JPH0241155B2 - - Google Patents

Info

Publication number
JPH0241155B2
JPH0241155B2 JP58110545A JP11054583A JPH0241155B2 JP H0241155 B2 JPH0241155 B2 JP H0241155B2 JP 58110545 A JP58110545 A JP 58110545A JP 11054583 A JP11054583 A JP 11054583A JP H0241155 B2 JPH0241155 B2 JP H0241155B2
Authority
JP
Japan
Prior art keywords
electrode plate
fluid
electrode
ionization
voltage power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58110545A
Other languages
Japanese (ja)
Other versions
JPS603880A (en
Inventor
Takeshi Yoshii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58110545A priority Critical patent/JPS603880A/en
Publication of JPS603880A publication Critical patent/JPS603880A/en
Publication of JPH0241155B2 publication Critical patent/JPH0241155B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はコロナ放電に伴うイオン風を利用して
空気等の流体を移動させる流体移動装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid moving device that moves fluid such as air using ion wind caused by corona discharge.

一般に、コロナ放電に伴うイオン風を利用して
空気等の流体を移動させる装置は例えば特公昭54
−23147号等に記載されているようなものがある。
この種の装置は基本的には第1図に示すように平
行平板である電極板1を並列又は放射線状(第1
図では並列のみを示す。)に一定間隔で配設する
と共に電極板1の先端を結ぶ面より前方の位置に
イオン化線2を各電極板1の間に配設し、これら
電極板1とイオン化線2をそれぞれ直流高圧電源
3のプラス側とマイナス側に接続して構成されて
いる。従つて、直流高圧電源3より電極板1とイ
オン化線2とに直流高電圧が印加されると、電極
板1とイオン化線2との間にコロナ放電が生じ、
イオン化線2から電極板1に向うイオン風(イオ
ン流)が発生する。このイオン風によつてイオン
化線2周辺の流体は電極板1と電極板1との流体
通路を通つて図中右側方向に流動する。
In general, devices that move fluids such as air using ion winds caused by corona discharge are known as
There are some such as those described in No. 23147.
This type of device basically consists of electrode plates 1, which are parallel flat plates, arranged in parallel or radially (first
The figure shows only parallel. ), and ionized wires 2 are arranged between each electrode plate 1 at a position in front of the plane connecting the tips of the electrode plates 1, and these electrode plates 1 and ionized wires 2 are connected to a DC high voltage power source, respectively. It is connected to the positive and negative sides of 3. Therefore, when a DC high voltage is applied to the electrode plate 1 and the ionized wire 2 from the DC high voltage power supply 3, corona discharge occurs between the electrode plate 1 and the ionized wire 2,
An ion wind (ion flow) is generated from the ionized wire 2 toward the electrode plate 1. Due to this ion wind, the fluid around the ionization line 2 flows to the right in the figure through the fluid passage between the electrode plates 1.

ところで、このようにイオン風を利用した流体
移動装置はイオン風のもつ特性によつて流体を無
騒音、高効率(低電力)に移動させることができ
るという特長を持つているが、例えば熱交換器等
の送風装置のように高い静圧を必要とするものに
は適用できないという欠点があつた。即ち、従来
の流体移動装置は第2図に示すように電極板1の
断面形状が平行平板であつたためにイオン流4に
誘引されて生ずる流体の流れ5は電極板表面をな
めるような流れとなり、全体として左から右方向
への流れが生ずるものの、その中央部には逆流が
生じ、利用し得る静圧は極めて小さく、ほとんど
期待出来なかつた。
By the way, fluid movement devices that use ion wind have the advantage of being able to move fluid noiselessly and with high efficiency (low power) due to the characteristics of the ion wind. This method has the disadvantage that it cannot be applied to equipment that requires high static pressure, such as air blowers for containers and the like. That is, in the conventional fluid moving device, as shown in FIG. 2, the cross-sectional shape of the electrode plate 1 was a parallel flat plate, so the fluid flow 5 induced by the ion flow 4 became a flow that licked the surface of the electrode plate. Although the overall flow was from left to right, there was a reverse flow in the center, and the usable static pressure was extremely small, so we could hardly expect anything.

