JPH0240654B2 - - Google Patents

Info

Publication number
JPH0240654B2
JPH0240654B2 JP57002966A JP296682A JPH0240654B2 JP H0240654 B2 JPH0240654 B2 JP H0240654B2 JP 57002966 A JP57002966 A JP 57002966A JP 296682 A JP296682 A JP 296682A JP H0240654 B2 JPH0240654 B2 JP H0240654B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
reaction system
ester
crude ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57002966A
Other languages
Japanese (ja)
Other versions
JPS58121245A (en
Inventor
Masato Azuma
Kunio Yanagisawa
Takashi Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP57002966A priority Critical patent/JPS58121245A/en
Publication of JPS58121245A publication Critical patent/JPS58121245A/en
Publication of JPH0240654B2 publication Critical patent/JPH0240654B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエステルの製造方法に関するものであ
る。 カルボン酸もしくはその無水物とアルコールと
を反応させてエステルを製造する際の触媒として
は、従来、硫酸やパラトルエンスルホン酸等の酸
触媒、及び金属酸化物や有機金属化合物等の金属
系触媒が広く使用されている。 金属系触媒の中ではチタン系化合物が代表的な
触媒であり、副反応が殆んどなく高品質の製品が
得られる点では酸触媒よりもすぐれているが、一
方反応活性が酸触媒に比べて低い為に多量の触媒
量を必要とするにもかかわらず触媒の除去操作及
び回収、再利用は困難であつた。 即ち、チタン系触媒の殆んどは均一系触媒であ
り従来は、反応後の反応系にアルカリを加えるこ
とによつて未反応カルボン酸の中和と同時に均一
系触媒の加水分解を行なつていたが、この方法で
はチタン系化合物の加水分解が完全に行われず、
しかも得られた加水分解生成物は別し難い粘液
性ゲル状物であるので、中和水洗工程におけるエ
ステル層と水層との分離不良を引き起しエステル
製造の際の操業を困難にしているのが現状で、か
かる触媒を充分に回収、再利用することは未だに
報告されていない。 一方チタン系の不均一系触媒としては過酸化チ
タン等が知られているが、反応活性が低く触媒溶
解損失が10%程度もあり、工業的使用には尚有利
なものとは言えなかつた。 本発明は上記従来法の欠点に鑑み、品質的にす
ぐれた製品が得られ、しかも使用後のチタン系触
媒を加水分解処理により一旦不溶化し機械的に分
離方法により良好な反応活性を維持したまま回収
することが可能で、従つて該加水分解生成物を再
利用することによりコスト的に有利にエステルを
製造し得る方法を提供することを目的とするもの
で、その要旨はテトラアルキルチタネートもしく
はそのポリマーを触媒としてカルボン酸もしくは
その無水物とアルコールとを反応させ、反応後の
反応系に対して6重量%以下の水を添加して加熱
下で上記触媒を加水分解したのち、アルカリ添加
によつて反応系を中和する以前に上記加水分解に
より得られた加水分解生成物を反応系から機械的
に分離回収し、次いでアルカリ添加により反応系
に中和し、エステルを分離することを特徴とする
エステルの製造方法に存する。 本発明において用いられるテトラアルキルチタ
ネートの好適な例としてはアルキル基の炭素数が
1〜14のものが挙げられ、更に好ましくはテトラ
プロピルチタネートやテトラブチルチタネートが
挙げられ、テトラアルキルチタネートのポリマー
は、通常、 一般式
The present invention relates to a method for producing esters. Conventionally, acid catalysts such as sulfuric acid and para-toluenesulfonic acid, and metal catalysts such as metal oxides and organometallic compounds have been used as catalysts for producing esters by reacting carboxylic acids or their anhydrides with alcohols. Widely used. Among metal catalysts, titanium-based compounds are a typical catalyst, and are superior to acid catalysts in that they produce high-quality products with almost no side reactions. Because of the low carbon content, it has been difficult to remove, recover, and reuse the catalyst even though a large amount of catalyst is required. In other words, most titanium-based catalysts are homogeneous catalysts, and conventionally, by adding alkali to the reaction system after the reaction, the unreacted carboxylic acid was neutralized and the homogeneous catalyst was simultaneously hydrolyzed. However, this method did not completely hydrolyze the titanium-based compound;
Moreover, the obtained hydrolysis product is a sticky gel-like substance that is difficult to separate, which causes poor separation of the ester layer and water layer during the neutralization washing process, making operations difficult during ester production. At present, there has been no report on the sufficient recovery and reuse of such catalysts. On the other hand, titanium peroxide and the like are known as titanium-based heterogeneous catalysts, but they have low reaction activity and a catalyst dissolution loss of about 10%, so they cannot be said to be advantageous for industrial use. In view of the above-mentioned drawbacks of the conventional method, the present invention provides a product with excellent quality, and also maintains good reaction activity by mechanically separating the used titanium-based catalyst by making it insolubilized through hydrolysis treatment. The purpose of the present invention is to provide a cost-effective method for producing esters by reusing the hydrolyzed product, and its gist is to provide a method for producing esters from tetraalkyl titanates or esters. A carboxylic acid or its anhydride is reacted with an alcohol using a polymer as a catalyst, and after the reaction, 6% by weight or less of water is added to the reaction system to hydrolyze the catalyst under heating, and then an alkali is added to the reaction system. The hydrolysis product obtained by the above hydrolysis is mechanically separated and recovered from the reaction system before neutralizing the reaction system, and then the reaction system is neutralized by adding an alkali to separate the ester. The invention consists in a method for producing an ester. Preferred examples of the tetraalkyl titanate used in the present invention include those in which the alkyl group has 1 to 14 carbon atoms, more preferably tetrapropyl titanate and tetrabutyl titanate, and the tetraalkyl titanate polymer is Usually, general formula

