JPH0240457A - Multiroom type air conditioner - Google Patents

Multiroom type air conditioner

Info

Publication number
JPH0240457A
JPH0240457A JP18949888A JP18949888A JPH0240457A JP H0240457 A JPH0240457 A JP H0240457A JP 18949888 A JP18949888 A JP 18949888A JP 18949888 A JP18949888 A JP 18949888A JP H0240457 A JPH0240457 A JP H0240457A
Authority
JP
Japan
Prior art keywords
heat exchanger
unit
indoor
machine
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18949888A
Other languages
Japanese (ja)
Inventor
Mitsunori Matsubara
充則 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP18949888A priority Critical patent/JPH0240457A/en
Publication of JPH0240457A publication Critical patent/JPH0240457A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform delicate refrigerant flow control by parallell connecting two electrically operating expansion valves connected to a control circuit between an outdoor heat exchanger and an indoor heat exchanger. CONSTITUTION:Two electrically operating expansion valves 24, 25 are provided in parallel to an outdoor heat exchanger 23 in an outdoor machine 20. Further each indoor heat exchanger 42-45 is provided in an A machine to a D machine 38-41 connected to the outdoor machine 20 by a piece of refrigerant piping. For example, in the case where cooling operation signals are input from all the four indoor machines, the electrically operating expansion valves 24, 25 are full-opened respectively and a proper refrigerant quantity is circulated in the four indoor machines. Only an indoor machine, for example, in the case where the cooling operation signals are input from the A machine, the one-sided electrically operating expansion valve 24 alone is opened and the electrically operating expansion valve 25 remains full-closed. Thereby the proper refrigerant quantity is circulated in the A machine 38. Thus fine refrigerant flow control can be performed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は多室型空気調和機の冷凍サイクルに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigeration cycle for a multi-room air conditioner.

従来の技術 従来、多室型空気調和機の冷凍サイクルは第5図に示す
ような構成であった。すなわち室外機1には圧縮機2と
四方弁8と室外熱交換器3とパルス信号によって開度を
変化させる電動膨張弁4と分配用キャピラリチューブ5
と電磁弁6と源側三方弁6が順次連結され、またガス側
三方弁7と四方弁8とアキュームレータ9が連結され、
前記室外熱交換器3の送風用の室外送風機1oが備えら
れている。また前記室外機1と冷媒配管で接続した4台
の室内機11には、各々室内熱交換器12と送風用の室
内送風機13が設けられている。
BACKGROUND OF THE INVENTION Conventionally, the refrigeration cycle of a multi-room air conditioner has been constructed as shown in FIG. That is, the outdoor unit 1 includes a compressor 2, a four-way valve 8, an outdoor heat exchanger 3, an electric expansion valve 4 whose opening degree is changed by a pulse signal, and a distribution capillary tube 5.
, the solenoid valve 6 and the source side three-way valve 6 are connected in sequence, and the gas side three-way valve 7, the four-way valve 8 and the accumulator 9 are connected,
An outdoor blower 1o for blowing air to the outdoor heat exchanger 3 is provided. Furthermore, each of the four indoor units 11 connected to the outdoor unit 1 through refrigerant piping is provided with an indoor heat exchanger 12 and an indoor blower 13 for blowing air.

このような従来の冷凍サイクルにおいて、たとえば、室
内機12のうち、どれかの室内機12からか、冷房運転
信号が送られてきた場合、圧縮機2が冷媒を圧縮し、高
温ガスが四方弁8を通り、室外熱交換器3と室外送風機
10によって凝縮され、電動膨張弁4にて必要流量に絞
られ、分配用キャピラリチューブ(以下分配キャビと略
す)6で分配され、運転信号に対応した電磁弁6を通っ
て、室内l1111へ冷媒が送られる。運転命令を出し
た室内機11では室内送風機13が運転し、室内熱交換
器12にて冷媒は蒸発し、冷媒配管を通って再び室外機
1へ戻シ、四方弁8を通って、アキュームレータ9に入
るのである。
In such a conventional refrigeration cycle, for example, when a cooling operation signal is sent from one of the indoor units 12, the compressor 2 compresses the refrigerant, and high-temperature gas flows through the four-way valve. 8, is condensed by an outdoor heat exchanger 3 and an outdoor blower 10, is throttled to the required flow rate by an electric expansion valve 4, is distributed by a distribution capillary tube (hereinafter abbreviated as distribution cabinet) 6, and is transmitted in response to an operation signal. Refrigerant is sent to the indoor room l1111 through the electromagnetic valve 6. In the indoor unit 11 that issued the operation command, the indoor blower 13 operates, and the refrigerant is evaporated in the indoor heat exchanger 12 and returned to the outdoor unit 1 through the refrigerant piping, passes through the four-way valve 8, and is transferred to the accumulator 9. It goes into.

