JPH0240886B2 - - Google Patents

Info

Publication number
JPH0240886B2
JPH0240886B2 JP55081441A JP8144180A JPH0240886B2 JP H0240886 B2 JPH0240886 B2 JP H0240886B2 JP 55081441 A JP55081441 A JP 55081441A JP 8144180 A JP8144180 A JP 8144180A JP H0240886 B2 JPH0240886 B2 JP H0240886B2
Authority
JP
Japan
Prior art keywords
hydraulic oil
amount
output shaft
hydraulic
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55081441A
Other languages
Japanese (ja)
Other versions
JPS579334A (en
Inventor
Junichi Ooizumi
Kazuo Pponma
Shigeru Toida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8144180A priority Critical patent/JPS579334A/en
Publication of JPS579334A publication Critical patent/JPS579334A/en
Publication of JPH0240886B2 publication Critical patent/JPH0240886B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 本発明はてい減トルクのフアンやポンプなどの
負荷機械に利用される可変速流体継手に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable speed fluid coupling used in load machines such as reduced-torque fans and pumps.

一般にこの種の可変速流体継手においては、イ
ンペラとランナにより形成される作動室に供給す
る作動油量は、流体継手内に発生する損失軸動力
によつて決定される。この損失動力は、入力軸動
力から出力軸動力を差引いたもので、フアンやポ
ンプなどのてい減トルク負荷機械では出力軸回転
数が約60%〜70%のときには最大となり、第1図
のAに示す如く必要作動油量もこの点で最大とな
る。
Generally, in this type of variable speed fluid coupling, the amount of hydraulic oil supplied to the working chamber formed by the impeller and the runner is determined by the shaft power loss generated within the fluid coupling. This power loss is obtained by subtracting the output shaft power from the input shaft power, and for machines with reduced torque loads such as fans and pumps, it reaches its maximum when the output shaft rotation speed is approximately 60% to 70%, and is the result of A in Figure 1. As shown in , the required amount of hydraulic oil also reaches its maximum at this point.

ところで、作動室へ供給する作動油量は、従
来、一定容量形の油圧ポンプにより第1図のBに
示す如く常に一定の作動油量を供給しており、ど
んな負荷条件でも可変速流体継手が安全に動作す
るようにしていた。また、定常特性改善のため
に、流量調整弁または可変容量形ポンプにより第
1図のAに示す如く損失動力に応じて作動油量を
供給する方法も試みられている。
By the way, the amount of hydraulic oil supplied to the working chamber is conventionally always supplied by a constant displacement hydraulic pump as shown in B in Figure 1, and the variable speed fluid coupling is used under any load conditions. I made sure it worked safely. Furthermore, in order to improve the steady-state characteristics, attempts have been made to use a flow control valve or a variable displacement pump to supply the amount of hydraulic oil according to the power loss, as shown in A in FIG.

しかし、前者の常に一定量の作動油量を供給す
る方法では、加速減速時の応答特性が悪化する。
However, in the former method of always supplying a constant amount of hydraulic oil, response characteristics during acceleration and deceleration deteriorate.

すなわち、加速時の応答特性は、作動油の供給
特性で決まり、減速時の応答特性は供給油量と、
インペラ、ランナのポンプ作用によりすくい管か
ら排出される排油量の差で決まる。特に減速時に
おいては、作動油の排出を速やかに行なう必要が
あるため、供給油量分は特性を悪化させることに
なる。
In other words, the response characteristics during acceleration are determined by the hydraulic oil supply characteristics, and the response characteristics during deceleration are determined by the amount of oil supplied.
It is determined by the difference in the amount of oil discharged from the scoop pipe due to the pump action of the impeller and runner. Particularly during deceleration, it is necessary to quickly discharge the hydraulic oil, so the amount of supplied oil deteriorates the characteristics.