【式】 (Rはアルキル基、nは整数)で表わされ、アル
キル基の炭素数が1〜14、nが1〜10のものが好
適に用いられる。 本発明に於けるカルボン酸としては、たとえば
フタル酸、イソフタル酸、テレフタル酸、トリメ
リツト酸などの芳香族多価アンボン酸やたとえば
アジピン酸、セバシン酸、アゼライン酸などの脂
肪族飽和多価カルボン酸やたとえばマレイン酸、
フマル酸などの脂肪族不飽和多価カルボン酸やた
とえばオレイン酸、ステアリン酸などの脂肪族モ
ノカルボン酸などが用いられる。そしてこれらの
カルボン酸若しくはその無水物のうち、芳香族多
価カルボン酸およびその酸無水物が好適に用いら
れ、フタル酸が特に好適に用いられる。 又、アルコールとしては、たとえばメチルアル
コール、エチルアルコール、n―プロピルアルコ
ール、イソプロピルアルコール、n―ブチルアル
コール、イソブチルアルコール、ヘプチルアルコ
ール、n―オクチルアルコール、2―エチルヘキ
シルアルコール、イソオクタノールなどの脂肪族
飽和一価アルコール、たとえばエチレングリコー
ル、ジエチレングリコール、プロピレングリコー
ルなどの脂肪族多価アルコールが用いられ、これ
らのアルコールの混合物が用いられてもよい。そ
して、これらのアルコールのうち特に炭素原子数
が1〜13の脂肪族飽和一価アルコールが好適に用
いられ、特に2―エチルヘキシルアルコールが好
適に用いられる。 本発明においてカルボン酸若しくはその無水物
とアルコールとを上記チタン化合物触媒の存在下
で反応させるには従来より行なわれている常法に
従つて、通常170℃以上の温度で、反応させれば
よい。 そして本発明において、エステル化反応によつ
て生成したエステルを含む反応系に対して約6重
量%以下即ち反応系100重量部に対して約60重量
部以下の水を添加して加熱することにより上記チ
タン化合物触媒を加水分解し、後述する反応系を
中和の前に、上記加水分解により得られた加水分
解生成物を反応系から機械的に分離回収するので
ある。反応系への水の添加量を約6重量%以下と
するのは約6重量%を越えると分離回収した加水
分解生成物を触媒として使用した際にその活性が
低下するからである。 又、水の添加量が少な過ぎると触媒の加水分解
もしくは加水分解生成物の分離が困難となるので
通常、水の添加量は反応系に対して0.1重量%以
上、好ましくは0.5重量%以上とされる。 又一般に、加水分解時の加熱温度は60〜98℃、
好ましくは75〜98℃、加熱時間は30分間以上とさ
れる。 上記加水分解により得られた触媒の加水分解生
成物を反応系から機械的に分離する方法としては
例えば遠心分離方法が多用されるのが過等によ
つてもさし支えない。 反応系中に懸濁した状態の上記加水分解生成物
を遠心分離する際の条件は通常2000〜4000r.p.m
×10〜30分間程度で充分であり、加水分解生成物
は遠心分離機の固体排出口から、粗エステルは液
体排出口から排出されるようにするのが好適であ
るが、場合によつては遠心分離後の上澄み粗エス
テルをデカンテーシヨン等の操作によつて反応系
から除去してもよい。 かくして得られた触媒の加水分解生成物は、粒
子間に粗エステルが付着したままの状態で次工程
のエステル化反応の触媒として再使用してもよ
く、或いは加熱乾燥したのちに再使用してもよ
い。この加水分解生成物の一部が次工程における
通常170℃以上の温度の反応系に再溶解して触媒
作用を行うものと推定される。 加水分解生成物が分離回収された反応系の中和
を行うには、アルカリ性物質例えば苛性アルカリ
又は炭酸アルカリを系内が中和点に達するまで加
えるかもしくは予め算出した中和に要するアルカ
リ量を加えればよい。この際のアルカリ性物質は
固形のものであつても水溶液となされていてもさ
し支えない。 但し加水分解生成物を含有した状態の反応系を
中和すると、その詳細な理由は不明であるが、ア
ルカリ分が加水分解生成物に作用して回収された
触媒の再溶解性即ち活性が低下するので、中和は
上述の如く加水分解生成物が分離回収されたのち
に行う。 中和によつて上記反応系中に少量残存している
酸性物質は水溶性のアルカリ金属塩となつて水相
中に移行するので水洗等により系外に排除するこ
とが出来、以後常法によつてエステルを分離精製
すればよい。例えば上記中和ののち水相を分離
し、更に水洗し、過剰のアルコールを蒸留によつ
て除去し、必要に応じて活性白土等による処理を
行うのである。 本発明のエステルの製造方法は上述の通りの方
法であり、とくに反応後の反応系に対して約6重
量%以下の水を添加して加熱下で触媒を加水分解
したのち、アルカリ添加によつて反応系を中和す
る前に上記加水分解生成物を反応系から機械的に
分離回収するので、エステル化反応後の系にアル
カリを添加して触媒の加水分解と同時に未反応カ
ルボン酸の中和を行う従来法に比して触媒の加水
分解が完全に行われ、さらに加水分解生成物は粘
液性ゲル状物とならずに反応系に懸濁する為機械
的分離が容易になされ、又その理由は詳細に不明
であるが、当初の触媒と比較して触媒として用い
た場合の活性の低下が殆んどない。上記加水分解
生成物が得られる。従つて本発明方法によれば精
製によつて得られる最終製品中に含有される触媒
残渣の量を極めて少量のものとすることが出来る
ので体積固有抵抗が充分大きい、例えば可塑剤と
して用いて品質の極めて良好なエステルを得るこ
とが出来、しかも反応系から分離回収した触媒を
繰り返し使用することにより上記高品質のエステ
ルを安価に製造し得るのである。 以下に本発明の実施例を示す。体積固有抵抗値
及び色相ハーゼン値はJIS―K―6751(フタル酸エ
ステル式験法)に準拠して測定し、粗エステル中
のチタン金属の含有量は原子吸光度法により測定
した。 実施例 1 1の電磁回転撹拌機付の耐圧ガラス反応器に
無水フタル酸222g(1.5モル)、2―エチルヘキ
サノール449g(3.45モル)及び触媒としてテト
ラブチルチタネート4.44gを加え、減圧撹拌下
190℃まで昇温した。反応槽温度190℃で90分間エ
ステル化反応を行い、反応により生成する水はア
ルコールと共沸させそれをコンデンサーにより凝
縮させた後水とアルコールとを分離してアルコー
ルのみ反応系へ還流させた。反応終了後の反応系
即ち粗エステルの酸価は0.17であり、粗エステル
中の溶存チタン量は90ppmであつた。得られた粗
エステル644gに対して23.8gの水(3.70重量%
対粗エステル)を加え30分間90℃に保つて90℃に
触媒を加水分解した。次いで毎分3000回転の回転
数で15分間遠心分離を行つて上記触媒の加水分解
生成物を粗エステルから分離し上澄み粗エステル
はデカンテーシヨンにより系外に取り出した。こ
の粗エステル中の溶存チタン量は1.6ppmであり、
用いた触媒の99.8%以上が回収された。 又、この粗エステル600gに1重量%の炭酸ナ
トリウム水溶液90gを加え90℃で1時間未反応モ
ノ―2―エチルヘキシルフタレートの中和を行な
い粗エステル相と水相の分離を行い、さらに水
洗、水蒸気蒸留による低留分の除去を行い、活性
白土で処理して過により最終製品を得た。得ら
れた製品の酸価は0.018、製品中のチタン含量は
0.09ppm、色相ハーゼン値は10、体積固有抵抗値
(30℃)は3.30×1012Ωcmであつた。 一方、上記遠心分離によつて回収された、少量
の粗エステルを含む加水分解生成物の全量約10g
(乾燥重量約3g)を触媒として用いて上記と同
量の無水フタル酸と2―エチルヘキサノールを
190℃で90分間上記と同様のエステル化反応を行
つたころ反応終了後の粗エステルの酸価は0.19で
あつた。さらに上記と同様にして、反応後の反応
系に水を加えて再溶解している触媒を加熱下で加
水分解し、加水分解生成物を分離回収後にエステ
ルを中和し精製して最終製品を得た。その製品の
酸価は0.019、チタン含量は0.09ppm、色相ハー
ゼン値は10、体積固有抵抗値(30℃)は3.29×
1012Ωcmであつた。 以下同様の操作を繰返し、上記の如くして得ら
れた加水分解生成物を触媒として合計4回エステ
ル化反応を行つたが触媒の活性低下は殆んどな
く、当初製造品と同等の品質を有するエステルが
得られた。 実施例 2 触媒としてテトライソプロピルチタネート4.44
gを用いる以外は実施例1と同様にして190℃で
90分間エステル化反応を行なつた。得られた粗エ
ステルの酸価は0.15であり、チタン含量は
1090ppmであつた。この粗エステル644gに対し
31gの水(4.8重量%対粗エステル)を加え、30
分間80℃に保つて触媒を加水分解し、実施例1と
同じ条件で触媒の加水分解生成物を遠心分離し
た。得られた上記澄み粗エステル中の溶存チタン
含量は1.1ppmであり用いた触媒の99.9%が回収
された。 以下実施例1と同様にして上記粗エステルを中
和し精製して得られた製品の酸価は0.013、製品
中のチタン含量は0.17ppm、色相ハーゼン値は
10、体積固有抵抗値は3.10×1012Ωcmであつた。 一方、上記回収された加水分解生成物の全量を
触媒として実施例1と同様にしてエステル化反応
を行つて得られた粗エステルの酸価は0.17であつ
た。更に実施例1と同様にして上記粗エステルを
精製して得られた製品の酸価は0.014、製品中の
チタン含量は0.18ppm、色相ハーゼンは10、体積
固有抵抗値(30℃)は3.08×1012Ωcmであつた。 以下同様の操作を繰返し、上記の如くして得ら
れた加水分解生成物を触媒として合計4回エステ
ル化反応を行つたが触媒の活性低下は殆んどな
く、当初製造品と同等の品質を有するエステルが
得られた。 実施例 3 次式で表わされるテトラブチルチタネートポリ
マー4.44gを触媒 として用いる以外は実施例1と同様にして190℃
で90分間エステル化反応を行なつた。得られた粗
エステルの酸価は0.14であり、チタン含量は
1166ppmであつた。この粗エステル644gに対し
7.7gの水(1.2重量%対粗エステル)を加え、1
時間85℃に保つて触媒を加水分解し、実施例1と
同じ条件で触媒の加水分解生成物を遠心分離し
た。得られた上澄み粗エステル中の溶存チタン含