ここで室内機12の運転台数によシ冷媒循環量が大きく
変化するため、4台運転時、すなわち冷媒循環量が一番
多いときに前記電動膨張弁4がこの場合は220パルス
の全開に近くなる流量特性をもつ電動膨張弁4を使用し
、1台運転時、2台運転時、3台運転時が各々、適5性
冷媒循環量となるように電動膨張弁4を制御している。
Here, since the amount of refrigerant circulation changes greatly depending on the number of operating indoor units 12, when four indoor units 12 are in operation, that is, when the amount of refrigerant circulation is the largest, the electric expansion valve 4 is nearly fully open at 220 pulses in this case. An electric expansion valve 4 having a flow rate characteristic is used, and the electric expansion valve 4 is controlled so that the refrigerant circulation amount becomes appropriate when one unit is operated, when two units are operated, and when three units are operated.

また、圧縮機がインバータ制御の場合はよシ細かく、冷
媒循環量に対応した電動膨張弁開度に制御している。
Furthermore, when the compressor is controlled by an inverter, the opening degree of the electric expansion valve is controlled more precisely in accordance with the amount of refrigerant circulation.

また暖房の場合も冷凍サイクルは逆であるが、前記電動
膨張弁4の制御は冷房時と同様の制御で行われていた。
Also, in the case of heating, the refrigeration cycle is reversed, but the electric expansion valve 4 is controlled in the same way as in the case of cooling.

発明が解決しようとする課題 このような従来の構成では、電動膨張弁4を4台運転時
の冷媒循環量で決定するため、従来のように大流量刑電
動膨張弁4を使用しなければならず、そのため1パルス
あたシの流量が、小流量刑電動膨張弁よシも多くなり、
1台運転時などの冷媒循環量が少く、1台運転に対応す
るだめの電動膨張弁4の開度をたとえばこの26パルス
程度に小さくした場合第4図に示すパルス値と冷媒循環
量との相関図においても明らかなように、26バルスと
26パルスの間でも冷媒循環量は30に9/hから31
.2に9/hの間にしか制御されず、適性過熱にするの
が困難であるという課題を有していた。
Problems to be Solved by the Invention In such a conventional configuration, since the electric expansion valve 4 is determined by the refrigerant circulation amount when four units are operated, it is necessary to use a large-flow electric expansion valve 4 as in the past. Therefore, the flow rate per pulse is higher than that of an electric expansion valve with a small flow rate.
When the amount of refrigerant circulation is small when one unit is operated, and the opening degree of the electric expansion valve 4 corresponding to one unit operation is reduced to, for example, 26 pulses, the pulse value and the amount of refrigerant circulation shown in FIG. As is clear from the correlation diagram, between 26 pulses and 26 pulses, the refrigerant circulation rate is 30% to 31% per hour.
.. The problem was that it was only controlled between 2 and 9 hours per hour, and it was difficult to achieve proper overheating.

また大流量形の電動膨張弁4は流量のバラツキが大きく
、製品によって能力その他の性能に悪影響を及ぼすとい
う課題も有していた。
Further, the electric expansion valve 4 of the large flow rate type has a problem in that the flow rate varies widely, which adversely affects the capacity and other performance depending on the product.

本発明は上記従来の課題を解決するもので、多室に室内
機を備えた場合のきめ細かい冷媒流量制御を行うことの
できる空気調和機を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide an air conditioner that can perform fine refrigerant flow rate control when multiple rooms are equipped with indoor units.