また、後者の損失動力に応じて作動油量を供給
する方法では、定常の損失は低減されるが、加速
特性は悪化する。すなわち、出力軸回転数が0%
あるいは100%近傍では、加速しようとしてすく
い管を急速に移動しても、供給油量が少なく流体
継手内部の油面も急速には変化せず、すくい管位
置の変化に油面位置も追従できないため、急速な
加速は不可能である。また、出力軸回転数が60%
〜70%位置での減速特性も、供給作動量が多いた
め、急速な減速は不可能である。
In addition, in the latter method of supplying the amount of hydraulic oil according to power loss, steady-state loss is reduced, but acceleration characteristics are deteriorated. In other words, the output shaft rotation speed is 0%
Or, near 100%, even if the scoop pipe is moved rapidly in an attempt to accelerate, the oil level inside the fluid coupling will not change rapidly due to the small amount of oil supplied, and the oil level position will not follow changes in the scoop pipe position. Therefore, rapid acceleration is not possible. Also, the output shaft rotation speed is 60%
Regarding the deceleration characteristics at the ~70% position, rapid deceleration is not possible because the amount of supply operation is large.

本発明は上記の点に鑑み、定常時は勿論、加減
速時の応答特性を向上させる可変速流体継手を提
供することを目的とする。
In view of the above points, it is an object of the present invention to provide a variable speed fluid coupling that improves response characteristics not only during steady state but also during acceleration and deceleration.

以下本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第2図において、1は原動機(図示せず)によ
り駆動される入力軸、2は入力軸1に連結される
インペラ、3はインペラ2に対向し、かつ出力軸
4に連結されるランナ、5はインペラ2とランナ
3により形成され、かつ作動油が充填される作動
室、6はインペラ2に結合されたケーシング7に
より形成されるすくい管室で、このすくい管室6
内には図示矢印方向へ移動自在にすくい管8が挿
入されており、このすくい管8は移動することに
より作動室5内作動油量を加減して出力軸回転数
を変化させる。9は入力軸1の回転により作動し
て作動油を作動室5へ供給する油圧ポンプ、10
は閉回路で構成される作動油供給管路11の途中
に設けられる電磁式の油圧切換弁、12は出力軸
4の回転数を検出する出力軸回転数検出器、13
は前記油圧切換弁10に切換操作をさせるための
指令信号を供給する制御器で、この制御器13は
前記出力軸回転数検出器12により検出された出
力軸回転数N0に相当する検出出力軸回転数信号
Cと予め設定される目標出力軸回転数NSPに相当
する目標出力軸回転数信号Dとを比較演算すると
共にその偏差量に応じた切換信号Fを油圧切換弁
10に供給し、油圧切換弁10を操作して作動室
5への作動油供給量Qを供給したり停止したりす
る。この作動油供給量Qは作動室5への供給量を
qio、作動室5からの排出量をqputとすると、Q=
(qio−qput)dtとなり、加速時には供給量qioを最
大に、排出量qputを零にし、減速時には供給量qio
を零に、排出量qputを最大にすることによつて最
大応答速度が得られる。
In FIG. 2, 1 is an input shaft driven by a prime mover (not shown), 2 is an impeller connected to the input shaft 1, 3 is a runner facing the impeller 2 and connected to the output shaft 4, and 5 6 is a working chamber formed by the impeller 2 and the runner 3 and filled with hydraulic oil; 6 is a scoop tube chamber formed by the casing 7 connected to the impeller 2;
A scoop pipe 8 is inserted into the inside so as to be movable in the direction of the arrow shown in the figure, and by moving, the scoop pipe 8 adjusts the amount of hydraulic oil in the working chamber 5 and changes the output shaft rotation speed. 9 is a hydraulic pump that is operated by the rotation of the input shaft 1 and supplies hydraulic oil to the working chamber 5; 10;
12 is an electromagnetic hydraulic switching valve provided in the middle of the hydraulic oil supply pipe 11 consisting of a closed circuit; 12 is an output shaft rotation speed detector that detects the rotation speed of the output shaft 4; 13
is a controller that supplies a command signal for causing the hydraulic switching valve 10 to perform a switching operation, and this controller 13 outputs a detection output corresponding to the output shaft rotation speed N 0 detected by the output shaft rotation speed detector 12. The shaft rotation speed signal C is compared with a target output shaft rotation speed signal D corresponding to a preset target output shaft rotation speed NSP , and a switching signal F corresponding to the deviation amount is supplied to the hydraulic switching valve 10. , operates the hydraulic pressure switching valve 10 to supply or stop the supply amount Q of hydraulic oil to the working chamber 5. This hydraulic oil supply amount Q is the supply amount to the working chamber 5.
If q io and the discharge amount from the working chamber 5 are q put , then Q=
(q io − q put ) dt, the supply amount q io is maximized during acceleration, the discharge amount q put is zero, and during deceleration the supply amount q io
The maximum response speed can be obtained by setting 0 to 0 and maximizing the discharge amount q put .

