JPH0240516A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPH0240516A
JPH0240516A JP63192467A JP19246788A JPH0240516A JP H0240516 A JPH0240516 A JP H0240516A JP 63192467 A JP63192467 A JP 63192467A JP 19246788 A JP19246788 A JP 19246788A JP H0240516 A JPH0240516 A JP H0240516A
Authority
JP
Japan
Prior art keywords
output
state image
solid
sensitivity
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63192467A
Other languages
Japanese (ja)
Inventor
Jun Hasegawa
潤 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP63192467A priority Critical patent/JPH0240516A/en
Priority to US07/387,213 priority patent/US5043571A/en
Publication of JPH0240516A publication Critical patent/JPH0240516A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/585Control of the dynamic range involving two or more exposures acquired simultaneously with pixels having different sensitivities within the sensor, e.g. fast or slow pixels or pixels having different sizes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/701Line sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J1/1626Arrangements with two photodetectors, the signals of which are compared
    • G01J2001/1663Arrangements with two photodetectors, the signals of which are compared two detectors of different sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • G01J2003/1234Continuously variable IF [CVIF]; Wedge type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • G01J2003/2806Array and filter array

Abstract

PURPOSE:To obtain a spectrophotometer characterized by a simple controlling method, excellent linearity and a broad dynamic range by constituting the apparatus with a spectroscopic filter, a plurality of solid-state image sensing element and an output selecting circuit. CONSTITUTION:A spectroscopic filter 1 is formed so that a spectrum- transmitting main wavelength is continuously changed in the direction X and the wavelength is uniform in the direction Y. For the filter 1, a CCD solid-state image sensing element 7 having high sensitivity picture elements and a CCD solid-state image sensing element 8 having low sensitivity picture elements are arranged. An output selecting circuit 19 selects the output of the CCD solid- state image sensing element 7 which is imparted through a line 17 and the output of the CCD solid-state image sensor 8 which is imparted through a line 18 and outputs the signal. When the amount of the incident light is small, the output of the image sensing element 7 having the high sensitivity is selected. When the amount of the incident light is large, the image sensing element 8 having the low sensitivity is selected. The signal can be taken out in this way. Therefore, the dynamic range of this apparatus is expanded.

Description

【発明の詳細な説明】 童呈上■剋■允互 本発明は分光計測装置に関するものであり、より特定的
には入射光の各波長の光を空間的に分散させると共に、
この分散した各波長の光を固体撮像素子で受光する形式
の分光計測装置に関する。
[Detailed Description of the Invention] The present invention relates to a spectroscopic measurement device, and more specifically, it spatially disperses light of each wavelength of incident light, and
The present invention relates to a spectroscopic measurement device in which a solid-state image sensor receives the dispersed light of each wavelength.

災来勿狡徘 従来、分光計測は分光素子と受光素子を組み合わせた装
置で行われる例が多い。分光素子としてはグレーティン
グや分光フィルタ等が用いられるが、装置の小型化には
分光フィルタが適している。
Traditionally, spectroscopic measurements have often been performed using devices that combine a spectroscopic element and a light-receiving element. A grating, a spectral filter, etc. are used as the spectral element, and a spectral filter is suitable for downsizing the device.

一方、受光素子としてはSPD(シリコン・ホトダイオ
ニド)のアレイや自己走査型イメージセンサが用いられ
る。SPDの場合、その光電変換のダイナミックレンジ
は非常に広く光計測用として十分である。しかし、アレ
イ状に並べられたSPDを分光計測に用いる場合には各
SPDに対応して各々に増幅回路を接続する必要があり
、紺かいピッチで分光したい場合にはその増幅回路の部
分が膨大な量になるという欠点がある。この点、COD
等の自己走査型イメージセンサは画素数が増えても出力
部分は1カ所なので増幅回路も1つで済むという利点が
ある。しかしCCD等の固体撮像素子は一般にそのダイ
ナミックレンジが狭く積分時間切り換え等の手段が必要
な場合があり、使い難いという欠点があった。
On the other hand, as a light receiving element, an SPD (silicon photodiode) array or a self-scanning image sensor is used. In the case of SPD, the dynamic range of photoelectric conversion is very wide and is sufficient for optical measurement. However, when using SPDs arranged in an array for spectroscopic measurements, it is necessary to connect an amplifier circuit to each SPD, and if you want to perform spectroscopy at a deep blue pitch, the amplifier circuit requires a huge amount of space. The disadvantage is that the amount is large. In this regard, COD
Self-scanning image sensors such as the above have the advantage that even if the number of pixels increases, there is only one output section, so only one amplifier circuit is required. However, solid-state imaging devices such as CCDs generally have a narrow dynamic range and may require means such as integration time switching, which makes them difficult to use.