本発明は上記の事情に基づいてなされたもので
あり、その目的とするところは熱交換器等の送風
装置として適用可能な高静圧の流体移動装置を提
供することにある。
The present invention has been made based on the above-mentioned circumstances, and its object is to provide a high static pressure fluid moving device that can be used as a blower device such as a heat exchanger.

本発明は上記の目的を達成するために、直流高
電圧電源の一方の極に接続され、断面が中央部に
厚みを持つた翼形或いは流線形の電極板を並列又
は放射線状に、或いは筒状に配設して両電極間に
のど部を有する流体通路を形成し、上記のど部よ
り上流側の流体通路に直流高電圧電源の他方の極
に接続されたイオン化線又はイオン化電極を配設
したことを特徴とするものである。
In order to achieve the above object, the present invention connects to one pole of a DC high-voltage power supply, and connects electrode plates having an airfoil shape or a streamlined cross section with a thickness in the center in parallel, in a radial manner, or in a cylindrical manner. A fluid passageway having a throat is formed between the two electrodes, and an ionization wire or an ionization electrode connected to the other pole of the DC high voltage power source is disposed in the fluid passageway upstream of the throat. It is characterized by the fact that

以下、図面を参照して本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は本発明の一実施例を示す流体移動装置
の概略構成図で、図中第1図と同一部分又は相当
する部分には同一符号が付されている。同図に示
すように本装置の電極板1は中央部に厚みを持つ
た断面形状をしており、いわゆる一種の翼形に形
成されている。また、この電極板1は所定間隔で
並列に配設され、各電極間に最小通路断面である
のど部を有するデイフユーザ状の流体通路を形成
している。そして、各電極板1は直流高圧電源3
の一方の極であるマイナス側に接続されている。
FIG. 3 is a schematic configuration diagram of a fluid moving device showing an embodiment of the present invention, in which the same or corresponding parts as in FIG. 1 are given the same reference numerals. As shown in the figure, the electrode plate 1 of this device has a cross-sectional shape with a thickness in the center, and is formed into a so-called airfoil shape. The electrode plates 1 are arranged in parallel at predetermined intervals to form a diffuser-like fluid passage having a throat with a minimum passage cross section between each electrode. Each electrode plate 1 is connected to a DC high voltage power source 3.
is connected to the negative side, which is one pole of the

一方、本装置のイオン化線2はのど部より上流
側の流体通路内にそれぞれ配設され、電極板1と
反対の極である直流高圧電源3のプラス側に接続
されている。なお、電極板1を直流高圧電源3の
プラス側に接続し、イオン化線2を直流高圧電源
3のマイナス側に接続してもよい。また、上記電
極板1は例えばアルミニウム等の導電性部材から
形成され、イオン化線2は例えばタングステン等
の細長い金属部材から形成されている。
On the other hand, the ionization wires 2 of this device are arranged in the fluid passages upstream from the throat, and are connected to the positive side of the DC high voltage power source 3, which is the opposite pole to the electrode plate 1. Note that the electrode plate 1 may be connected to the positive side of the DC high voltage power source 3, and the ionized wire 2 may be connected to the negative side of the DC high voltage power source 3. Further, the electrode plate 1 is made of a conductive member such as aluminum, and the ionization line 2 is made of an elongated metal member such as tungsten.