第3図は前記制御器13の詳細を示すもので、
偏差演算器14は検出出力軸回転数信号Cと目標
出力軸回転数信号Dとを比較演算して偏差信号ε
を出力する。この偏差信号εは絶対値演算器16
および比較器17により偏差信号εの絶対値があ
る値αより大きいかどうかを比較される。このα
は流体継手の規模、定常変動、負荷の仕様などか
ら決定され、フルスケールの5〜10%とする。ま
た、比較器15により偏差信号εの正負を検出
し、加速方向(ε>0)か減速方向(ε<0)か
を求める。そして偏差信号εの絶対値がαより大
で、減速方向であれば、インバータ18、AND
ゲート22を介して油圧切換弁10を閉にする切
換信号Fを出力する。もし、加速方向であれば、
前記油圧切換弁10を開にする切換信号Fが出力
され、比較器17、インバータ18によりスイツ
チ20はOFFに、スイツチ21はONに切換えら
れ、油圧ポンプ9には最大作動油量qnaxを出力す
る指令信号Gが供給される。また、偏差信号εの
絶対値がαより小さいときには、前記油圧切換弁
10が開かれたままで、スイツチ20はON、ス
イツチ21はOFF状態にそれぞれ切換えられる。
このとき、関数発生器19により前記検出出力軸
回転数信号Cに応じた作動油供給量q(N0)が算
出され、油圧ポンプ9の制御信号Gを出力する。
FIG. 3 shows details of the controller 13,
The deviation calculator 14 compares and calculates the detected output shaft rotation speed signal C and the target output shaft rotation speed signal D to obtain a deviation signal ε.
Output. This deviation signal ε is calculated by the absolute value calculator 16
A comparator 17 compares the absolute value of the deviation signal ε to see if it is larger than a certain value α. This α
is determined based on the scale of the fluid coupling, steady fluctuations, load specifications, etc., and should be 5 to 10% of the full scale. Further, the comparator 15 detects whether the deviation signal ε is positive or negative, and determines whether it is in the acceleration direction (ε>0) or the deceleration direction (ε<0). If the absolute value of the deviation signal ε is greater than α and is in the deceleration direction, the inverter 18, AND
A switching signal F is output via the gate 22 to close the hydraulic switching valve 10. If the direction of acceleration is
A switching signal F to open the hydraulic switching valve 10 is output, the comparator 17 and the inverter 18 turn the switch 20 OFF and the switch 21 ON, and output the maximum hydraulic oil amount q nax to the hydraulic pump 9. A command signal G is supplied. Further, when the absolute value of the deviation signal ε is smaller than α, the hydraulic switching valve 10 remains open, and the switch 20 is turned on and the switch 21 is turned off.
At this time, the function generator 19 calculates the hydraulic oil supply amount q (N 0 ) according to the detected output shaft rotation speed signal C, and outputs the control signal G for the hydraulic pump 9.

第4図は上記の動作をフローチヤート図で示し
たものである。
FIG. 4 is a flowchart showing the above operation.

