... Superconducting commutator piece, 207... End plate, 208... Fixed terminal part, 2
09... Armature winding lead wire, 210... High temperature superconducting commutator.
Claims (1)
記整流子片を整流子胴周面に装着してなる整流子と、前
記整流子上を摺動するブラシから成る集電装置において
、その周部に前記整流子片を固定する固定部材を一体的
に配設してなる絶縁整流子胴を、回転軸に固設された固
定リングに一体的に固定するとともに、前記固定部材に
より超電導整流子片を前記絶縁整流子胴の周部に一体的
に固定することによって、超電導整流子を形成し、かつ
、前記整流子の周面を前記ブラシによる滑らかな摺接面
としたことを特徴とする超電導集電装置。 2、固定部材が、前記絶縁整流子胴の周部に、所要数、
一体的に設けられた金属固定部材からなり、前記金属固
定部材に超電導物質を蒸着して、金属蒸着形超電導整流
子片を前記絶縁整流子胴の周部に一体的に形成したこと
を特徴とする請求項1記載の超電導集電装置。 3、固定部材が、絶縁整流子胴の周面全周に施した金属
被膜からなり、前記金属被膜に超電導物質を蒸着固定し
、前記蒸着固定された超電導物質と金属被膜の所要箇所
を、切削、もしくは研磨して分割することにより、所要
数の薄膜超電導整流子片を前記絶縁整流子胴の周部に一
体的に形成したことを特徴とする請求項1記載の超電導
集電装置。 4、固定部材が、絶縁整流子胴の周部の所要箇所に所要
数設けた軸方向に長く、外径方向に狭く、内径側に広さ
を持った逆台形溝、及び、変形防止を図る補強板からな
り、前記補強板を敷設した逆台形溝に超電導溶材、或い
は超電導粉末材を注入硬化することにより超電導整流子
片を前記絶縁整流子胴の周部に一体的に形成したことを
特徴とする請求項1記載の超電導集電装置。 5、固定部材が、絶縁整流子胴の周部の所要箇所に設け
た所要数の整流子片固定溝からなり、前記整流子片固定
溝に、前記整流子片固定溝に合った型枠で成形した型枠
超電導整流子片を装着することにより、前記超電導整流
子片を前記絶縁整流子胴の周部に一体的に固定したこと
を特徴とする請求項1記載の超電導集電装置。 6、固定部材が、絶縁整流子胴の周部の所要箇所に所要
数設けた、凹凸状の整流子片飛散防止突起を有する突起
付溝からなり、前記突起付溝に粉末、或いは溶液超電導
物質を注入埋設して硬化することにより、超電導整流子
片を周部固定構造として前記絶縁整流子胴の周部に一体
的に形成したことを特徴とする請求項1記載の超電導集
電装置。 7、固定部材が、絶縁整流子胴の周部の所要箇所に所要
数設けた、上下連通した二段溝からなり、前記二段溝の
下段溝に冷却固定管を設け、前記冷却固定管と一体に二
段溝に超電導溶液、或いは超電導粉末材を注入埋設して
硬化させることにより、冷却手段を有した二段構造の超
電導整流子片を前記絶縁整流子胴の周部に一体的に形成
したことを特徴とする請求項1記載の超電導集電装置。 8、固定部材が、絶縁整流子胴の周部の所要箇所に所要
数設けた、軸方向に所要の長さを持ち、径方向に異巾を
持った二段構造の溝からなり、前記溝に超電導物質を注
入硬化することにより、整流子片の周面固定面積増加を
図った二段構造の超電導整流子片を前記絶縁整流子胴の
周部に一体的に形成したことを特徴とする請求項1記載
の超電導集電装置。 9、整流子胴と、固定側と電流授受する整流子片と、前
記整流子片を整流子胴周面に装着してなる整流子と、前
記整流子上を摺動するブラシから成る集電装置において
、前記絶縁整流子胴の周部に、軸方向に長く、径方向に
異巾の所要数の逆台形溝を設け、前記逆台形溝に、金属
板に超電導物質を蒸着固定して成形した複合超電導整流
子片を嵌合配設することにより、前記複合超電導整流子
片を前記絶縁整流子胴の周部に一体的に形成したことを
特徴とする超電導集電装置。 10、整流子胴と、固定側と電流授受する整流子片と、
前記整流子片を整流子胴周面に装着してなる整流子と、
前記整流子上を摺動するブラシから成る集電装置におい
て、前記絶縁整流子胴の周部に複数個の固定穴を設け、
前記固定穴に、金属リング板の外周部にセラミックス絶
縁体を施し、前記セラミックス絶縁体の所要箇所に超電
導物質を蒸着して所要数の超電導整流子片を配設し、前