上記の構成において次に本実施例の作用につい
て第4図を参照して説明する。第4図は本実施例
による流体の流れを示す図である。上述したよう
に電極板1とイオン化線2とに直流高圧電源3か
ら直流高電圧が与えられると、電極板1とイオン
化線2との電極間にコロナ放電が生じ、イオン化
線2から電極板1に向うイオン風(イオン流)が
生じる。ここで、第4図に示すようにイオン流4
によつて誘引されて生ずる流体の流れ5は、流体
通路の中央部に最小流路断面であるのど部が形成
されているので流体の逆流が防止されると共に、
電極板1の曲面に沿つたスムーズな流れとなり、
送風効果が増大する。また、流体通路の出口側で
は漸次拡大するデイフユーザ状となつているの
で、流体通路の入口側で得られた高速気流の運動
エネルギを有効に静圧として回復することがで
き、その結果有効な静圧が大きくとれ、効率の高
い送風機能が可能である。
Next, the operation of this embodiment in the above configuration will be explained with reference to FIG. 4. FIG. 4 is a diagram showing the flow of fluid according to this embodiment. As described above, when a DC high voltage is applied to the electrode plate 1 and the ionization wire 2 from the DC high voltage power supply 3, corona discharge occurs between the electrodes of the electrode plate 1 and the ionization wire 2, and the ionization wire 2 is connected to the electrode plate 1. An ion wind (ion current) is generated towards the Here, as shown in FIG.
The fluid flow 5 induced by the flow is prevented from backflowing because a throat with the minimum cross section of the fluid passage is formed in the center of the fluid passage.
The flow becomes smooth along the curved surface of the electrode plate 1,
Air blowing effect increases. In addition, since the exit side of the fluid passage has a diffuser shape that gradually expands, the kinetic energy of the high-speed airflow obtained at the entrance side of the fluid passage can be effectively recovered as static pressure, resulting in effective static pressure. It can take a large amount of pressure and has a highly efficient air blowing function.

次に第5図及び第6図を参照して本実施例を従
来例と比較して説明する。第5図は電極板が平板
と翼形の場合における送風量と静圧との関係を示
す線図で、図中曲線51は電極板が平板である場
合を示し、曲線52は電極板が翼形である場合を
示すものである。また、点線で示す曲線53及び
54は外部の通風抵抗が小さい場合と大きい場合
の2つのケースを示したものである。曲線53で
示すように外部の通風抵抗が比較的小さい場合に
は電極板1が平板である場合の送風量の減少率
は、曲線51と53の交点で示すように比較的小
さいが、通風抵抗が大きい場合には曲線51と5
4の交点で示すように送風量の減少が顕著であ
る。これに対して電極板1が翼形の場合にはいず
れのケースの場合でも送風量の減少率が曲線52
と53及び54の交点で示すように比較的小さ
い。また、電極板1が平板と翼形の場合では同じ
送風量であつたとしても得られる静圧にかなりの
差があり、翼形の場合のほうが高い静圧が得られ
る。
Next, the present embodiment will be explained in comparison with the conventional example with reference to FIGS. 5 and 6. Fig. 5 is a diagram showing the relationship between air flow rate and static pressure when the electrode plate is a flat plate or an airfoil. This indicates the case where the form is the form. Moreover, curves 53 and 54 shown by dotted lines show two cases, one in which the external ventilation resistance is small and the other in which it is large. When the external ventilation resistance is relatively small as shown by the curve 53, the rate of decrease in the air flow rate when the electrode plate 1 is a flat plate is relatively small as shown by the intersection of the curves 51 and 53. is large, curves 51 and 5
As shown by the intersection point 4, there is a noticeable decrease in the amount of air blown. On the other hand, when the electrode plate 1 is airfoil-shaped, the rate of decrease in the air flow rate is curve 52 in any case.
It is relatively small as shown by the intersection of , 53 and 54. Furthermore, when the electrode plate 1 is a flat plate and an airfoil-shaped electrode plate, there is a considerable difference in the static pressure obtained even if the amount of air blown is the same, and a higher static pressure is obtained when the electrode plate 1 is an airfoil-shaped electrode plate.