CODを分光計測の固体撮像素子として使用するものと
して特開昭59−92318号があるが、ダイナミック
レンジの拡大ということについては何ら開示されていな
い。また、特開昭62−76765号ではダイナミック
レンジを拡大することが述べられているものの、そこで
提案されているダイナミックレンジ拡大法は出力部の浮
遊拡散についてニー特性(Knee特性)をもたせて飽
和を押えようとするものである。特開昭63−6392
8号では積分時間を変えて複数回撮像を行うことによっ
てダイナミックレンジを拡大しようとしている。
Japanese Patent Laid-Open No. 59-92318 discloses the use of COD as a solid-state imaging device for spectroscopic measurements, but it does not disclose anything about expanding the dynamic range. Furthermore, although JP-A No. 62-76765 describes expanding the dynamic range, the dynamic range expansion method proposed there provides a knee characteristic for floating diffusion in the output section to prevent saturation. It's something you try to suppress. Japanese Patent Publication No. 63-6392
No. 8 attempts to expand the dynamic range by changing the integration time and capturing images multiple times.

日が ンしようと るi 上記特開昭59−92318号では狭いダイナミックレ
ンジしか得られないから、高精度な分光計測にとって十
分といえない。特開昭62−76765号では出力のり
ニアリティが無くなるという欠点が存するだけでなく、
素子ごとのバラツキにより均一な二特性が得られないと
いう欠点がある。また、特開昭63−63928号では
制御方法が複雑になると共に、瞬間的に変化する光には
対応できないという欠点がある。
Since the above-mentioned Japanese Patent Application Laid-Open No. 59-92318 provides only a narrow dynamic range, it cannot be said to be sufficient for highly accurate spectroscopic measurements. JP-A No. 62-76765 not only has the disadvantage of losing output linearity, but also
There is a drawback that uniform characteristics cannot be obtained due to variations between elements. Furthermore, Japanese Patent Application Laid-Open No. 63-63928 has the disadvantage that the control method is complicated and that it cannot cope with instantaneous changes in light.

本発明はこのような点に鑑みなされたものであって、制
御方法が簡単でリニアリティの良い広いダイナミックレ
ンジを得ることのできる分光計測装置を提供することを
目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a spectroscopic measurement device that has a simple control method and can obtain a wide dynamic range with good linearity.

課 をlするための 上記6目的を達成する本発明の分光計測装置は、入射光
の各波長の光を空間的に分散させる分光手段と、分散し
た各波長の光をそれぞれの受光部が同じように受光する
べく配置された感度の異なる複数の固体撮像素子と、各
波長の光に応した前記複数の固体撮像素子の出力を選択
的に取り出す出力選択手段と、から構成されている。
The spectroscopic measurement device of the present invention that achieves the above 6 objects in order to perform the above-mentioned tasks includes a spectroscopic means for spatially dispersing the light of each wavelength of the incident light, and a light-receiving section for each of the dispersed light of each wavelength. It is comprised of a plurality of solid-state imaging devices having different sensitivities arranged to receive light as shown in FIG.

その場合に、前記出力選択手段は飽和していない限り感
度の高い固体撮像素子の出力を取り出すように構成する
ことが可能である。
In that case, the output selection means can be configured to extract the output of a highly sensitive solid-state image sensor as long as it is not saturated.

また、素子のバラツキによる影響を除くため感度の高い
固体撮像素子のダイナミックレンジの範囲と感度の低い
固体撮像素子のダイナミックレンジの範囲を少な(とも
一部でオーバーラツプさせるようにするとよい。
Furthermore, in order to eliminate the influence of device variations, it is preferable to make the dynamic range of a solid-state image sensor with high sensitivity and the dynamic range of a solid-state image sensor with low sensitivity to be small (or to partially overlap with each other).

作用 このような構成によると、入射光量の少ない場合には感
度の高い撮像素子の出力を選択し、入射光量の多い場合
には感度の低い撮像素子の出力を選択して取り出すこと
ができるので、ダイナミックレンジが拡がることになる
。そして感度の異なる撮像素子の数を多く設けて最小感
度と最大感度の差を大きくとることによってダイナミッ
クレンジを更に広げることができる。
Effect: According to this configuration, when the amount of incident light is small, the output of the image sensor with high sensitivity can be selected, and when the amount of incident light is large, the output of the image sensor with low sensitivity can be selected and extracted. The dynamic range will be expanded. The dynamic range can be further expanded by providing a large number of image pickup elements with different sensitivities and increasing the difference between the minimum sensitivity and the maximum sensitivity.

尚、上記固体撮像素子の出力を選択する際に、飽和して
いない限り感度の高い固体撮像素子の出力を選択するよ
うにすると、ノイズの影響を受けない出力を得ることが
できる。
Note that when selecting the output of the solid-state image sensor, if the output of the solid-state image sensor with high sensitivity is selected as long as it is not saturated, an output that is not affected by noise can be obtained.

また、感度の高い固体撮像素子のダイナミックレンジの
範囲と感度の低い固体撮像素子のダイナミックレンジの
範囲を少なくとも一部でオーバーラツプさせると、製造
上のバラツキによって飽和出力のレベルが変動しても使
用可能領域を確実に確保することができる。
Furthermore, if the dynamic range of a high-sensitivity solid-state image sensor and the dynamic range of a low-sensitivity solid-state image sensor overlap at least in part, it can be used even if the saturation output level fluctuates due to manufacturing variations. The area can be secured reliably.