記超電導整流子片を備えた金属リング板の内周部に前記
固定穴に、それぞれ、嵌合する複数個の固定突起を設け
、前記絶縁整流子胴の前記各固定穴に前記金属リング板
の前記各固定突起を嵌合することにより、前記超電導整
流子片を前記絶縁整流子胴の周部に一体的に固定し得る
ようにしたことを特徴とする分割成形構造の超電導集電
装置。 11、整流子胴と、固定側と電流授受する整流子片と、
前記整流子片を整流子胴周面に装着してなる整流子と、
前記整流子上を摺動するブラシから成る集電装置におい
て、金属整流子胴の周面を絶縁材で被覆し、前記絶縁被
覆整流子胴の周面を超電導物質で被覆し、前記超電導被
覆を所要箇所を部分的に切削、もしくは研磨することに
より、所要数の超電導整流子片を前記金属整流子胴の周
部に一体的に設けたことを特徴とする超電導集電装置。 12、整流子胴と、固定側と電流授受する整流子片と、
前記整流子片を整流子胴周面に装着してなる整流子と、
前記整流子上を摺動するブラシから成る集電装置におい
て、金属整流子胴の周面をセラミックス絶縁材で被覆し
、前記セラミックス絶縁被覆面の所要箇所に所要数分の
超電導物質を塗布して焼結硬化させることにより、所要
数の超電導整流子片を前記金属整流子胴の周部に一体的
に形成したことを特徴とする超電導集電装置。 13、整流子胴と、固定側と電流授受する整流子片と、
前記整流子片を整流子胴周面に装着してなる整流子と、
前記整流子上を摺動するブラシから成る集電装置におい
て、金属整流子胴の周部に所要数の固定溝を設け、前記
固定溝と前記金属整流子胴をセラミックス絶縁体で被覆
し、前記セラミックス絶縁体の固定溝に、金属型枠と超
電導物質で焼結成形してなる型枠成形超電導整流子片を
嵌合装着することにより、前記超電導整流子片を前記金
属整流子胴の周部に一体的に形成したことを特徴とする
超電導集電装置。 14、整流子胴の端部、または内径部に冷却作用をなす
冷却突起を設け、前記冷却突起に、整流子胴の一方向端
部から他端部に貫通した軸方向通気孔と、前記軸方向通
気孔に連通して径方向通気孔を設けたことを特徴とする
請求項1乃至13項のいずれかの項記載の超電導集電装
置。 15、整流子胴と、整流子片で構成した超電導整流子に
おいて、前記整流子の端部に冷媒貯槽を設けたことを特
徴とする請求項1乃至13項のいずれかの項記載の超電
導集電装置。 16、整流子胴の内径部に、前記軸方向、径方向等の冷
却通気孔と連通した冷媒貯槽を設けたことを特徴とする
請求項1乃至13項のいずれかの項記載の超電導集電装
置。 17、超電導界磁巻線と、前記超電導界磁巻線を収納固
定する界磁鉄心と、前記超電導界磁巻線の電流授受のス
リップリングから成る回転電機の集電装置において、前
記スリップリングを、回転軸に直接金属材、或いは絶縁
材の固定環を設け、前記固定環の外周部、または端部に
電流授受の摺動リングを固定する固定部材を設け、前記
固定環と固定部材を超電導物質で一体埋設し、二重構造
の超電導スリップリングとしたことを特徴とする回転電
機の超電導集電装置。 18、固定部材が、固定環の外周部に部分的に設けられ
た、前記固定環より巾狭い網状鋼材からなることを特徴
とする請求項17記載の回転電機の超電導集電装置。 19、固定部材が、固定環の外周部に設けられた、開放
端部分が巾方向に狭く屈折し、かつ、内部に突起を有す
るリングボックス環からなることを特徴とする請求項7
記載の回転電機の超電導集電装置。 20、超電導電機子巻線、或いは超電導界磁巻線と、前
記超電導電機子巻線や超電導界磁巻線と接続して摺動面
となる整流子、或いはスリップリングと、前記整流子や
スリップリングに電流授受する集電体のブラシとから成
る回転電機の超電導集電装置において、前記整流子、或
いはスリップリングと接触するブラシ構造を、黒鉛ブラ
シ、或いは銀ブラシで型枠を形成し、型枠の内に超電導
物質を注入して焼結硬化した超電導ブラシとしたことを
特徴とする回転電機の超電導集電装置。 21、超電導電機子巻線、或いは超電導界磁巻線と、前
記超電導電機子巻線や超電導界磁巻線と接続して摺動面
となる整流子、或いはスリップリングと、前記整流子や
スリップリングに電流授受する集電体のブラシとから成
る回転電機の超電導集電装置において、前記超電導ブラ
シ構成を、前記黒鉛ブラシ、或いは銀ブラシに縦方向の
角溝や丸形溝を設け、前記角溝、丸形溝に超電導物質を