課題を解決するための手段 この課題を解決するために本発明は、圧縮機、四方弁、
室外熱交換器、複数の室内熱交換器等を順次連結した多
室型の冷凍サイクルを備え、前記室外熱交換器と前記各
室内熱交換器の間に制御回路に接続された電動膨張弁を
2個平列に接続したものである。
Means for Solving the Problems In order to solve the problems, the present invention provides a compressor, a four-way valve,
A multi-chamber refrigeration cycle is provided in which an outdoor heat exchanger, a plurality of indoor heat exchangers, etc. are sequentially connected, and an electric expansion valve connected to a control circuit is provided between the outdoor heat exchanger and each of the indoor heat exchangers. Two pieces are connected in parallel.

作  用 この構成により、室内運転台数によって2個の電動膨張
弁開度を制御し、この制御をパルス信号に対し、冷媒循
環量の適切な各電動膨張弁の開度を調節し、適切な過熱
度制御を行うこととなる。
Function: With this configuration, the opening degree of the two electric expansion valves is controlled depending on the number of units operated indoors, and this control is used to adjust the opening degree of each electric expansion valve to an appropriate amount of refrigerant circulation in response to a pulse signal. This will result in a degree of control.

実施例 以下本発明による一実施例を第1図〜第4図にもとづい
て説明する。第1図は冷凍サイクル図であり、ここで室
外機20には圧縮機21と四方弁22と室外熱交換器2
3と平列に並んだ2個の電動膨張弁24.25と室内機
の数に対応し並列に接続された分配用キャピラリチュー
ブ26,27゜28.29とA号機用電磁弁30.B号
機用電磁弁31、C号機用電磁弁32、D号機用電磁弁
33と源側三方弁34が順次連結され、またガス側三方
弁36と四方弁22とアキュームレータ36が連結され
、前記室外熱交換器23送風用の室外送風機37が備え
られている。また前記室外機2゜と冷媒配管で接続した
4台の室内機すなわちA号機38、B号機39、C号機
40、D号機41には各々室内熱交換器、つまりへ号機
室内熱交換器42、B号機室内熱交換器43、C号機室
内熱交換器44、D号機室内熱交換器46と送風用の室
内送風機46が設けられている。
EXAMPLE An example of the present invention will be described below with reference to FIGS. 1 to 4. FIG. 1 is a refrigeration cycle diagram, in which the outdoor unit 20 includes a compressor 21, a four-way valve 22, and an outdoor heat exchanger 2.
3, two electric expansion valves 24, 25 arranged in parallel, distribution capillary tubes 26, 27° 28, 29 connected in parallel corresponding to the number of indoor units, and a solenoid valve 30 for unit A. The solenoid valve 31 for the B unit, the solenoid valve 32 for the C unit, the solenoid valve 33 for the D unit, and the source side three-way valve 34 are connected in sequence, and the gas side three-way valve 36, the four-way valve 22, and the accumulator 36 are connected, and the outdoor An outdoor blower 37 for blowing air to the heat exchanger 23 is provided. In addition, each of the four indoor units connected to the outdoor unit 2° by refrigerant piping, that is, unit A 38, unit B 39, unit C 40, and unit D 41, has an indoor heat exchanger, that is, a unit indoor heat exchanger 42, A B-unit indoor heat exchanger 43, a C-unit indoor heat exchanger 44, a D-unit indoor heat exchanger 46, and an indoor blower 46 for blowing air are provided.

第2図は制御回路図であシ、各室内機制御回路つまシA
号機制御回路47、B号機制御回路48、C号機制御回
路49、D号機制御回路60から運転停止信号が室外機
制御回路61のマイクロコンピュータ(以下ヤイコンと
略す)62に入シ、マイコン62で演算し、室外送風機
用リレー53、A号機用電磁弁リレー64、B号機用電
磁弁リレー66、C号機用電磁弁リレー56、D号機用
電磁弁リレー67、膨張弁駆動回路68,59、圧縮機
用リレー60、四方弁用リレー61に0N10FF 信
号を出力するのである。
Figure 2 is a control circuit diagram, each indoor unit control circuit block A
Operation stop signals from the unit control circuit 47, unit B control circuit 48, unit C control circuit 49, and unit D control circuit 60 are input to the microcomputer (hereinafter abbreviated as "Yacon") 62 of the outdoor unit control circuit 61, and the microcomputer 62 calculates the operation stop signal. Relay 53 for outdoor blower, solenoid valve relay 64 for unit A, solenoid valve relay 66 for unit B, solenoid valve relay 56 for unit C, solenoid valve relay 67 for unit D, expansion valve drive circuit 68, 59, compressor The 0N10FF signal is output to the four-way valve relay 60 and the four-way valve relay 61.