実施例 以下、本発明の実施例を図面を参照して説明する。第1
図に本実施例に使用する分光センサの概念図を示す。同
図において、分光フィルタ(1)はX方向に沿ってその
分光透過主波長が連続的に変化するようにX方向の厚み
がX方向に沿って漸次大きくなされており、またY方向
に沿っては、その分光透過主波長が一様であるように前
記厚みが一定に形成されている。この分光フィルタ(1
)の下方には、受光部にX方向に分割された複数の画素
をもつリニア出力のCCD固体撮像素子(2)が配され
ている。分光センサにX方向から入射した光(3)は分
光フィルタ(1)により分光された後、CCD固体撮像
素子(2)に到達し、該CCD固体撮像素子(2)の各
画素で光電変換される。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1st
The figure shows a conceptual diagram of the spectral sensor used in this example. In the figure, the thickness of the spectral filter (1) in the X direction is gradually increased along the X direction so that the dominant wavelength of spectral transmission changes continuously along the X direction, and the thickness of the spectral filter (1) is gradually increased along the Y direction. The thickness is formed to be constant so that the dominant wavelength of spectral transmission is uniform. This spectral filter (1
) A linear output CCD solid-state image sensor (2) having a plurality of pixels divided in the X direction is disposed in the light receiving section. Light (3) incident on the spectral sensor from the X direction is separated by the spectral filter (1), then reaches the CCD solid-state image sensor (2), where it is photoelectrically converted by each pixel of the CCD solid-state image sensor (2). Ru.

第2図(a)に上記分光センサをX方向に沿って断面し
た断面構成図を示し、同図(b)に各画素の出力特性を
示す。第2図(a)において入射光(3)は分光フィル
タ(1)に入射する。CCD固体撮像素子の画素(4a
)に入射する光はその上方に位置する分光フィルタ(1
)により分光された主波長λ1の波長の光であり、また
画素(4b)に入射する光は前記分光フィルタ(1)に
より分光された主波長λ2の波長の光である。各画素の
出力は第2図(b)に示され、画素(4a)に対する出
力(5a)は主波長λ1の光の分光出力に対応し、画素
(4b)に対する出力(5b)は主波長λ2の光の分光
出力に対応する。
FIG. 2(a) shows a cross-sectional configuration diagram of the spectroscopic sensor taken along the X direction, and FIG. 2(b) shows the output characteristics of each pixel. In FIG. 2(a), incident light (3) enters the spectral filter (1). Pixel of CCD solid-state image sensor (4a
) is passed through the spectral filter (1) located above it.
), and the light incident on the pixel (4b) is light with a dominant wavelength λ2 that has been separated by the spectral filter (1). The output of each pixel is shown in FIG. 2(b), where the output (5a) for pixel (4a) corresponds to the spectral output of light with dominant wavelength λ1, and the output (5b) for pixel (4b) corresponds to the spectral output of light with dominant wavelength λ2. corresponds to the spectral output of light.

次に本実施例に於けるダイナミックレンジ拡大の原理に
ついて述べる。第3図(a)は従来のCCD固体撮像素
子による入射光量と出力の関係を示しており、領域■は
光量が極く小さい場合に相当し、出力は暗時出力分だけ
が現われ、一定の出力となっている。この領域は光の強
弱に対応する出力が得られないため分光センサとして使
用できない領域である。一方領域■は光量が極く大きい
場合に相当し、画素に蓄積し得る最大の電荷量まで電荷
が蓄積されて飽和しているためやはり一定の出力となっ
ていて領域Iと同様に分光センサとして使用できない領
域である。そのため、結局、分光センサとして使用でき
る領域は■だけであり、この幅がダイナミックレンジで
あるが、通常この幅は2〜3桁程度であり分光計測に必
要とされるスペックを満足しない場合が多い。
Next, the principle of expanding the dynamic range in this embodiment will be described. Figure 3 (a) shows the relationship between the amount of incident light and the output of a conventional CCD solid-state image sensor. Region ■ corresponds to the case where the amount of light is extremely small, and only the dark output appears, and the output is constant. This is the output. This region cannot be used as a spectral sensor because no output corresponding to the intensity of light can be obtained. On the other hand, region ■ corresponds to a case where the amount of light is extremely large, and the charge is accumulated to the maximum amount that can be accumulated in the pixel and is saturated, so the output is still constant, and like region I, it is used as a spectroscopic sensor. This is an unusable area. Therefore, in the end, the area that can be used as a spectroscopic sensor is only ■, and this width is the dynamic range, but this width is usually about 2 to 3 digits and often does not satisfy the specifications required for spectroscopic measurement. .