先ず、出力軸回転数N0を検出した後、この出
力軸回転数N0と目標出力軸回転数NSPとを比較演
算して偏差信号εを出力する。この偏差信号εの
絶対値がある値αより小さいときには油圧切換弁
10が開かれるため、出力軸回転数N0に応じた
作動油量q(N0)が作動室5へ供給される。ま
た、偏差信号εの絶対値がαより大で、かつ正、
いわゆる加速方向であれば、油圧切換弁10が開
かれるため、最大の作動油量q(nax)が作動室5へ
供給される。さらに、偏差信号εの絶対値がαよ
り大で、かつ負、いわゆる減速方向であれば、油
圧切換弁10が閉じられるため、作動室5への作
動油の供給が停止される。
First, after detecting the output shaft rotation speed N 0 , the output shaft rotation speed N 0 and the target output shaft rotation speed N SP are compared and calculated to output a deviation signal ε. When the absolute value of this deviation signal ε is smaller than a certain value α, the hydraulic switching valve 10 is opened, so that an amount of hydraulic oil q (N 0 ) corresponding to the output shaft rotational speed N 0 is supplied to the working chamber 5. Also, if the absolute value of the deviation signal ε is greater than α and positive,
In the so-called acceleration direction, the hydraulic switching valve 10 is opened, so that the maximum amount of hydraulic oil q (nax) is supplied to the working chamber 5. Furthermore, if the absolute value of the deviation signal ε is larger than α and is negative, that is, in the so-called deceleration direction, the hydraulic switching valve 10 is closed, so that the supply of hydraulic oil to the working chamber 5 is stopped.

尚、前記制御器13を、第4図のフローチヤー
トに従つて演算を行なうようにプログラムをすれ
ば、マイクロコンピユータにより構成することも
可能である。
Incidentally, the controller 13 can be configured by a microcomputer if it is programmed to perform calculations according to the flowchart shown in FIG.

次に本発明の可変速流体継手において、出力軸
回転数の制御動作を第5図により説明する。
Next, the control operation of the output shaft rotation speed in the variable speed fluid coupling of the present invention will be explained with reference to FIG.

目標出力軸回転数NSPに相当する目標出力軸回
転数信号Dをaで示す如く、時刻t1で加速するパ
ターンに設定した場合、出力軸回転数N0に相当
する検出出力軸回転数信号Cはbで示す如くパタ
ーンとなる。このとき、図示cの偏差信号εは時
刻t1で加速側に大きくなるため、切換信号Fは図
示dで示す如く開信号となり、作動油供給量qio
は最大作動油供給量qnaxとなる。
When the target output shaft rotation speed signal D corresponding to the target output shaft rotation speed N SP is set to a pattern that accelerates at time t 1 as shown by a, the detected output shaft rotation speed signal corresponding to the output shaft rotation speed N 0 C becomes a pattern as shown by b. At this time, the deviation signal ε shown in the figure c increases toward the acceleration side at time t1 , so the switching signal F becomes an open signal as shown in the figure d, and the hydraulic oil supply amount q io
is the maximum hydraulic oil supply amount q nax .

また、すくい管8は引き抜く方向へ移動するた
め、すくい管8によりすくわれて排出される作動
油排出量qputは零になり、したがつて出力軸回転
数N0は最大応答速度で増加する。さらに時刻t2
で偏差信号εはある値α以下になる。この状態で
は作動油供給量qioが第1図のAに示す如く出力
軸回転数N0の回転数で決まる量に低下する。こ
こで、図示点線により示す作動油供給量qioは第
1図のBに示す如く最大作動油量を供給した場合
である。そして出力軸回転数N0は時刻t3で目標
出力軸回転数NSPと一致する。このとき、すくい
管8により供給される作動油と同じ作動油が排出
されるため、作動室5内の作動油面は一定に保持
される。
Furthermore, since the scoop pipe 8 moves in the pulling direction, the amount of hydraulic oil discharged by the scoop pipe 8 q put becomes zero, and therefore the output shaft rotation speed N 0 increases at the maximum response speed. . Further time t 2
Then, the deviation signal ε becomes less than a certain value α. In this state, the hydraulic oil supply amount q io decreases to an amount determined by the output shaft rotation speed N 0 as shown in A in FIG. Here, the amount of hydraulic oil supplied q io indicated by the dotted line in the figure is the case where the maximum amount of hydraulic oil is supplied as shown in B in FIG. Then, the output shaft rotation speed N 0 matches the target output shaft rotation speed N SP at time t 3 . At this time, since the same hydraulic oil as the hydraulic oil supplied by the scoop pipe 8 is discharged, the hydraulic oil level in the working chamber 5 is maintained constant.