量は2.4ppmであり用いた触媒の99.8%が回収さ
れた。 以下実施例1と同様にして上記粗エステルを中
和し精製して得られた製品の酸価は0.020、製品
中のチタン含量は0.10ppm、色相ハーゼン値は
10、体積固有抵抗値は3.58×1012Ωcmであつた。 一方、上記回収された加水分解生成物の全量を
触媒として実施例1と同様にしてエステル化反応
を行つて得られた粗エステルの酸価は0.14であつ
た。更に実施例1と同様にして上記粗エステルを
精製して得られた製品の酸価は0.021、製品中の
チタン含量は0.12ppm、色相ハーゼン値は10、体
積固有抵抗値(30℃)は3.56×1012Ωcmであつた。 以下同様の操作を繰返し、上記の如くして得ら
れた加水分解生成を触媒として合計4回エステル
化反応を行つたが触媒の活性低下は殆んどなく、
当初製造品と同等の品質を有するエステルが得ら
れた。 比較例 1 実施例1と全く同様にしてエステル化反応を行
い酸価0.17、チタン含量900ppmの粗エステル644
gを得た。この粗エステルに対して96.6gの水
(15.0重量%)を加え90℃で1時間触媒を加水分
解処理した。得られた加水分解生成物を実施例1
と同様にして遠心分離し、上澄み粗エステル中の
溶存チタン量を測定したところ0.88ppmであつ
た。上記加水分解生成物を触媒として実施例1と
同様にして190℃でエステル化反応を行つたが、
粗エステルの酸価は反応時間90分の場合で40.8
(到達反応率68.7%)、360分で9.76(到達反応率
92.5%)であり、実施例1に比して回収触媒の活
性低下が著しかつた。 比較例 2 実施例2と全く同様にしてエステル化反応を行
い、酸価0.15、チタン含量1090ppmの粗エステル
644gを得た。この粗エステルに対して51.5gの
水(8.0重量%)を加え85℃で30分間触媒を加水
分解処理した。得られた加水分解生成物を実施例
11と同様にして遠心分離し上澄み粗エステルを除
去して次工程の触媒とした。 上記回収触媒を用い実施例2と同様にして190
℃でエステル化反応を行つたが、粗エステルの酸
価は反応時間90分で36.6(到達反応率71.9%)、
360分で7.68(到達反応率94.1%)であり、実施例
2に比して回収触媒の活性低下が著しかつた。 比較例 3 実施例1と全く同様にしてエステル化反応を行
ない、酸価0.17、チタン含量900ppmの粗エステ
ル644gを得た。この粗エステルに対して、濃度
1重量%の炭酸ナトリウム水96.6gを加え90℃で
1時間、触媒の加水分解処理および未反応のモノ
―2―エチルヘキシルフタレートの中和を行い、
得られた触媒加水分解生成物を実施例1と同様に
して遠心分離し、上澄み粗エステル中の溶存チタ
ン量を測定したところ0.13ppmであつた。上記加
水分解生成物を触媒として実施例1と同様にして
190℃でエステル化反応を行なつたが、粗エステ
ルの酸価は反応時間90分の場合で47.2(到達反応
率63.8%)、360分で15.3(到達反応率88.3%)であ
り、実施例1に比して回収触媒の活性低下が著し
かつた。
[Formula] (R is an alkyl group, n is an integer), and those in which the alkyl group has 1 to 14 carbon atoms and n is 1 to 10 are preferably used. Examples of carboxylic acids in the present invention include aromatic polyamboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, and trimellitic acid; aliphatic saturated polycarboxylic acids such as adipic acid, sebacic acid, and azelaic acid; For example, maleic acid
Aliphatic unsaturated polycarboxylic acids such as fumaric acid and aliphatic monocarboxylic acids such as oleic acid and stearic acid are used. Among these carboxylic acids or anhydrides thereof, aromatic polyhydric carboxylic acids and acid anhydrides thereof are preferably used, and phthalic acid is particularly preferably used. Examples of the alcohol include aliphatic saturated alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, heptyl alcohol, n-octyl alcohol, 2-ethylhexyl alcohol, and isooctanol. Hydrolic alcohols are used, such as aliphatic polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, and mixtures of these alcohols may also be used. Among these alcohols, aliphatic saturated monohydric alcohols having 1 to 13 carbon atoms are particularly preferably used, and 2-ethylhexyl alcohol is particularly preferably used. In the present invention, the reaction between carboxylic acid or its anhydride and alcohol in the presence of the titanium compound catalyst may be carried out according to conventional methods, usually at a temperature of 170°C or higher. . In the present invention, water is added in an amount of about 6% by weight or less, that is, about 60 parts by weight or less based on 100 parts by weight of the reaction system, and heated. Before hydrolyzing the titanium compound catalyst and neutralizing the reaction system described later, the hydrolysis product obtained by the above hydrolysis is mechanically separated and recovered from the reaction system. The reason why the amount of water added to the reaction system is about 6% by weight or less is because if it exceeds about 6% by weight, the activity of the separated and recovered hydrolysis product will decrease when it is used as a catalyst. Furthermore, if the amount of water added is too small, it will be difficult to hydrolyze the catalyst or separate the hydrolysis products, so the amount of water added is usually 0.1% by weight or more, preferably 0.5% by weight or more based on the reaction system. be done. Generally, the heating temperature during hydrolysis is 60 to 98℃,
Preferably, the temperature is 75 to 98°C and the heating time is 30 minutes or more. As a method for mechanically separating the hydrolyzed product of the catalyst obtained by the above-mentioned hydrolysis from the reaction system, for example, a centrifugal separation method is frequently used. The conditions for centrifuging the above hydrolysis product suspended in the reaction system are usually 2000 to 4000 rpm.