埋設して硬化し、前記超電導物質の一方向端部にインジ
ウム超音波ハンダ部を設け、超電導端子線を設けた超電
導ブラシとしたことを特徴とする回転電機の超電導集電
装置。 22、超電導電機子巻線、或いは超電導界磁巻線と、前
記超電導電機子巻線や超電導界磁巻線に電流授受する整
流子、或いはスリップリングと、前記整流子やスリップ
リングと接触するブラシとから成る回転電機の超電導集
電装置において、前記整流子とスリップリングの摺動面
を超電導物質のセラミック超電導体とし、集電体を超電
導ブラシとしたことを特徴とする回転電機の超電導集電
装置。 23、回転軸と、前記回転軸と一体化した回転子鉄心と
、起動回転力を得るための篭形巻線とより成る回転電機
の回転子において、前記篭形巻線を、前記回転子鉄心外
周部に、前記回転子鉄心の周方向に分割して無数の穴付
補強板を設け、前記穴付補強板と回転子鉄心を超電導物
質で埋設し一体化して形成した、金属材埋設超電導篭形
巻線としたことを特徴とする回転電機の回転子。 24、回転軸と、前記回転軸と一体化した回転子鉄心と
、起動回転力を得るための篭形巻線とより成る回転電機
の回転子において、前記篭形巻線を、前記回転子鉄心に
穴付平板を有した複数個の巻線溝を設け、前記巻線溝配
設の回転子鉄心の端部に、十字芯線を有したL形ガイド
板を設け、前記穴付平板とL形ガイド板を超電導物質で
回転子鉄心と一体に埋設して形成した、型枠成形超電導
篭形巻線としたことを特徴とする回転電機の回転子。 25、複数個の超電導電子回路端子と、超電導電源端子
とを有した超電導電子回路装置の切換スイッチにおいて
、前記切換スイッチの構成を、前記複数個の超電導電子
回路端子固定の端子板を絶縁固定基板とし、前記絶縁固
定基板の周面に所要数の金属被膜部を設け、前記金属被
膜に超電導物質を蒸着固定した超電導端子板とし、前記
超電導端子板を摺動する集電体を絶縁集電体とし、前記
絶縁集電体の周面に金属被膜を施し、その金属被膜を超
電導物質で被覆した超電導集電体とし、前記超電導電子
回路と超電導電源の端子切換を超電導体同士でさせる、
超電導切換スイッチとしたことを特徴とする超電導電子
回路装置の切換スイッチ。[Scope of Claims] 1. A commutator body, a commutator piece that exchanges current with a fixed side, a commutator formed by mounting the commutator piece on the circumferential surface of the commutator body, and a commutator that slides on the commutator body. In a current collector consisting of a brush, an insulated commutator body having a fixing member for fixing the commutator pieces integrally disposed around the circumference thereof is integrally attached to a fixing ring fixed to a rotating shaft. At the same time, a superconducting commutator is formed by integrally fixing the superconducting commutator piece to the circumference of the insulated commutator body by the fixing member, and the circumferential surface of the commutator is smoothed by the brush. A superconducting current collector characterized by having a sliding contact surface. 2. A required number of fixing members are provided around the circumference of the insulated commutator body.