次に目標出力軸回転数NSPをaで示す如く時刻
t4で減速するパターンに設定した場合、出力軸回
転数N0はbで示すパターンとなる。このとき、
偏差信号εは時刻t4で減速側に大きくなるため、
切換信号Fは閉信号となり、作動油の供給が停止
される。また、すくい管8は挿入される方向へ移
動し、流体継手のポンプ作用によりすくい管8を
通して作動油を排出する。さらに、偏差信号εが
時刻t5である値αより小さくなると、切換信号F
は開信号となり、作動油の供給を開始する。そし
て出力軸回転数N0は時刻t6で目標出力軸回転数
NSPと一致する。
Next, set the target output shaft rotation speed N SP at the time shown by a.
When the pattern is set to decelerate at t4 , the output shaft rotational speed N0 becomes the pattern shown by b. At this time,
Since the deviation signal ε increases toward the deceleration side at time t 4 ,
The switching signal F becomes a close signal, and the supply of hydraulic oil is stopped. Further, the scoop pipe 8 moves in the insertion direction, and the hydraulic oil is discharged through the scoop pipe 8 by the pumping action of the fluid coupling. Furthermore, when the deviation signal ε becomes smaller than the value α at time t5 , the switching signal F
becomes an open signal and starts supplying hydraulic oil. The output shaft rotation speed N 0 is the target output shaft rotation speed at time t 6 .
Matches N SP .

以上の説明では出力軸回転数を検出するように
したが、可変速流体継手では出力軸回転数とすく
い管位置は対応しているので、すくい管位置を検
出するようにしてもよい。
In the above explanation, the output shaft rotational speed is detected, but since the output shaft rotational speed and the scoop tube position correspond to each other in a variable speed fluid coupling, the scoop tube position may also be detected.

第6図ないし第11図は本発明の可変速流体継
手における作動油供給回路の他の実施例を示した
ものである。
6 to 11 show other embodiments of the hydraulic oil supply circuit in the variable speed fluid coupling of the present invention.

第6図ないし第11図において、第2図と同一
符号のものは同一部分を示す。
In FIGS. 6 to 11, the same reference numerals as in FIG. 2 indicate the same parts.

第6図は開回路に構成した作動油供給管路23
に前記油圧切換弁10を設けたもので、第7図は
第6図に示す作動油供給管路23に方向油圧切換
弁24を設けたものである。第8図および第9図
は、開回路、閉回路から構成される作動油供給管
路25,26に前記油圧切換弁10の他に油圧切
換弁20、リリーフ弁28および逆止弁29を設
けたものである。
Figure 6 shows the hydraulic oil supply pipe 23 configured as an open circuit.
The hydraulic pressure switching valve 10 is provided in the hydraulic pressure switching valve 10, and the one shown in FIG. 7 is one in which a directional hydraulic pressure switching valve 24 is provided in the hydraulic oil supply pipe 23 shown in FIG. 8 and 9, in addition to the hydraulic switching valve 10, a hydraulic switching valve 20, a relief valve 28, and a check valve 29 are provided in the hydraulic oil supply pipes 25 and 26, which are composed of an open circuit and a closed circuit. It is something that

このように作動油供給管路25,26を構成す
ることにより、減速時には流体継手のポンプ作用
に加えて油圧ポンプ9で作動油を吸収するように
して最大排出油量を増加させることができる。こ
のとき、油圧切換弁10,27には制御器13か
らの切換信号Fが加えられ前記と同様の効果を発
揮する。
By configuring the hydraulic oil supply pipes 25 and 26 in this manner, the maximum amount of discharged oil can be increased by absorbing hydraulic oil with the hydraulic pump 9 in addition to the pumping action of the fluid coupling during deceleration. At this time, the switching signal F from the controller 13 is applied to the hydraulic switching valves 10 and 27, producing the same effect as described above.

第10図および第11図は、第8図および第9
図に示す作動油供給管路25,26に前記油圧切
換弁10を除くと共に油圧切換弁30を新たに設
けたものである。
Figures 10 and 11 are similar to Figures 8 and 9.
The hydraulic switching valve 10 is removed from the hydraulic oil supply pipes 25 and 26 shown in the figure, and a hydraulic switching valve 30 is newly provided.