上記構成において、たとえば全室内機4台から冷房運転
信号が入った場合、マイコン62で演算し、室外送風機
用リレー63とA号機用電磁弁リレー64とB号機用電
磁弁リレー55とC号機用電磁弁リレー56とD号機用
電磁弁リレー67と圧縮機用リレー60にON信号が送
られ、また膨張弁駆動回路58.59には全開(220
PS)(第3図)命令が出力され、電動膨張弁24.と
26はそれぞれ全開となり、室内機4台に適性冷媒量を
循環させる。また室内機1台のみ、たとえば、A号機制
御回路47から冷房運転信号が入った場合、マイコン5
2で演算し、室外送風機用リレー63、A号機用電磁弁
リレー64、圧縮機用リレー60にON信号を出力し、
膨張弁駆動回路58に、1台運転時の適性開度、たとえ
ば第3図に示す6oパルス開の命令信号を送シ、片側の
電動膨張弁24のみ6oパルス開となり、もう一方の電
動膨張弁25は全開のままとする。これによpA号機3
8に適性冷媒量が循環される。
In the above configuration, for example, when cooling operation signals are received from all four indoor units, the microcomputer 62 calculates the signals, and calculates the outdoor blower relay 63, the solenoid valve relay 64 for unit A, the solenoid valve relay 55 for unit B, and the solenoid valve relay 55 for unit C. An ON signal is sent to the solenoid valve relay 56, the D unit solenoid valve relay 67, and the compressor relay 60, and the expansion valve drive circuit 58, 59 is fully open (220
PS) (Fig. 3) command is output, and the electric expansion valve 24. and 26 are fully opened to circulate the appropriate amount of refrigerant to the four indoor units. In addition, if only one indoor unit receives a cooling operation signal from the A unit control circuit 47, the microcomputer 5
2, and outputs an ON signal to the outdoor blower relay 63, unit A solenoid valve relay 64, and compressor relay 60,
A command signal is sent to the expansion valve drive circuit 58 to open the appropriate opening degree when one unit is operated, for example, a 6o pulse as shown in FIG. 25 is left fully open. With this, pA unit 3
8, an appropriate amount of refrigerant is circulated.