第6図は電極板が平板と翼形の場合におけるイ
オン化線の設置位置麗送風量との関係を示す線図
で、図中曲線61は電極板が平板である場合を示
し、曲線62は電極板が翼形である場合を示すも
のである。なお、図中横軸に示すイオン化線の設
置位置は電極板の先端を基準として先端より上流
側の位置をプラスとして示し、先端より下流側の
流体通路内をマイナスとして示している。同図に
示すように電極板1が平板のである場合のイオン
化線2の最適設置位置は、曲線61で示すように
電極板1の先端より前方の位置にある。一方、電
極板1が翼形である場合のイオン化線2の最適設
置位置は、曲線62で示すように電極板1の先端
より下流側の流体通路内にあり、かつ流体通路の
中央部より上流側の位置にある。従つて、電極板
1が翼形の場合にはイオン化線2を電極板1の外
部に設置する必要がなくなり、装置として薄形に
なるばかりでなくイオン化線2の保護にも有効で
ある。
Fig. 6 is a diagram showing the relationship between the installation position of the ionizing wire and the air flow rate when the electrode plate is a flat plate or an airfoil type. This shows the case where the plate is airfoil-shaped. Note that with respect to the installation positions of the ionization wires shown on the horizontal axis in the figure, with the tip of the electrode plate as a reference, the position upstream from the tip is shown as positive, and the position in the fluid passage downstream from the tip is shown as negative. As shown in the figure, when the electrode plate 1 is a flat plate, the optimum installation position of the ionization line 2 is located in front of the tip of the electrode plate 1, as shown by a curve 61. On the other hand, when the electrode plate 1 is airfoil-shaped, the optimal installation position of the ionization wire 2 is within the fluid passage downstream from the tip of the electrode plate 1 and upstream from the center of the fluid passage, as shown by the curve 62. Located on the side. Therefore, when the electrode plate 1 is wing-shaped, there is no need to install the ionization wire 2 outside the electrode plate 1, which not only makes the device thinner but also effective in protecting the ionization wire 2.

このように本実施例においては並列に配設され
た電極板1を中央部に厚みを持つた翼形としたの
で、第7図に示すように熱交換器の送風装置とし
て適用可能である。なお、第7図中符号7は熱交
換器のフイン、6はチユーブである。なお、上記
実施例では電極板1を並列に配設した例を示した
が放射線状或いは筒状に同心円状に配設しても実
施可能である。
As described above, in this embodiment, the electrode plates 1 arranged in parallel are shaped like airfoils with a thickness in the center, so that the electrode plates 1 can be used as an air blower for a heat exchanger as shown in FIG. 7. In addition, in FIG. 7, reference numeral 7 is a fin of the heat exchanger, and 6 is a tube. In the above embodiment, the electrode plates 1 are arranged in parallel, but it is also possible to arrange them concentrically in a radial or cylindrical manner.

また、上記実施例では電極板1を1段に配設し
た例を示したが、第8図に示すように流体の流れ
方向に複数段配設した構成としてもよい。このよ
うにすれば第9図に示すように1段の場合より、
より高い静圧を得ることができる。なお、電極板
1を複数段配設する場合には2段目以降のイオン
化線2がその前段の電極板1との間でコロナ放電
を生じ、逆のイオン風が発生しないように例えば
第10図に示す如く電極板1の右側部分のみを導
電部材1aで形成し、左側部分を絶縁部材1bで
形成すればよい。
Further, in the above embodiment, an example was shown in which the electrode plates 1 were arranged in one stage, but as shown in FIG. 8, a structure in which the electrode plates 1 were arranged in multiple stages in the fluid flow direction may be adopted. In this way, as shown in Figure 9, compared to the case of one stage,
Higher static pressure can be obtained. In addition, when the electrode plates 1 are arranged in multiple stages, the ionized wires 2 in the second and subsequent stages cause corona discharge with the electrode plates 1 in the previous stage, and in order to prevent the generation of a reverse ion wind, for example, the 10th stage As shown in the figure, only the right side portion of the electrode plate 1 may be formed of the conductive member 1a, and the left side portion may be formed of the insulating member 1b.