このように油圧切換弁30を設けることによ
り、リリーフ弁28のリリーフ圧を油圧切換弁3
0で切換え、減速時にはリリーフ圧を零にするこ
とで切換弁10を閉じた状態と同様の効果が得ら
れる。したがつて、油圧ポンプ9の負荷が低減さ
れるため、油圧ポンプ9の省エネルギーを図るこ
とができる。
By providing the hydraulic switching valve 30 in this way, the relief pressure of the relief valve 28 can be changed to the hydraulic switching valve 30.
By switching at zero and setting the relief pressure to zero during deceleration, the same effect as when the switching valve 10 is closed can be obtained. Therefore, since the load on the hydraulic pump 9 is reduced, it is possible to save energy on the hydraulic pump 9.

本発明の可変速流体継手は、作動油供給管路の
途中に、出力軸回転数またはすくい管位置の目標
値と検出値の偏差量に応じて作動油を供給または
停止する油圧切換弁を設けるようにしたので、定
常時は勿論、加減速時の応答特性を大幅に向上さ
せることができる。
The variable speed fluid coupling of the present invention is provided with a hydraulic switching valve in the middle of the hydraulic oil supply pipe that supplies or stops hydraulic oil depending on the amount of deviation between the target value and the detected value of the output shaft rotation speed or scoop pipe position. This makes it possible to significantly improve the response characteristics not only during steady state but also during acceleration and deceleration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は可変速流体継手において、必要な作動
油量を示す図、第2図は本発明の可変速流体継手
の一実施例を示す概略図、第3図は本発明の可変
速流体継手における制御器を説明するための図、
第4図は制御内容を説明するためのフローチヤー
ト、第5図は動作例のタイミングを示す図、第6
図ないし第11図は本発明の可変速流体継手にお
ける作動油供給管路の他の実施例を示す図であ
る。 2……インペラ、3……ランナ、5……作動
室、10……油圧切換弁、11……作動油供給管
路、13……制御器。
Fig. 1 is a diagram showing the required amount of hydraulic oil in a variable speed fluid coupling, Fig. 2 is a schematic diagram showing an embodiment of the variable speed fluid coupling of the present invention, and Fig. 3 is a diagram showing the variable speed fluid coupling of the present invention. A diagram for explaining the controller in
Fig. 4 is a flowchart for explaining the control contents, Fig. 5 is a diagram showing the timing of an operation example, and Fig. 6 is a flowchart for explaining the control contents.
11 through 11 are diagrams showing other embodiments of the hydraulic oil supply pipe in the variable speed fluid coupling of the present invention. 2... Impeller, 3... Runner, 5... Working chamber, 10... Hydraulic switching valve, 11... Hydraulic oil supply pipe, 13... Controller.

Claims (1)

【特許請求の範囲】 1 すくい管位置を移動して作動室内の作動油を
調節することにより出力軸回転数を制御する可変
速流体継手において、作動油供給管路の途中に、
出力軸回転数またはすくい管位置の目標値と検出
値の偏差量に応じて作動油を供給または停止する
油圧切換弁を設け、前記油圧切換弁は、前記偏差
量が加速方向に大なるときには作動油供給量を最
大に、前記偏差量が減速方向に大なるときには作
動油供給量を零にするように切換わることを特徴
とする可変速流体継手。 2 作動油供給管路を、開回路から構成したこと
を特徴とする特許請求の範囲第1項記載の可変速
流体継手。 3 作動油供給管路を、閉回路から構成したこと
を特徴とする特許請求の範囲第1項記載の可変速
流体継手。
[Claims] 1. In a variable speed fluid coupling that controls the output shaft rotation speed by adjusting the hydraulic oil in the working chamber by moving the position of the scoop pipe,
A hydraulic switching valve is provided that supplies or stops hydraulic oil depending on the amount of deviation between the target value and the detected value of the output shaft rotation speed or scoop pipe position, and the hydraulic switching valve is activated when the deviation amount becomes large in the acceleration direction. A variable speed fluid coupling characterized in that the amount of oil supplied is switched to a maximum, and when the deviation amount increases in the deceleration direction, the amount of hydraulic oil supplied is changed to zero. 2. The variable speed fluid coupling according to claim 1, wherein the hydraulic oil supply pipe is configured as an open circuit. 3. The variable speed fluid coupling according to claim 1, wherein the hydraulic oil supply pipe is constructed from a closed circuit.
JP8144180A 1980-06-18 1980-06-18 Variable speed fluid coupler Granted JPS579334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8144180A JPS579334A (en) 1980-06-18 1980-06-18 Variable speed fluid coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8144180A JPS579334A (en) 1980-06-18 1980-06-18 Variable speed fluid coupler