これを第3図の一実施例の小流素形電動膨張弁の流量特
性を示して説明する。4台運転時は、たとえば150に
り/hの冷媒循環量が必要であるとすると、従来の大流
葉形電動膨張弁1WA使いの場合は第4図のように22
0パルスで160にq/hとなシ、本実施例の小流盆形
電動膨張弁並列2個使いの場合は第3図に示すように2
個共に220パルスにすることによって、各々7 s 
Ky/ bで合計150Ky/hとなる。また、1台運
転時の必要冷媒量がたとえば30 K9/ hとすると
、従来の大流葉形電動膨張弁1個使いの場合25パルス
となシ、もし電動膨張弁が駆動ミスをした場合などは1
パルス毎に1.2に!7/h (第4図に示すように2
6ハ/l/ 7. ト、28 パルスの差による31.
2にり/h −30に9/h=1.2にり/h)の冷媒
循環量の差がでてくるが、本実施例の小流量刑電動膨張
弁2個使いの場合30 K9/ h付近では5oパルス
となシ、仮に電動膨張弁が駆動ミスした場合でも1パル
ス毎にo、aに9/h(第3図に示す50パルスと、5
1パルス差による30.6 Ks+/ h −30Ky
/ h=o、eKz/h)の冷媒循環量の差しか出てこ
ないのである。また第3図から明らかなように、電動膨
張弁の開度が大きくなると、冷媒循環量の増加も鈍って
くるため、電動膨張弁の流量バラツキは、開度が小さい
ときほど大きくなる。すなわち同じ冷媒循環量でも開度
が大きくなる小流素形電動膨張弁の方が従来の第4図で
示すe OKy / hの点と、第3図に示す本実施例
の60にy/hの点よυ上方の位置で使用する冷媒循環
量では流量バラツキが1パルス当シにおいて小さくなる
のである。したがって、同じeoKs+/h前後の冷媒
循環量を得るとき、第4図に示す直線位置で使用するよ
りも、第3図に示す線Gの位置で使用する方が1パルス
当シにおける差は小さく、正確となるのである。
This will be explained with reference to FIG. 3, which shows the flow rate characteristics of a small flow type electric expansion valve according to an embodiment. For example, when operating 4 units, if a refrigerant circulation rate of 150 mm/h is required, if a conventional large flow leaf type electric expansion valve 1WA is used, the refrigerant circulation rate will be 22 mm as shown in Figure 4.
q/h is 160 at 0 pulse, and when using two small flow basin type electric expansion valves in parallel in this embodiment, q/h is 2 as shown in Fig. 3.
By making them both 220 pulses, each 7 s
Ky/b for a total of 150 Ky/h. Also, if the required amount of refrigerant when operating one unit is, for example, 30K9/h, if one conventional large-flow leaf type electric expansion valve is used, it will require 25 pulses.If the electric expansion valve makes a drive mistake, etc. 1
1.2 per pulse! 7/h (2 as shown in Figure 4)
6ha/l/7. 28. 31. due to pulse difference.
There is a difference in the refrigerant circulation rate of 9/h=1.2/h) from 2/h to 30/h, but in the case of using two small-flow electric expansion valves in this example, the difference is 30 K9/h. Around h, there are 5 o pulses, and even if the electric expansion valve makes a drive mistake, o every pulse, a is 9/h (50 pulses shown in Fig. 3, and 5 o pulses as shown in Fig. 3).
30.6 Ks+/h -30Ky due to 1 pulse difference
/ h = o, eKz/h), which is the only difference in the amount of refrigerant circulation. Furthermore, as is clear from FIG. 3, as the opening degree of the electric expansion valve increases, the increase in the amount of refrigerant circulation slows down, so the flow rate variation of the electric expansion valve becomes larger as the opening degree becomes smaller. In other words, the small flow type electric expansion valve, which has a larger opening degree even with the same amount of refrigerant circulation, has a higher opening degree than the conventional electric expansion valve shown in FIG. 4, and the present example shown in FIG. When the refrigerant circulation amount is used at a position above the point υ, the flow rate variation becomes small per pulse. Therefore, when obtaining the same amount of refrigerant circulation around eoKs+/h, the difference in per pulse is smaller when used at the position of line G shown in Figure 3 than when used at the straight line position shown in Figure 4. , will be accurate.

発明の効果 前記実施例の説明よシ明らかなように、本発明によれば
小流量形の電動膨張弁を室外熱交換器と各室内機に対応
したキャピラリチューブとの間に、並列に2個接続する
ことによシ、前記各電動膨張弁を室内機の運転台数や、
室内の負荷に応じて、開度を変えるようにしたものであ
るから、従来より、より細かい流量制御が行えることに
よpEERの向上という効果を発揮するものである。
Effects of the Invention As is clear from the description of the embodiments described above, according to the present invention, two small-flow electric expansion valves are connected in parallel between the outdoor heat exchanger and the capillary tube corresponding to each indoor unit. By connecting each electric expansion valve, the number of operating indoor units,
Since the degree of opening is changed according to the load in the room, the flow rate can be controlled more precisely than in the past, and the pEER can be improved.