It comprises an integrally provided metal fixing member, and a superconducting substance is deposited on the metal fixing member to integrally form a metal-deposited superconducting commutator piece around the circumference of the insulated commutator body. The superconducting current collector according to claim 1. 3. The fixing member consists of a metal coating applied to the entire circumference of the insulating commutator body, a superconducting substance is fixed by vapor deposition on the metal coating, and required parts of the superconducting substance fixed by vapor deposition and the metal coating are cut. 2. The superconducting current collector according to claim 1, wherein a required number of thin film superconducting commutator pieces are integrally formed around the circumference of the insulated commutator body by dividing the insulating commutator body by polishing or dividing the thin film superconducting commutator pieces. 4. The fixing member is an inverted trapezoidal groove that is long in the axial direction, narrow in the outer radial direction, and wide in the inner radial direction, and is provided in the required number of locations on the circumference of the insulated commutator body, and is designed to prevent deformation. It consists of a reinforcing plate, and superconducting commutator pieces are integrally formed around the circumference of the insulated commutator body by injecting and hardening superconducting melt material or superconducting powder material into the inverted trapezoidal groove in which the reinforcing plate is laid. The superconducting current collector according to claim 1. 5. The fixing member consists of a required number of commutator piece fixing grooves provided at predetermined locations on the circumference of the insulated commutator body, and a formwork that fits the commutator piece fixing grooves is installed in the commutator piece fixing grooves. 2. The superconducting current collector according to claim 1, wherein the superconducting commutator piece is integrally fixed to the circumference of the insulating commutator body by mounting a molded superconducting commutator piece. 6. The fixing member consists of a groove with protrusions having uneven commutator piece scattering prevention protrusions provided in a required number at predetermined locations on the circumference of the insulated commutator body, and the protrusion groove is filled with powder or solution superconducting material. 2. The superconducting current collector according to claim 1, wherein the superconducting commutator pieces are integrally formed on the circumferential portion of the insulating commutator body as a circumferential fixing structure by injecting and embedding and curing the superconducting commutator pieces. 7. The fixing member consists of a required number of vertically communicating two-stage grooves provided at required locations on the circumference of the insulated commutator body, and a cooling fixed pipe is provided in the lower groove of the two-stage groove, and the cooling fixed pipe and By integrally injecting and embedding superconducting solution or superconducting powder material into the two-stage groove and curing it, a two-stage structure superconducting commutator piece having a cooling means is integrally formed around the circumference of the insulated commutator body. The superconducting current collector according to claim 1, characterized in that: 8. The fixing member consists of two-stage grooves having a required length in the axial direction and different widths in the radial direction, which are provided in a required number at required locations on the circumference of the insulated commutator body; A superconducting commutator piece having a two-stage structure is integrally formed around the circumference of the insulated commutator body, by injecting and hardening a superconducting substance into the insulating commutator body to increase the fixed area of the circumferential surface of the commutator piece. The superconducting current collector according to claim 1. 9. A current collector consisting of a commutator body, a commutator piece that exchanges current with the fixed side, a commutator formed by mounting the commutator piece on the circumferential surface of the commutator body, and a brush that slides on the commutator body. In the device, a required number of inverted trapezoidal grooves that are long in the axial direction and have different widths in the radial direction are provided on the circumference of the insulated commutator body, and a superconducting material is deposited and fixed on a metal plate in the inverted trapezoidal grooves and formed. A superconducting current collector characterized in that the composite superconducting commutator pieces are integrally formed around the circumference of the insulating commutator body by fitting and disposing the composite superconducting commutator pieces. 10. A commutator body, a commutator piece that transfers current to and from the fixed side,
a commutator in which the commutator pieces are attached to a circumferential surface of a commutator body;