また、本発明は上記実施例に限定されるもので
はなく、例えば第11図に示すように電極板1の
後方に仕切板8を設けてもよい。このようにすれ
ば流体通路から出た流体の流れは他の流体通路か
ら出た流れに影響されずに一様な流れとなる。な
お、電極板1と仕切板8とを一体に形成しても同
様である。
Further, the present invention is not limited to the above embodiment, and a partition plate 8 may be provided behind the electrode plate 1, for example, as shown in FIG. In this way, the flow of fluid coming out of the fluid passage becomes a uniform flow without being influenced by the flow coming out of other fluid passages. Note that the same effect can be obtained even if the electrode plate 1 and the partition plate 8 are formed integrally.

また、本発明によれば第12図に示す如く電極
板1の断面形状を先端に丸みをつけた流線形にし
てもよい。このようにすれば、イオン風の発生を
阻害するような可能性もなくなり、一方向の安定
したイオン効果が得られる。なお、本発明はイオ
ン化線2の代りに針状のイオン化電極を配設して
も実施可能であることは言うまでもない。
Further, according to the present invention, the cross-sectional shape of the electrode plate 1 may be streamlined with a rounded tip, as shown in FIG. In this way, there is no possibility of inhibiting the generation of ion wind, and a stable ion effect in one direction can be obtained. Note that it goes without saying that the present invention can be practiced even if a needle-shaped ionization electrode is provided in place of the ionization line 2.

以上述べたように本発明によれば、直流高電圧
電源の一方の極に接続され、断面が中央部に厚み
を持つた翼形或いは流線形の電極板を並列又は放
射線状に、或いは筒状に配設して両電極間にのど
部を有する流体通路を形成し、上記のど部より上
流側の流体通路に直流高電圧電源の他方の極に接
続されたイオン化線を配設した構成としたので、
熱交換器等の送風装置として適用可能で、送風量
が大きく、高静圧の得られる流体移動装置を提供
できる。
As described above, according to the present invention, electrode plates connected to one pole of a DC high-voltage power source and having an airfoil-shaped or streamlined cross section with a thickness in the center are arranged in parallel, radially, or cylindrical. A fluid passage having a throat is formed between the two electrodes, and an ionization wire connected to the other pole of the DC high voltage power source is disposed in the fluid passage upstream of the throat. So,
It is possible to provide a fluid moving device that can be applied as a blower device such as a heat exchanger, has a large amount of air blowing, and can obtain high static pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の流体移動装置の概略構成図、第
2図は同装置による流体の流れを示す説明図、第
3図は本発明の一実施例を示す流体移動装置の概
略構成図、第4図は同実施例による流体の流れを
示す説明図、第5図は電極板が平板と翼形の場合
における送風量と静圧との関係を示す線図、第6
図は電極板が平板と翼形の場合におけるイオン化
線の設置位置と送風量の関係を示す線図、第7図
は同実施例を熱交換器の送風装置に適用した例を
示す説明図、第8図は電極板を複数段に配設した
変形例を示す説明図、第9図は電極板の段数によ
る送風量と静圧との関係を示す線図、第10図は
複数段にした場合の電極板の構成を示す説明図、
第11図は電極板の後方に整流用の仕切板を設け
た場合の実施例を示す説明図、第12図は電極板
を流線形にした場合の実施例を示す説明図であ
る。 1……電極板、2……イオン化線、3……直流
高圧電源。
FIG. 1 is a schematic configuration diagram of a conventional fluid transfer device, FIG. 2 is an explanatory diagram showing the flow of fluid by the same device, and FIG. 3 is a schematic configuration diagram of a fluid transfer device showing an embodiment of the present invention. Fig. 4 is an explanatory diagram showing the flow of fluid according to the same embodiment, Fig. 5 is a diagram showing the relationship between the air flow rate and static pressure when the electrode plate is a flat plate and an airfoil type, and Fig. 6
The figure is a diagram showing the relationship between the installation position of the ionization wire and the amount of air blown when the electrode plate is a flat plate or an airfoil, and FIG. Figure 8 is an explanatory diagram showing a modified example in which electrode plates are arranged in multiple stages, Figure 9 is a diagram showing the relationship between the air flow rate and static pressure depending on the number of stages of electrode plates, and Figure 10 is a diagram showing a modification in which electrode plates are arranged in multiple stages. An explanatory diagram showing the configuration of the electrode plate in the case of
FIG. 11 is an explanatory diagram showing an embodiment in which a partition plate for rectification is provided behind the electrode plate, and FIG. 12 is an explanatory diagram showing an embodiment in which the electrode plate is streamlined. 1... Electrode plate, 2... Ionization wire, 3... DC high voltage power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 直流高電圧電源の一方の極に接続され、断面
が中央部に厚みを持つた翼形或いは流線形の電極
板を並列又は放射線状に、或いは筒状に配設して
両電極間にのど部を有する流体通路を形成し、上
記のど部より上流側の流体通路に直流高電圧電源
の他方の極に接続されたイオン化線又はイオン化
電極を配設したことを特徴とする流体移動装置。
1 Connected to one pole of a DC high voltage power supply, airfoil-shaped or streamlined electrode plates with a thick center section are arranged in parallel, radially, or cylindrically, and a throat is connected between the two electrodes. 1. A fluid moving device comprising: a fluid passageway having a section, and an ionization wire or an ionization electrode connected to the other pole of a DC high voltage power source arranged in the fluid passageway upstream from the throat section.
JP58110545A 1983-06-20 1983-06-20 Fluid moving device Granted JPS603880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110545A JPS603880A (en) 1983-06-20 1983-06-20 Fluid moving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110545A JPS603880A (en) 1983-06-20 1983-06-20 Fluid moving device