本実施例においては、第3図(b)のように感度の異な
る画素を並用することによってダイナミックレンジの拡
大を図っている。第3図(b)に於いてグラフ(6a)
は高感度の画素の出力を表わし、グラフ(6b)は低感
度の画素の出力を表わしている。
In this embodiment, the dynamic range is expanded by using pixels with different sensitivities as shown in FIG. 3(b). Graph (6a) in Figure 3(b)
represents the output of a pixel with high sensitivity, and graph (6b) represents the output of a pixel with low sensitivity.

この場合、領域■は高感度画素も低感度画素も暗時出力
の領域であり使用不能な領域である。領域11−aは低
感度画素については暗時出力の領域であるが、高感度画
素は入射光の強弱に対応した出力の得られる使用可能領
域となっている。領域■bは低感度画素、高感度画素の
どちらも入射光の強弱に対応した出力の得られる使用可
能領域となっている。
In this case, the area (2) is an area where both high-sensitivity pixels and low-sensitivity pixels are output during dark, and is an unusable area. The area 11-a is a dark-time output area for low-sensitivity pixels, but it is a usable area for high-sensitivity pixels where an output corresponding to the intensity of incident light can be obtained. Region (b) is a usable region where both low-sensitivity pixels and high-sensitivity pixels can obtain outputs corresponding to the intensity of incident light.

ここで、低感度画素と高感度画素の双方で使用できるよ
うに2つの画素の使用可能領域をオーバーラツプさせて
いるのはプロセス上のバラツキによって飽和出力のレベ
ルが変動しても使用可能領域を確保するためである。領
域11−cは高感度画素については飽和出力の領域であ
るが、低感度画素は入射光の強弱に対応した出力の得ら
れる使用可能領域となっている。領域■は高感度画素も
低感度画素も飽和出力の領域であり使用不能な領域であ
る。第3図(a)と(b)を比較して明らかなように高
感度画素と低感度画素を並用することによって分光セン
サとして使用できる領域の拡大が可能となり精度の高い
分光計測にも使用できる分光センサが得られる。
Here, the usable area of the two pixels overlaps so that it can be used by both the low-sensitivity pixel and the high-sensitivity pixel.The reason is to ensure the usable area even if the saturation output level fluctuates due to process variations. This is to do so. The area 11-c is a saturated output area for high-sensitivity pixels, but is a usable area for low-sensitivity pixels where an output corresponding to the intensity of incident light can be obtained. Area (2) is an area where both high-sensitivity pixels and low-sensitivity pixels have saturated outputs, and is an unusable area. As is clear from comparing Figures 3 (a) and (b), by using high-sensitivity pixels and low-sensitivity pixels, it is possible to expand the area that can be used as a spectroscopic sensor, and it can also be used for highly accurate spectroscopic measurements. A spectral sensor is obtained.

次に高感度画素と低感度画素を並用する構成について述
べる。第4図に第1の実施例を示す。分光フィルタ(1
)は第1図と同じくX方向に連続的に分光透過主波長が
変化するようになされ、かつX方向は一様であるように
なされている。この分光フィルタ(1)に対し、高感度
画素を有するCCD固体撮像素子(7)と、低感度画素
を有するCCD固体撮像素子(8)が配設されている。
Next, a configuration in which high-sensitivity pixels and low-sensitivity pixels are used together will be described. FIG. 4 shows a first embodiment. Spectral filter (1
) is designed so that the spectral transmission dominant wavelength changes continuously in the X direction, and is uniform in the X direction, as in FIG. A CCD solid-state image sensor (7) having high-sensitivity pixels and a CCD solid-state image sensor (8) having low-sensitivity pixels are arranged for this spectral filter (1).

ここで、(9) 、 (13)はそれぞれオーバーフロ
ードレインであり、フォトダイオード(10) 、 (
14)で発生して蓄積しきれなくなった過剰電荷を排出
する機能をもつ。
Here, (9) and (13) are overflow drains, respectively, and photodiodes (10) and (
14) has the function of discharging excess charge that is generated and can no longer be stored.

(11)、 (15)はそれぞれ移送ゲートであり、フ
ォトダイオード(10) 、 (14)で発生し蓄積さ
れた電荷を転送レジスタ(12) 、 (16)へ移送
する機能を持つ。
(11) and (15) are transfer gates, respectively, and have the function of transferring the charges generated and accumulated in the photodiodes (10) and (14) to the transfer registers (12) and (16).

転送レジスタ(12) 、 (16)は移送された各フ
ォトダイオードの出力電荷を転送し順次出力する。同図
から明らかなように分光フィルタ(1)の成る場所X0
を通過した分光透過主波長λ。の光はフォトダイオード
(10)とフォトダイオード(14)の両方に入射する
。本実施例ではフォトダイオード(10)の面積をフォ
トダイオード(14)の面積より大きくすることにより
CCD固体撮像素子(7)の画素を高感度にしCCD固
体撮像素子(8)の画素を低感度にしている。
The transfer registers (12) and (16) transfer the transferred output charges of each photodiode and sequentially output them. As is clear from the figure, the location X0 where the spectral filter (1) is located
The dominant wavelength of spectral transmission λ. The light enters both the photodiode (10) and the photodiode (14). In this embodiment, by making the area of the photodiode (10) larger than the area of the photodiode (14), the pixels of the CCD solid-state image sensor (7) are made to have high sensitivity, and the pixels of the CCD solid-state image sensor (8) are made to have low sensitivity. ing.