×10 to 30 minutes is sufficient, and it is preferable to discharge the hydrolysis product from the solid discharge port of the centrifuge and the crude ester from the liquid discharge port, but in some cases, The supernatant crude ester after centrifugation may be removed from the reaction system by an operation such as decantation. The hydrolysis product of the catalyst thus obtained may be reused as a catalyst for the next step of esterification reaction with the crude ester still attached between the particles, or it may be reused after being heated and dried. Good too. It is presumed that a part of this hydrolysis product is redissolved in the reaction system in the next step, which is usually at a temperature of 170°C or higher, and performs a catalytic action. To neutralize the reaction system from which the hydrolysis products have been separated and recovered, add an alkaline substance such as caustic alkali or alkali carbonate until the system reaches the neutralization point, or add a pre-calculated amount of alkali required for neutralization. Just add it. The alkaline substance at this time may be a solid substance or an aqueous solution. However, when the reaction system containing hydrolyzed products is neutralized, the alkaline content acts on the hydrolyzed products, reducing the resolubility, that is, the activity, of the recovered catalyst, although the detailed reason is unknown. Therefore, neutralization is performed after the hydrolysis products are separated and recovered as described above. Due to neutralization, a small amount of acidic substances remaining in the reaction system become water-soluble alkali metal salts and migrate into the aqueous phase, so they can be removed from the system by washing with water, etc. From then on, the acidic substances remaining in the reaction system can be removed by conventional methods. Therefore, the ester can be separated and purified. For example, after the above neutralization, the aqueous phase is separated, further washed with water, excess alcohol is removed by distillation, and if necessary, treatment with activated clay or the like is performed. The method for producing esters of the present invention is as described above, and in particular, after the reaction, approximately 6% by weight or less of water is added to the reaction system to hydrolyze the catalyst under heating, and then an alkali is added. Since the above-mentioned hydrolysis products are mechanically separated and recovered from the reaction system before neutralizing the reaction system, an alkali is added to the system after the esterification reaction, and at the same time the catalyst is hydrolyzed, the unreacted carboxylic acid is removed. Compared to the conventional method, in which the catalyst is hydrolyzed completely, the hydrolyzed product is suspended in the reaction system without becoming a sticky gel, making it easier to mechanically separate the product. The reason for this is not clear in detail, but there is almost no decrease in activity when used as a catalyst compared to the original catalyst. The above hydrolysis product is obtained. Therefore, according to the method of the present invention, the amount of catalyst residue contained in the final product obtained by refining can be reduced to an extremely small amount, so that the volume resistivity is sufficiently large, for example, it can be used as a plasticizer to improve quality. By repeatedly using the catalyst separated and recovered from the reaction system, the above-mentioned high-quality ester can be produced at low cost. Examples of the present invention are shown below. The volume resistivity value and the hue Hazen value were measured in accordance with JIS-K-6751 (phthalate ester method), and the content of titanium metal in the crude ester was measured by atomic absorption spectrometry. Example 1 222 g (1.5 mol) of phthalic anhydride, 449 g (3.45 mol) of 2-ethylhexanol, and 4.44 g of tetrabutyl titanate as a catalyst were added to the pressure-resistant glass reactor equipped with an electromagnetic rotary stirrer from 1, and the mixture was stirred under reduced pressure.
The temperature was raised to 190℃. The esterification reaction was carried out at a reaction tank temperature of 190° C. for 90 minutes, and the water produced by the reaction was azeotropically distilled with the alcohol and condensed in a condenser, then the water and alcohol were separated and only the alcohol was refluxed to the reaction system. After completion of the reaction, the acid value of the reaction system, that is, the crude ester, was 0.17, and the amount of dissolved titanium in the crude ester was 90 ppm. 23.8g of water (3.70% by weight) for 644g of crude ester obtained