Publications (2)

Publication Number Publication Date
JPS603880A JPS603880A (en) 1985-01-10
JPH0241155B2 true JPH0241155B2 (en) 1990-09-14

Family

ID=14538534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110545A Granted JPS603880A (en) 1983-06-20 1983-06-20 Fluid moving device

Country Status (1)

Country Link
JP (1) JPS603880A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331118B1 (en) * 2018-01-26 2018-05-30 株式会社アンノオフィス Negative ion injection nozzle with shunt vanes

Also Published As

Publication number Publication date
JPS603880A (en) 1985-01-10

Similar Documents

Publication Publication Date Title
US8466624B2 (en) Electrohydrodynamic fluid accelerator device with collector electrode exhibiting curved leading edge profile
US7077890B2 (en) Electrostatic precipitators with insulated driver electrodes
US3435891A (en) Air flow baffle for rectifier heat exchanger
KR950031239A (en) Electrostatic precipitator
US20110261499A1 (en) Collector electrode for an ion wind fan
JP2011511997A (en) Auxiliary electrode for enhanced electrostatic discharge
JP5515099B2 (en) Ion wind generator and gas pump
JPH0241155B2 (en)
JP3254134B2 (en) Electric dust collector
JPH0226141B2 (en)
CN115313157A (en) Ionic wind heat dissipation device
JP5909632B2 (en) Electric dust collector
JPH11342350A (en) Air cleaner
US11231051B2 (en) Blower and air conditioner having the same
JP4772759B2 (en) Diffuser
ITMI981182A1 (en) INDOOR UNIT FOR AIR CONDITIONER
JPH02215037A (en) Ion blower
JPS6048157A (en) Wind generator
JPS6023793A (en) Heat exchanging device
KR102554741B1 (en) Scroll type electrostatic precipitator and air conditioning apparatus having the same
JPH04316992A (en) Finned heat exchanger
JP2005152863A (en) Electrostatic precipitator
CN108144750A (en) A kind of charged module of particulate matter and electrostatic dust-collecting device
KR101211895B1 (en) Ionic Wind Generator
JPH06182255A (en) Electrostatic precipitator