In the current collector comprising a brush that slides on the commutator, a plurality of fixing holes are provided in the circumference of the insulated commutator body,
A ceramic insulator is applied to the outer periphery of the metal ring plate in the fixing hole, and a required number of superconducting commutator pieces are arranged by depositing a superconducting substance at required locations on the ceramic insulator, and the superconducting commutator pieces are arranged in the fixing hole. A plurality of fixing protrusions that fit into the fixing holes are provided on the inner circumference of the metal ring plate provided, and each of the fixing protrusions of the metal ring plate is fitted into each of the fixing holes of the insulated commutator body. A superconducting current collector having a split molding structure, wherein the superconducting commutator pieces can be integrally fixed to the circumferential portion of the insulating commutator body by combining the superconducting commutator pieces. 11. A commutator body and a commutator piece that exchanges current with the fixed side,
a commutator in which the commutator pieces are attached to a circumferential surface of a commutator body;
In the current collector comprising a brush that slides on the commutator, the circumferential surface of the metal commutator body is coated with an insulating material, the circumferential surface of the insulating coated commutator body is coated with a superconducting material, and the superconducting coating is coated with a superconducting material. A superconducting current collector characterized in that a required number of superconducting commutator pieces are integrally provided around the circumference of the metal commutator body by partially cutting or polishing required locations. 12. A commutator body, a commutator piece that transfers current to and from the fixed side,
a commutator in which the commutator pieces are attached to a circumferential surface of a commutator body;
In the current collector consisting of a brush that slides on the commutator, the circumferential surface of the metal commutator body is coated with a ceramic insulating material, and a required number of superconducting substances are applied to required locations on the ceramic insulating coated surface. A superconducting current collector characterized in that a required number of superconducting commutator pieces are integrally formed around the circumference of the metal commutator body by sintering and hardening. 13. A commutator body and a commutator piece that exchanges current with the fixed side,
a commutator in which the commutator pieces are attached to a circumferential surface of a commutator body;
In the current collector comprising a brush that slides on the commutator, a required number of fixing grooves are provided on the circumference of the metal commutator body, the fixing grooves and the metal commutator body are covered with a ceramic insulator, and the metal commutator body is covered with a ceramic insulator. By fitting and mounting a mold-molded superconducting commutator piece formed by sintering and forming a metal mold and a superconducting material into the fixing groove of the ceramic insulator, the superconducting commutator piece is attached to the periphery of the metal commutator body. A superconducting current collector characterized by being integrally formed with. 14. A cooling protrusion that performs a cooling effect is provided at the end or inner diameter part of the commutator body, and the cooling protrusion has an axial ventilation hole that penetrates from one end of the commutator body to the other end, and the shaft 14. The superconducting current collector according to claim 1, further comprising a radial vent hole communicating with the directional vent hole. 15. A superconducting collector according to any one of claims 1 to 13, characterized in that, in a superconducting commutator composed of a commutator body and a commutator piece, a refrigerant storage tank is provided at an end of the commutator. Electrical equipment. 16. The superconducting current collector according to any one of claims 1 to 13, characterized in that a refrigerant storage tank communicating with the cooling vents in the axial direction, radial direction, etc. is provided in the inner diameter part of the commutator body. Device. 17. A current collector for a rotating electrical machine comprising a superconducting field winding, a field core for storing and fixing the superconducting field winding, and a slip ring for transferring and receiving current of the superconducting field winding, wherein the slip ring is , a fixed ring made of a metal material or an insulating material is provided directly on the rotating shaft, a fixing member for fixing a sliding ring for current transfer and reception is provided on the outer periphery or end of the fixed ring, and the fixed ring and the fixed member are made of superconducting material. A superconducting current collector for a rotating electrical machine, characterized by having a superconducting slip ring integrally buried with a substance to form a double-structured superconducting slip ring. 18. The superconducting current collector for a rotating electric machine according to claim 17, wherein the fixing member is made of a mesh steel material narrower than the fixed ring and partially provided on the outer periphery of the fixed ring. 19. Claim 7, wherein the fixing member is a ring box ring provided on the outer periphery of the fixing ring, the open end portion of which is bent narrowly in the width direction, and has a protrusion inside.