Publications (2)

Publication Number Publication Date
JPS579334A JPS579334A (en) 1982-01-18
JPH0240886B2 true JPH0240886B2 (en) 1990-09-13

Family

ID=13746475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8144180A Granted JPS579334A (en) 1980-06-18 1980-06-18 Variable speed fluid coupler

Country Status (1)

Country Link
JP (1) JPS579334A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190520A (en) * 1983-08-19 1984-10-29 Ebara Corp Device for controlling variable speed fluid joint
DE102004015706B4 (en) * 2004-03-29 2012-12-06 Voith Turbo Gmbh & Co. Kg Hydrodynamic structural unit and method for accelerating the filling process of a hydrodynamic structural unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061569A (en) * 1973-10-03 1975-05-27
JPS51121662A (en) * 1975-04-18 1976-10-25 Hitachi Ltd Variable fast flowing fluid joint
JPS53145606A (en) * 1977-05-23 1978-12-19 Basf Ag Positioner
JPS5476220A (en) * 1977-11-30 1979-06-18 Nec Corp Magnetic disc apparatus
JPS5570973A (en) * 1978-11-22 1980-05-28 Nec Corp Rotary type positioning mechanism for magnetic disc

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061569A (en) * 1973-10-03 1975-05-27
JPS51121662A (en) * 1975-04-18 1976-10-25 Hitachi Ltd Variable fast flowing fluid joint
JPS53145606A (en) * 1977-05-23 1978-12-19 Basf Ag Positioner
JPS5476220A (en) * 1977-11-30 1979-06-18 Nec Corp Magnetic disc apparatus
JPS5570973A (en) * 1978-11-22 1980-05-28 Nec Corp Rotary type positioning mechanism for magnetic disc

Also Published As

Publication number Publication date
JPS579334A (en) 1982-01-18

Similar Documents

Publication Publication Date Title
KR850000749B1 (en) Controller for hydraulic driver
US5160244A (en) Pump system operable by variable-speed control
KR850000750B1 (en) Circuit pressure control system for hydrostatic power transmission
CN108412826B (en) Double-pump parallel driving electro-hydrostatic actuator and control method thereof
US9920780B2 (en) Slewing drive apparatus for construction machine
US11313343B2 (en) Hydroelectric power generation system
US4464898A (en) Hydraulic power system
KR100303012B1 (en) Hydraulic elevator system
JPH0240886B2 (en)
KR20100098716A (en) Confluent control system
KR20110073710A (en) Hydraulic pump control apparatus for construction machinery and hydraulic pump control method for the same
JP4022032B2 (en) Actuator and control method of actuator
JP4662120B2 (en) Pump parallel operation control device and control method
CN111323156B (en) Robust hydraulic dynamometer control method
JPS63106404A (en) Hydraulic device for driving inertial body
JPS6139543B2 (en)
KR100188887B1 (en) Engine and pump control system for hydraulic construction machine
JPH04258504A (en) Hydraulic driving device for construction machine
JPS63106405A (en) Controlling method for hydraulic device for driving inertial body
JPH10159719A (en) Pulsation reducing device for hydraulic pump
JPH04143473A (en) Control device of oil-hydraulic pump
KR20130075659A (en) Pressure overshooting preventing system for electronic pump of hydraulic system
JP2553978Y2 (en) Control device for prime mover and hydraulic circuit of construction machinery
JP2706336B2 (en) Pump flow control device
JPH03258997A (en) Feed water device with variable speed pump