(crude ester) was added and kept at 90°C for 30 minutes to hydrolyze the catalyst at 90°C. Next, centrifugation was performed at a rotational speed of 3000 rpm for 15 minutes to separate the hydrolysis product of the catalyst from the crude ester, and the supernatant crude ester was taken out of the system by decantation. The amount of dissolved titanium in this crude ester is 1.6 ppm,
More than 99.8% of the catalyst used was recovered. Further, 90 g of a 1% by weight aqueous sodium carbonate solution was added to 600 g of this crude ester, and the unreacted mono-2-ethylhexyl phthalate was neutralized at 90°C for 1 hour to separate the crude ester phase and the aqueous phase, followed by washing with water and steaming. The low fraction was removed by distillation, treated with activated clay and filtered to obtain the final product. The acid value of the obtained product is 0.018, and the titanium content in the product is
0.09 ppm, hue Hazen value was 10, and volume resistivity value (30°C) was 3.30×10 12 Ωcm. On the other hand, the total amount of hydrolysis products containing a small amount of crude ester recovered by the above centrifugation was about 10 g.
(dry weight about 3g) as a catalyst, and the same amount of phthalic anhydride and 2-ethylhexanol as above.
When the same esterification reaction as above was carried out at 190°C for 90 minutes, the acid value of the crude ester after the reaction was 0.19. Furthermore, in the same manner as above, water is added to the reaction system after the reaction, the redissolved catalyst is hydrolyzed under heating, the hydrolyzed product is separated and recovered, and the ester is neutralized and purified to obtain the final product. Obtained. The acid value of the product is 0.019, the titanium content is 0.09ppm, the hue Hazen value is 10, and the volume resistivity value (30℃) is 3.29×
It was 10 12 Ωcm. Thereafter, the same operation was repeated, and the esterification reaction was carried out a total of four times using the hydrolyzed product obtained as above as a catalyst, but there was almost no decrease in the activity of the catalyst, and the quality was equivalent to that of the originally manufactured product. An ester having the following properties was obtained. Example 2 Tetraisopropyl titanate 4.44 as catalyst
At 190°C in the same manner as in Example 1 except that g was used.
The esterification reaction was carried out for 90 minutes. The acid value of the crude ester obtained was 0.15, and the titanium content was
It was 1090ppm. For 644g of this crude ester
Add 31 g of water (4.8% by weight to crude ester) and
The catalyst was hydrolyzed by keeping it at 80° C. for minutes, and the hydrolysis product of the catalyst was centrifuged under the same conditions as in Example 1. The dissolved titanium content in the obtained clear crude ester was 1.1 ppm, and 99.9% of the catalyst used was recovered. The acid value of the product obtained by neutralizing and refining the above crude ester in the same manner as in Example 1 is 0.013, the titanium content in the product is 0.17 ppm, and the hue Hazen value is
10.The volume resistivity value was 3.10×10 12 Ωcm. On the other hand, the acid value of the crude ester obtained by carrying out the esterification reaction in the same manner as in Example 1 using the entire amount of the recovered hydrolyzed product as a catalyst was 0.17. Furthermore, the acid value of the product obtained by refining the crude ester in the same manner as in Example 1 was 0.014, the titanium content in the product was 0.18 ppm, the hue was 10, and the volume resistivity value (30°C) was 3.08× It was 10 12 Ωcm. Thereafter, the same operation was repeated, and the esterification reaction was carried out a total of four times using the hydrolyzed product obtained as above as a catalyst, but there was almost no decrease in the activity of the catalyst, and the quality was equivalent to that of the originally manufactured product. An ester having the following properties was obtained. Example 3 4.44g of tetrabutyl titanate polymer represented by the following formula was used as a catalyst. 190℃ in the same manner as in Example 1 except that it was used as