(19)は線路(17)を通して与えられるCCD固体
撮像素子(7)の出力と、線路(18)を通して与えら
れるCCD固体撮像素子(8)の出力を後述する方法で
選択して出力する出力選択回路であって、例えばマイク
ロコンピュータの如き演算機能を有する要素を備えてい
るものとする。(20)は分光センサ(21)としての
出力端子である。第5図は各CCD固体撮像素子(7)
 (8)の出力を示した図であって、(a)に高感度画
素をもつCCD固体撮像素子(7)の出力、(b)に低
感度画素をもつCCD固体撮像素子(8)の出力を示し
である。ここで、V、Hは高感度CCD固体撮像素子(
7)のi番画素出力を表わしている。同様にV i L
は低感度CCD固体撮像素子(8)のi番画素出力を表
わしている。
(19) is an output selection in which the output of the CCD solid-state image sensor (7) given through the line (17) and the output of the CCD solid-state image sensor (8) given through the line (18) are selected and outputted by a method described later. It is assumed that the circuit includes an element having an arithmetic function, such as a microcomputer. (20) is an output terminal as a spectral sensor (21). Figure 5 shows each CCD solid-state image sensor (7)
(8), in which (a) is the output of the CCD solid-state image sensor (7) with high-sensitivity pixels, and (b) is the output of the CCD solid-state image sensor (8) with low-sensitivity pixels. is shown. Here, V and H are high-sensitivity CCD solid-state image sensors (
7) represents the i-th pixel output. Similarly, V i L
represents the i-th pixel output of the low-sensitivity CCD solid-state image sensor (8).

今、各CCD固体撮像素子(7) (8)のi番画素に
第3図に示した領域u−bの光が入射しくi + 1)
番画素に第3図に示した領域If−cの光が入射しくi
+2)番画素に第3図に示した領域1−aの光が入射し
たものとして出力選択回路(19)によるデータの選択
の方法について第6図のフローチャートを参照して説明
する。まず、ステップ(I1)で画素番号としてi=1
を設定する。次にステップ(111)で低感度画素の出
力ViLを読み込み、ステップ(1112)で高感度画
素の出力■、Hを読込む。次にステップ(12)で高感
度画素の出力ViHと飽和出力値V、□の比較を行なう
Now, the light in the area ub shown in Fig. 3 is incident on the i-th pixel of each CCD solid-state image sensor (7) (8) (i + 1)
The light in the area If-c shown in FIG. 3 is incident on the pixel number i.
The method of selecting data by the output selection circuit (19) will be explained with reference to the flowchart of FIG. 6, assuming that the light of the area 1-a shown in FIG. 3 is incident on the +2) pixel. First, in step (I1), i=1 as the pixel number.
Set. Next, in step (111), the output ViL of the low-sensitivity pixel is read, and in step (1112), the outputs ■ and H of the high-sensitivity pixel are read. Next, in step (12), the output ViH of the high-sensitivity pixel and the saturated output value V, □ are compared.

この飽和出力値V sitは前もって測定してストック
しておくものとする。
This saturated output value V sit shall be measured in advance and kept in stock.

第5図の出力の場合V、、<V、□であるからステップ
(114)へ進む。ステップ(I4)では高感度画素出
力V i Hをその高感度画素の感度Ribで割ってデ
ータの規格化を行っている。この時V i Lは暗時出
力V air;以上の出力となっているが■i>v!L
であるのでノイズ等の影響を受は難い■、の方を選択し
ている。次に、ステップ(I5)へ進み全画素について
上記選択が完了したか否かをチエツクする。
In the case of the output shown in FIG. 5, since V, , <V, □, the process proceeds to step (114). In step (I4), the high-sensitivity pixel output V i H is divided by the sensitivity Rib of the high-sensitivity pixel to normalize the data. At this time, V i L has an output equal to or higher than the dark output V air; however, ■i>v! L
Therefore, option (2), which is less susceptible to noise, etc., is selected. Next, proceeding to step (I5), it is checked whether the above selection has been completed for all pixels.

ここでNOの場合、ステップ(I6)で画素番号を1つ
インクリメントしステップ(I2)へ戻る。ステップ(
I2)で続いてVfiや+111とVt□の比較を行な
う。
If NO here, the pixel number is incremented by one in step (I6) and the process returns to step (I2). Step (
Next, in step I2), a comparison is made between Vfi and +111 and Vt□.