A superconducting current collector for a rotating electric machine as described above. 20. A superconducting armature winding or a superconducting field winding, a commutator or a slip ring connected to the superconducting armature winding or the superconducting field winding to serve as a sliding surface, and the commutator or slip ring. In a superconducting current collector for a rotating electrical machine, which is composed of a current collector brush that sends and receives current to and from a ring, the brush structure that contacts the commutator or slip ring is formed by forming a formwork with a graphite brush or a silver brush, and molding it. A superconducting current collector for a rotating electrical machine, characterized by having a superconducting brush injected with a superconducting substance into a frame and hardened by sintering. 21. A superconducting armature winding or a superconducting field winding, a commutator or a slip ring connected to the superconducting armature winding or the superconducting field winding to serve as a sliding surface, and the commutator or slip ring. In a superconducting current collector for a rotating electric machine, which includes a current collector brush that sends and receives current to a ring, the superconducting brush configuration is such that the graphite brush or the silver brush is provided with a vertical square groove or a round groove, and the corner A rotating electric machine characterized in that a superconducting material is embedded in a groove or a round groove and cured, and an indium ultrasonic solder part is provided at one end of the superconducting material to form a superconducting brush provided with a superconducting terminal wire. Superconducting current collector. 22. A superconducting armature winding or a superconducting field winding, a commutator or slip ring that transfers current to and from the superconducting armature winding or superconducting field winding, and a brush that comes into contact with the commutator or slip ring. A superconducting current collector for a rotating electrical machine, characterized in that the sliding surfaces of the commutator and slip ring are made of a ceramic superconductor made of a superconducting material, and the current collector is a superconducting brush. Device. 23. In a rotor for a rotating electrical machine comprising a rotating shaft, a rotor core integrated with the rotating shaft, and a cage-shaped winding for obtaining starting rotational force, the cage-shaped winding is connected to the rotor core. A superconducting cage buried in metal is formed by providing a reinforcing plate with countless holes on the outer periphery of the rotor core by dividing it in the circumferential direction, and integrating the reinforcing plate with holes and the rotor core by embedding them in a superconducting material. A rotor for a rotating electric machine characterized by having a shaped winding. 24. In a rotor for a rotating electric machine comprising a rotating shaft, a rotor core integrated with the rotating shaft, and a cage-shaped winding for obtaining starting rotational force, the cage-shaped winding is connected to the rotor core. A plurality of winding grooves each having a flat plate with holes are provided in the rotor core, and an L-shaped guide plate having a cross core wire is provided at the end of the rotor core in which the winding grooves are arranged. A rotor for a rotating electric machine, characterized in that a guide plate is formed by embedding a superconducting material integrally with a rotor core, and is formed as a mold-molded superconducting cage-shaped winding. 25. In a changeover switch for a superconducting electronic circuit device having a plurality of superconducting electronic circuit terminals and a superconducting power supply terminal, the configuration of the changeover switch is such that the terminal plate for fixing the plurality of superconducting electronic circuit terminals is an insulated fixing substrate. A required number of metal coating parts are provided on the circumferential surface of the insulating fixed substrate, a superconducting terminal plate is formed by depositing and fixing a superconducting substance on the metal coating, and a current collector that slides on the superconducting terminal plate is an insulating current collector. A metal coating is applied to the peripheral surface of the insulating current collector, and the metal coating is coated with a superconducting substance to form a superconducting current collector, and terminal switching between the superconducting electronic circuit and the superconducting power source is performed between the superconductors.