The esterification reaction was carried out for 90 minutes. The acid value of the obtained crude ester was 0.14, and the titanium content was
It was 1166ppm. For 644g of this crude ester
Add 7.7 g of water (1.2% by weight to crude ester) and
The catalyst was hydrolyzed by keeping it at 85° C. for a period of time, and the hydrolysis product of the catalyst was centrifuged under the same conditions as in Example 1. The dissolved titanium content in the obtained supernatant crude ester was 2.4 ppm, and 99.8% of the catalyst used was recovered. The acid value of the product obtained by neutralizing and refining the crude ester in the same manner as in Example 1 is 0.020, the titanium content in the product is 0.10 ppm, and the hue Hazen value is
10.The volume resistivity value was 3.58×10 12 Ωcm. On the other hand, the acid value of the crude ester obtained by carrying out the esterification reaction in the same manner as in Example 1 using the entire amount of the above-recovered hydrolysis product as a catalyst was 0.14. Furthermore, the product obtained by refining the crude ester in the same manner as in Example 1 had an acid value of 0.021, a titanium content in the product of 0.12 ppm, a hue Hazen value of 10, and a volume resistivity value (30°C) of 3.56. ×10 12 Ωcm. Thereafter, the same operation was repeated and the esterification reaction was carried out a total of four times using the hydrolysis product obtained as above as a catalyst, but there was almost no decrease in the activity of the catalyst.
An ester having the same quality as the originally manufactured product was obtained. Comparative Example 1 An esterification reaction was carried out in exactly the same manner as in Example 1 to obtain crude ester 644 with an acid value of 0.17 and a titanium content of 900 ppm.
I got g. To this crude ester, 96.6 g of water (15.0% by weight) was added and the catalyst was hydrolyzed at 90° C. for 1 hour. The obtained hydrolysis product was prepared in Example 1.
After centrifugation in the same manner as above, the amount of dissolved titanium in the supernatant crude ester was measured and found to be 0.88 ppm. An esterification reaction was carried out at 190°C in the same manner as in Example 1 using the above hydrolysis product as a catalyst.
The acid value of the crude ester is 40.8 when the reaction time is 90 minutes.
(Achieved reaction rate 68.7%), 9.76 in 360 minutes (Achieved reaction rate
92.5%), and compared to Example 1, the activity of the recovered catalyst was significantly decreased. Comparative Example 2 An esterification reaction was carried out in exactly the same manner as in Example 2 to obtain a crude ester with an acid value of 0.15 and a titanium content of 1090 ppm.
644g was obtained. To this crude ester, 51.5 g of water (8.0% by weight) was added and the catalyst was hydrolyzed at 85° C. for 30 minutes. Examples of the obtained hydrolysis products
The mixture was centrifuged in the same manner as in 11 to remove the supernatant crude ester, which was used as a catalyst for the next step. 190 in the same manner as in Example 2 using the above recovered catalyst.
The esterification reaction was carried out at ℃, and the acid value of the crude ester was 36.6 (achieved reaction rate 71.9%) after a reaction time of 90 minutes.
It was 7.68 (achieved reaction rate 94.1%) in 360 minutes, and the activity of the recovered catalyst was significantly decreased compared to Example 2. Comparative Example 3 An esterification reaction was carried out in exactly the same manner as in Example 1 to obtain 644 g of crude ester having an acid value of 0.17 and a titanium content of 900 ppm. To this crude ester, 96.6 g of sodium carbonate water with a concentration of 1% by weight was added and the catalyst was hydrolyzed and unreacted mono-2-ethylhexyl phthalate was neutralized at 90°C for 1 hour.
The obtained catalytic hydrolysis product was centrifuged in the same manner as in Example 1, and the amount of dissolved titanium in the supernatant crude ester was measured and found to be 0.13 ppm. In the same manner as in Example 1 using the above hydrolysis product as a catalyst.
The esterification reaction was carried out at 190°C, and the acid value of the crude ester was 47.2 (achieved reaction rate 63.8%) when the reaction time was 90 minutes, and 15.3 (achieved reaction rate 88.3%) when the reaction time was 360 minutes. Compared to No. 1, the activity of the recovered catalyst was significantly decreased.