第5図の出力の場合V(i。I) M” V satで
あるからステップ(I3)へ進む。このステップ(+1
3)では低感度画素出力Vli。I、Lをその低感度画
素の感度R(i、1.Lで割り、データの規格化を行っ
ている。以上の処理を繰り返すことによりCCD固体撮
像素子(7) (8)の全画素についてデータが得られ
る。各データは第3図の領域II−a、  I[−b、
  II−cに対応するため極めてダイナミックレンジ
の広いデータが得られ高精度計測用の分光センサとして
有効となる。
In the case of the output shown in Fig. 5, V (i.
3) is the low sensitivity pixel output Vli. Data is normalized by dividing I, L by the sensitivity R (i, 1.L) of the low-sensitivity pixel. By repeating the above process, all pixels of the CCD solid-state image sensor (7) (8) Data is obtained. Each data is in the areas II-a, I[-b,
Since it is compatible with II-c, data with an extremely wide dynamic range can be obtained, making it effective as a spectroscopic sensor for high-precision measurement.

次に第7図及び第8図を用いて第2の実施例について説
明する。この実施例は転送レジスタを高感度のCCD固
体撮像素子と低感度のCCD固体撮像素子とで共用する
ように構成されている。第7図において、(22) (
28)はオーバーフロードレイン、 (23)は高感度
CCD固体撮像素子(31)を構成するフォトダイオー
ド、 (27)は低感度CCD固体撮像素子(32)を
構成するフォトダイオード、 (24)(26)はそれ
ぞれの移送ゲート、 (25)は共通の転送レジスタで
ある。この第7図の実施例のCOD固体撮像素子部分の
詳細図を第8図に示す。
Next, a second embodiment will be described using FIGS. 7 and 8. This embodiment is configured so that a transfer register is shared by a high-sensitivity CCD solid-state image sensor and a low-sensitivity CCD solid-state image sensor. In Figure 7, (22) (
28) is an overflow drain, (23) is a photodiode that constitutes a high-sensitivity CCD solid-state image sensor (31), (27) is a photodiode that constitutes a low-sensitivity CCD solid-state image sensor (32), (24) (26) are respective transfer gates, and (25) is a common transfer register. FIG. 8 shows a detailed view of the COD solid-state image sensor portion of the embodiment shown in FIG. 7.

第8図において、転送レジスタ(25)のピッチはフォ
トダイオード(23) (27)のピッチの%であり段
数は高感度フォトダイオードの数と低感度フォトダイオ
ードの数の和になっている。(A1)〜(A、)は高感
度フォトダイオードを示し、(B1)〜(B、)は低感
度フォトダイオードを示している。(33)は遮光用の
アルミニウム膜であり、転送レジスタ(25)。
In FIG. 8, the pitch of the transfer register (25) is a percentage of the pitch of the photodiodes (23) and (27), and the number of stages is the sum of the number of high-sensitivity photodiodes and the number of low-sensitivity photodiodes. (A1) to (A,) indicate high sensitivity photodiodes, and (B1) to (B,) indicate low sensitivity photodiodes. (33) is an aluminum film for light shielding, and is a transfer register (25).

移送ゲート(24) (26)及び各フォトダイオード
の一部を覆っている。移送ゲート(24) (26)に
バイアスを印加するとフォトダイオード(A1)で発生
蓄積された電荷は転送レジスタ(25)の1つの段(C
1)に移送される。またフォトダイオード(B、)で発
生し、蓄積された電荷は転送レジスタ(25)の他の1
つ(C3°)に移送される。フォトダイオード(A2)
〜(八、)及び(B2)〜(B、)についても同様であ
る。以上のようにして各フォトダイオードの電荷は全て
転送レジスタ(25)へ移送される。その後、転送レジ
スタ(25)は各段の電荷を転送し順次出力する。更に
、その後は第1の実施例と同様の方法により出力選択回
路(29)で各フォトダイオードの出力データの選択及
び規格化を行ない出力端子(30)へ選択された出力の
みを導出する。第2の実施例によればCCD転送レジス
タが1本だけで済むためチップサイズの縮小歩留りの向
上、外付は回路の削減が可能となりコストダウンにもつ
ながる。
It covers the transfer gates (24) (26) and a portion of each photodiode. When a bias is applied to the transfer gates (24) and (26), the charges generated and accumulated in the photodiode (A1) are transferred to one stage (C) of the transfer register (25).
1). Also, the charge generated and accumulated in the photodiode (B,) is transferred to the other one of the transfer registers (25).
(C3°). Photodiode (A2)
The same applies to ~(8,) and (B2) ~(B,). In the manner described above, all charges of each photodiode are transferred to the transfer register (25). Thereafter, the transfer register (25) transfers the charges of each stage and sequentially outputs them. Furthermore, thereafter, the output selection circuit (29) selects and normalizes the output data of each photodiode in the same manner as in the first embodiment, and only the selected output is delivered to the output terminal (30). According to the second embodiment, since only one CCD transfer register is required, the chip size reduction yield can be improved, and the number of external circuits can be reduced, leading to cost reduction.