A changeover switch for a superconducting electronic circuit device, characterized in that it is a superconducting changeover switch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63186859A JPH0732572B2 (en) | 1988-07-28 | 1988-07-28 | Superconducting current collector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63186859A JPH0732572B2 (en) | 1988-07-28 | 1988-07-28 | Superconducting current collector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0241640A true JPH0241640A (en) | 1990-02-09 |
JPH0732572B2 JPH0732572B2 (en) | 1995-04-10 |
Family
ID=16195905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63186859A Expired - Lifetime JPH0732572B2 (en) | 1988-07-28 | 1988-07-28 | Superconducting current collector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0732572B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012022622A1 (en) * | 2010-08-18 | 2012-02-23 | BSH Bosch und Siemens Hausgeräte GmbH | Electric machine with a commutator |
-
1988
- 1988-07-28 JP JP63186859A patent/JPH0732572B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012022622A1 (en) * | 2010-08-18 | 2012-02-23 | BSH Bosch und Siemens Hausgeräte GmbH | Electric machine with a commutator |
Also Published As
Publication number | Publication date |
---|---|
JPH0732572B2 (en) | 1995-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0175495B1 (en) | Superconducting apparatus | |
EP0913023B1 (en) | Superconducting synchronous motor construction | |
JP6270479B2 (en) | High temperature superconductor (HTS) coil | |
US4060743A (en) | Superconductive exciter winding for the rotor of a turbogenerator and method of production | |
CN101911224A (en) | Plane coil, and non-contact power transmission device using the same | |
WO2001041283A2 (en) | Synchronous machine with superconductors | |
EP0596249A2 (en) | Compact superconducting magnet system free from liquid helium | |
US20210336498A1 (en) | Rotor and machine with a superconducting permanent magnet in a rotor carrier | |
US3333131A (en) | Commutating pole assembly for a dynamoelectric machine | |
JPH0241640A (en) | Superconducting current collector | |
JP2006515501A (en) | Rotor assembly | |
WO2001006524A3 (en) | Superconducting coil assembly | |
JP3972964B2 (en) | Field winding assembly | |
US6577028B2 (en) | High temperature superconducting rotor power leads | |
RU2214647C2 (en) | Magnetron anode block and magnetron (alternatives) | |
EP1079504B1 (en) | Method of impregnating coil with resin, having separate processes of incorporating particles and impregnating coil | |
JPH0260455A (en) | Superconducting shielded stator of dc machine | |
US4794359A (en) | Variable transformer | |
WO2018224163A1 (en) | Electrical machine with a conductor arrangement and insulation therefore | |
JP3601288B2 (en) | Magnetization method for permanent magnet type motor | |
JPH11144940A (en) | Superconducting magnet device | |
RU2772303C1 (en) | Method for manufacturing an end winding system for an electric rotating machine | |
JPS6381874A (en) | Permanent current switch | |
JP2580637B2 (en) | Rotor of superconducting rotating electric machine and method of manufacturing the same | |
JPH0763209B2 (en) | Structure and mounting method of resin can for motor |