Claims (1)

【特許請求の範囲】 1 テトラアルキルチタネートもしくはそのポリ
マーを触媒としてカルボン酸もしくはその無水物
とアルコールとを反応させ、反応後の反応系に対
して約6重量%以下の水を添加して加熱下で上記
触媒を加水分解したのち、アルカリ添加によつて
反応系を中和する以前に上記加水分解により得ら
れた加水分解生成物を反応系から機械的に分離回
収し、次いでアルカリ添加により反応系を中和
し、エステルを分離することを特徴とするエステ
ルの製造方法。 2 加水分解生成物を反応系から機械的に分離す
る方法が遠心分離方法である第1項記載の製造方
法。 3 カルボン酸がフタル酸である第1項又は第2
項記載の製造方法。 4 アルコールが2―エチルヘキシルアルコール
である第1項乃至第3項何れか1項に記載の製造
方法。
[Claims] 1. A carboxylic acid or its anhydride is reacted with an alcohol using a tetraalkyl titanate or its polymer as a catalyst, and after the reaction, approximately 6% by weight or less of water is added to the reaction system, and the reaction is heated. After hydrolyzing the catalyst, before neutralizing the reaction system by adding an alkali, the hydrolysis product obtained by the above hydrolysis is mechanically separated and recovered from the reaction system, and then the reaction system is neutralized by adding an alkali. A method for producing an ester, which comprises neutralizing the ester and separating the ester. 2. The production method according to item 1, wherein the method for mechanically separating the hydrolysis product from the reaction system is a centrifugation method. 3 Paragraph 1 or 2 in which the carboxylic acid is phthalic acid
Manufacturing method described in section. 4. The manufacturing method according to any one of Items 1 to 3, wherein the alcohol is 2-ethylhexyl alcohol.
JP57002966A 1982-01-11 1982-01-11 Preparation of ester Granted JPS58121245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57002966A JPS58121245A (en) 1982-01-11 1982-01-11 Preparation of ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57002966A JPS58121245A (en) 1982-01-11 1982-01-11 Preparation of ester