上述した各実施例で転送レジスタは2相又は4相で駆動
されるが、それ以外の何相駆動でも構わない。また本実
施例ではフォトダイオードから直接電荷を読み出してい
るが、フォトダイオードと移送ゲートの間にMO3容量
で形成した電荷蓄積部を設けたり、或いはその他の構成
要件を付加してもよい。
In each of the embodiments described above, the transfer register is driven in two or four phases, but any other number of phases may be used. Further, in this embodiment, charges are directly read out from the photodiode, but a charge storage section formed of an MO3 capacitor may be provided between the photodiode and the transfer gate, or other structural requirements may be added.

また本実施例では分光計測用としているがその他の光計
測用にも用いることが可能である。
Furthermore, although the present embodiment is used for spectroscopic measurement, it can also be used for other optical measurements.

また本実施例では分光素子として分光フィルタを取り上
げているが当然グレーティングでも良く別の分光素子で
もかまわない。
Further, in this embodiment, a spectral filter is used as the spectral element, but of course a grating or another spectral element may also be used.

光皿勿肱果 以上の通り本発明によれば、感度の異なる複数の固体撮
像素子を用いると共に、それらの出力を選択することに
よってダイナミックレンジを拡大しているので、従来の
ように電荷の蓄積時間を制御するものに比べて制御方法
が簡単で、瞬間的に変化する光にも対応できるという効
果がある。また、良好なりニアリティも期待できる。
As described above, according to the present invention, the dynamic range is expanded by using a plurality of solid-state image sensors with different sensitivities and by selecting their outputs, so there is no charge accumulation as in the conventional case. The control method is simpler than those that control time, and it has the advantage of being able to respond to instantaneous changes in light. Also, you can expect good nearness.

その際に、前記出力選択手段を、飽和していない限り感
度の高い固体撮像素子の出力を取り出すように構成する
と、ノイズの影響を受けない出力を得ることができる。
At this time, if the output selection means is configured to take out the output of the solid-state image pickup device, which has high sensitivity as long as it is not saturated, it is possible to obtain an output that is not affected by noise.

また、感度の高い固体撮像素子のダイナミックレンジの
範囲と感度の低い固体撮像素子のダイナミックレンジの
範囲を少なくとも一部でオーバーラツプきせると1.製
造上のバラツキによって飽和出力のレベルが変動しても
使用可能領域を確実に確保することができる。
In addition, if the dynamic range of a solid-state image sensor with high sensitivity and the dynamic range of a solid-state image sensor with low sensitivity overlap at least in part, 1. Even if the level of saturated output changes due to manufacturing variations, a usable range can be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する分光センサの概念図であり、
第2図はその原理説明図である。第3図は本発明による
ダイナミックレンジの拡大方法を従来例と対比して説明
するための図である。第4図は本発明を実施した分光計
測装置の構成図であり、第5図はその各固体撮像素子の
出力例を示す図、第6図は出力選択回路の動作フローを
示すフローチャートである。第7図は本発明の他の実施
例の構成図であり、第8図はその固体撮像素子部の構成
図である。 (1) −m−分光フィルタ。 (7) (8) (31) (32)−、CCD固体撮
像素子。 (10) (23)−−一高感度ホトダイオード(16
) (27)−一低感度ホトダイオード。 (11) (15) (24) (26)・移送ゲート
。 (12) (25)−−一転送レジスタ。 (19(29)−・出力選択手段。 第1図 第2図
FIG. 1 is a conceptual diagram of a spectral sensor used in the present invention,
FIG. 2 is a diagram explaining the principle. FIG. 3 is a diagram for explaining the dynamic range expansion method according to the present invention in comparison with a conventional example. FIG. 4 is a configuration diagram of a spectroscopic measurement device embodying the present invention, FIG. 5 is a diagram showing an example of the output of each solid-state image sensor, and FIG. 6 is a flowchart showing the operation flow of the output selection circuit. FIG. 7 is a block diagram of another embodiment of the present invention, and FIG. 8 is a block diagram of its solid-state image sensor section. (1) -m-spectral filter. (7) (8) (31) (32)-, CCD solid-state image sensor. (10) (23) --- High sensitivity photodiode (16
) (27) - One low sensitivity photodiode. (11) (15) (24) (26)・Transfer gate. (12) (25)--One transfer register. (19(29)--Output selection means. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)入射光の各波長の光を空間的に分散させる分光手
段と、分散した各波長の光をそれぞれの受光部が同じよ
うに受光するべく配置された感度の異なる複数の固体撮
像素子と、各波長の光に応じた前記複数の固体撮像素子
の出力を選択的に取り出す出力選択手段と、から成るこ
とを特徴とする分光計測装置。
(1) A spectroscopic means that spatially disperses light of each wavelength of incident light, and a plurality of solid-state image sensors with different sensitivities arranged so that each light receiving part receives the dispersed light of each wavelength in the same way. , and output selection means for selectively extracting the outputs of the plurality of solid-state image sensors according to the light of each wavelength.
(2)前記出力選択手段は、飽和していない限り感度の
高い固体撮像素子の出力を取り出すことを特徴とする第
1請求項に記載の分光計測装置。
(2) The spectroscopic measurement device according to claim 1, wherein the output selection means extracts the output of a highly sensitive solid-state image sensor as long as it is not saturated.
(3)感度の高い固体撮像素子のダイナミックレンジの
範囲と感度の低い固体撮像素子のダイナミックレンジの
範囲は少なくとも一部でオーバーラップすることを特徴
とする第1請求項に記載の分光計測装置。
(3) The spectroscopic measurement device according to claim 1, wherein the dynamic range of the solid-state image sensor with high sensitivity and the dynamic range of the solid-state image sensor with low sensitivity overlap at least in part.
JP63192467A 1988-08-01 1988-08-01 Spectrophotometer Pending JPH0240516A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63192467A JPH0240516A (en) 1988-08-01 1988-08-01 Spectrophotometer
US07/387,213 US5043571A (en) 1988-08-01 1989-07-28 CCD photosensor and its application to a spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63192467A JPH0240516A (en) 1988-08-01 1988-08-01 Spectrophotometer