また電動膨張弁の流量バラツキによる製品性能の低下も
解消するという効果も発揮するものである。
It also has the effect of eliminating deterioration in product performance due to variations in the flow rate of the electric expansion valve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の多室型空気調和機の冷凍サ
イクル図、第2図は同多室型空気調和機の制御回路図、
第3図は同多室型空気調和機に使用する小流素形電動膨
張弁とパルスとの相関係する流量特性図、第4図は従来
の多室型空気調和機に使用した大流量刑空気調和機のパ
ルスと相関係する流量特性図、第5図は同従来の空気調
和機の冷凍サイクル図である。 21・・・・・・圧縮機、22・・・・・・四方弁、2
3・・・・・・室外熱交換器、42.43.44.45
・・・・・・室内熱交換器、24.25・・・・・・電
動膨張弁。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名椙i
奄Δ用ド張斤μシ陀11”lLス(げ2ftrn%jB
t+tRシ’Mix(PS>第 図
FIG. 1 is a refrigeration cycle diagram of a multi-chamber air conditioner according to an embodiment of the present invention, FIG. 2 is a control circuit diagram of the multi-chamber air conditioner,
Figure 3 is a flow rate characteristic diagram showing the correlation between the small-flow electric expansion valve and pulse used in the same multi-chamber air conditioner, and Figure 4 is the large-flow expansion valve used in the conventional multi-chamber air conditioner. FIG. 5 is a flow rate characteristic diagram correlated with the pulse of the air conditioner, and FIG. 5 is a refrigeration cycle diagram of the conventional air conditioner. 21...Compressor, 22...Four-way valve, 2
3...Outdoor heat exchanger, 42.43.44.45
...Indoor heat exchanger, 24.25...Electric expansion valve. Name of agent: Patent attorney Shigetaka Awano and one other person
11"lL for Δ 2ftrn%jB
t+tR si'Mix (PS>Fig.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室外熱交換器、複数の室内熱交換器な
どを順次連結した多室型の冷凍サイクルを備え、前記室
外熱交換器と前記各室内熱交換器の間に制御回路に接続
された電動膨張弁を2個平列に接続してなる多室型空気
調和機。
Equipped with a multi-chamber refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a plurality of indoor heat exchangers, etc. are sequentially connected, and a control circuit is connected between the outdoor heat exchanger and each of the indoor heat exchangers. A multi-chamber air conditioner consisting of two electric expansion valves connected in parallel.
JP18949888A 1988-07-28 1988-07-28 Multiroom type air conditioner Pending JPH0240457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18949888A JPH0240457A (en) 1988-07-28 1988-07-28 Multiroom type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18949888A JPH0240457A (en) 1988-07-28 1988-07-28 Multiroom type air conditioner

Publications (1)

Publication Number Publication Date
JPH0240457A true JPH0240457A (en) 1990-02-09

Family

ID=16242281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18949888A Pending JPH0240457A (en) 1988-07-28 1988-07-28 Multiroom type air conditioner

Country Status (1)

Country Link
JP (1) JPH0240457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017299A1 (en) * 2017-07-20 2019-01-24 ダイキン工業株式会社 Air conditioning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017299A1 (en) * 2017-07-20 2019-01-24 ダイキン工業株式会社 Air conditioning system
JP2019020112A (en) * 2017-07-20 2019-02-07 ダイキン工業株式会社 Air conditioning system
CN110691948A (en) * 2017-07-20 2020-01-14 大金工业株式会社 Air conditioning system
EP3657090A4 (en) * 2017-07-20 2021-03-24 Daikin Industries, Ltd. Air conditioning system
US11371743B2 (en) 2017-07-20 2022-06-28 Daikin Industries, Ltd. Air conditioning system

Similar Documents

Publication Publication Date Title
JP2723953B2 (en) Air conditioner
JP2002107000A (en) Air conditioner
JPH0240457A (en) Multiroom type air conditioner
JP2522361B2 (en) Air conditioner
KR20050045802A (en) Multi airconditioner
JP3936757B2 (en) Air conditioner
JP2000146258A (en) Air conditioner and control method therefor
JP2529352B2 (en) Multi-room air conditioner
JPH06257874A (en) Heat pump type air-conditioning machine
JPH0320572A (en) Multiair-conditioning apparatus
JP2611440B2 (en) Operation control device for air conditioner
JPH08128748A (en) Multi-room type air conditioner
CN107477902A (en) Sequential independent cooling heats formula multi-connected machine
JP2001208441A (en) Air conditioning apparatus
JPH11201573A (en) Multiroom type air conditioner
JPH0355474A (en) Air conditioning apparatus
JPH0510618A (en) Multi-chamber air conditioner
CN109114666A (en) Frequency-conversion air-conditioning system
JPH04198669A (en) Electric expansion valve control device for multi-chamber type air-conditioning machine
JPH0355472A (en) Air conditioner
JPH0752046B2 (en) Operation control device for air conditioner
JPH03255860A (en) Cooling and heating inclusive type multi-chamber air conditioner
JP2002122361A (en) Freezer and air conditioner using this freezer
JPS6179932A (en) Operation control device for air-conditioning machine for multi-chamber operation
JPH03129260A (en) Multi-room type air conditioner