Publications (2)

Publication Number Publication Date
JPS58121245A JPS58121245A (en) 1983-07-19
JPH0240654B2 true JPH0240654B2 (en) 1990-09-12

Family

ID=11544104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57002966A Granted JPS58121245A (en) 1982-01-11 1982-01-11 Preparation of ester

Country Status (1)

Country Link
JP (1) JPS58121245A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153814A (en) * 2005-12-06 2007-06-21 Mitsubishi Chemicals Corp Method for producing dicarboxylic acid diester
CN115746284A (en) * 2022-11-23 2023-03-07 宿迁联盛助剂有限公司 Method for removing residual titanate catalyst in light stabilizer 622

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135911A (en) * 1973-05-15 1974-12-27
JPS55130937A (en) * 1979-03-29 1980-10-11 Sekisui Chem Co Ltd Preparation of ester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135911A (en) * 1973-05-15 1974-12-27
JPS55130937A (en) * 1979-03-29 1980-10-11 Sekisui Chem Co Ltd Preparation of ester

Also Published As

Publication number Publication date
JPS58121245A (en) 1983-07-19

Similar Documents

Publication Publication Date Title
US4304925A (en) Process for purifying esters
US4007218A (en) Esterification reaction
JP2785962B2 (en) Method for producing ester
US4705764A (en) Esterification and/or ester interchange catalyst
JPH0240654B2 (en)
JPH10504327A (en) Solid catalyst
JPS6168448A (en) Production of benzenepolycarboxylic acid ester
EP0303455B1 (en) Purification of diphenyl phthalates
JPS6118543B2 (en)
JP2000072719A (en) Production of allyl 2-hydroxyisobutyrate
KR830001186B1 (en) Purification method of ester
SU1047920A1 (en) Method of producing polyesters
JPS6314012B2 (en)
RU2114099C1 (en) Method of preparing 2,2,4-trimethyl-3-hydroxypentyl isobutyrate based esters
JP2001048968A (en) Production of polybutylene terephtahlate
JPH0773677B2 (en) Catalyst for esterification and transesterification
JPS649975B2 (en)
US6103930A (en) Recovery of 2,6-naphthalene dicarboxylic acid from polyesters
CS265561B1 (en) Process for preparing phthalate plastifizers
JPH0132815B2 (en)
JPH0217152A (en) Purification of diphenylphthalates
CN111670175A (en) Process for preparing polyglycerol fatty acid ester
CS214216B1 (en) Method for the production of phtalate softeners
JPH11246486A (en) Production of dialkyl phthalate
JPH04364152A (en) Method for recovering catalyst