Publications (1)

Publication Number Publication Date
JPH0240516A true JPH0240516A (en) 1990-02-09

Family

ID=16291781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63192467A Pending JPH0240516A (en) 1988-08-01 1988-08-01 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPH0240516A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233420A (en) * 1990-08-24 1992-08-21 Xerox Corp Geometrical structure of variable detector for decomposing and detecting apparatus used for filtering and other application
JP2004523764A (en) * 2001-03-27 2004-08-05 コミツサリア タ レネルジー アトミーク Integrated spectrometer with high spectral resolution, especially for high-speed communication and high-speed measurement, and method of manufacturing the same
JP2014115154A (en) * 2012-12-07 2014-06-26 Shimadzu Corp Photodiode array detector
JP2015087144A (en) * 2013-10-29 2015-05-07 セイコーエプソン株式会社 Spectrometry device and spectrometry method
JP2015099074A (en) * 2013-11-19 2015-05-28 セイコーエプソン株式会社 Spectrometric measurement apparatus and spectrometric measurement method
US10063785B2 (en) 2014-08-20 2018-08-28 Seiko Epson Corporation Colorimetry method, colorimetry device, spectral measurement method, spectral measurement device and electronic apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233420A (en) * 1990-08-24 1992-08-21 Xerox Corp Geometrical structure of variable detector for decomposing and detecting apparatus used for filtering and other application
JP2004523764A (en) * 2001-03-27 2004-08-05 コミツサリア タ レネルジー アトミーク Integrated spectrometer with high spectral resolution, especially for high-speed communication and high-speed measurement, and method of manufacturing the same
JP2014115154A (en) * 2012-12-07 2014-06-26 Shimadzu Corp Photodiode array detector
JP2015087144A (en) * 2013-10-29 2015-05-07 セイコーエプソン株式会社 Spectrometry device and spectrometry method
JP2015099074A (en) * 2013-11-19 2015-05-28 セイコーエプソン株式会社 Spectrometric measurement apparatus and spectrometric measurement method
US10063785B2 (en) 2014-08-20 2018-08-28 Seiko Epson Corporation Colorimetry method, colorimetry device, spectral measurement method, spectral measurement device and electronic apparatus

Similar Documents

Publication Publication Date Title
US6661457B1 (en) Pixel read-out architecture
US7215361B2 (en) Method for automated testing of the modulation transfer function in image sensors
US6137100A (en) CMOS image sensor with different pixel sizes for different colors
US20080170228A1 (en) Method and apparatus for wafer level calibration of imaging sensors
US7855740B2 (en) Multiple component readout of image sensor
JP5230726B2 (en) Image sensor pixel with gain control
KR101867609B1 (en) Solid-state imaging device and electronic equipment
US6943837B1 (en) Method and apparatus for colormetric channel balancing for solid state image sensor using time division multiplexed sampling waveforms
JPH1084507A (en) Active picture element image sensor and its manufacture
US20110074996A1 (en) Ccd image sensors with variable output gains in an output circuit
JP2001177775A (en) Solid-state image sensing device, image sensing system, and driving method for the device
US7679115B2 (en) Image sensor and controlling method thereof
JPH11331713A (en) Image-pickup device and image-pickup system using the same
US7084973B1 (en) Variable binning CCD for spectroscopy
US7154545B2 (en) Image scanner photosensor assembly with improved spectral accuracy and increased bit-depth
JPH0240516A (en) Spectrophotometer
CN102025927A (en) Solid-state imaging device and electronic apparatus
US10728479B2 (en) Image sensing device
CN207251823U (en) Imaging device and imaging system
KR100761376B1 (en) Image sensor with expanding dynamic range
US7236198B2 (en) Image-capturing device with light detection capability
JPH02192277A (en) Solid-state image pickup device
JP2755150B2 (en) Infrared imaging device
US11463648B1 (en) Image sensor with three readout approach for phase detection autofocus and image sensing photodiodes through multiple column bitlines
US20120075514A1 (en) Hybrid Camera Sensor for Night Vision and Day Color Vision