JPH0240292A - Apparatus for anaerobically treating upward flow - Google Patents

Apparatus for anaerobically treating upward flow

Info

Publication number
JPH0240292A
JPH0240292A JP63187354A JP18735488A JPH0240292A JP H0240292 A JPH0240292 A JP H0240292A JP 63187354 A JP63187354 A JP 63187354A JP 18735488 A JP18735488 A JP 18735488A JP H0240292 A JPH0240292 A JP H0240292A
Authority
JP
Japan
Prior art keywords
raw water
dead space
pipe
microorganisms
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63187354A
Other languages
Japanese (ja)
Inventor
Matsukichi Sato
佐藤 松吉
Hironori Niwa
博則 丹羽
Haruki Akega
明賀 春樹
Kiyomi Kumagai
熊谷 清己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP63187354A priority Critical patent/JPH0240292A/en
Publication of JPH0240292A publication Critical patent/JPH0240292A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To eliminate a dead space of a flow of raw water and to increase the rate of effective utilization of microorganisms by making the bottom of an anaerobic reaction vessel rugged and arranging raw water inflow holes at the valley parts of the rugged bottom CONSTITUTION:Blocks 10 having a triangular cross-section are arranged on both sides of each raw water inflow pipe 4 laid on the bottom. of an anaerobic reaction vessel 1 along the longitudinal direction of the pipe 4. Raw water flowing in the vessel 1 is guided upward along the slopes of the blocks 10. The angle of inclination of the slopes is regulated to 20-60 deg.. Plural raw water inflow holes have been pierced in the pipe 4 at regular intervals in the longitudinal direction so as to cover 0.5-1.0m<2> area per one hole. By this constitution, the formation of a dead space in a sludge bed at the lower part of the vessel 1 is prevented, anaerobic microorganisms are allowed to work in the entire bed and the rate of effective utilization of the microorganisms is increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は上向流嫌気性処理装置に関するものであり、詳
しくは嫌気性微生物の効率のよい利用ができるように工
夫された構造を有する上向流嫌気性処理装置に関するも
のである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an upflow anaerobic treatment device, and more specifically, an upflow anaerobic treatment device having a structure devised to enable efficient use of anaerobic microorganisms. The present invention relates to a countercurrent anaerobic treatment device.

(従来の技術) 上向流嫌気性処理装置は、食品工業、発酵工業、紙パル
ブ工業、化学工業等の産業分野において、高濃度有機性
排水を処理するための装置として従来から知られている
(Prior art) Upflow anaerobic treatment equipment has been conventionally known as equipment for treating highly concentrated organic wastewater in industrial fields such as the food industry, fermentation industry, pulp and paper industry, and chemical industry. .

第4図はこのような上向流嫌気性処理装置(以下これを
UASBと略記する)の従来例の代表的な一つを図示し
たものである。その構造は、通常コンクリート等により
平面矩形のプール状に構築された反応槽(処理槽)1の
底盤面7より若干高い位置に、適宜の間隔で複数の原水
流入管4を水平方向から挿入しであるいは垂直上方から
垂下して固定的に配置し、この原水流入管4よりも十分
に高い位置まで形成させたいわゆる造粒グラニユールと
呼ばれる嫌気性微生物の層である汚泥床2に対し、該原
水流入管4から、有機物を高濃度に含む排水を流入させ
て、汚泥床2の嫌気性微生物との接触・反応により該原
水中の有機物の大部分をメタンガスと炭酸ガスを主体と
する発生ガスに分解させ、汚泥床2の上部には、ガス・
ソリッドセパレータと呼ばれる分離機構3を設けておい
て、発生ガス8は捕集してガスライン6から外部に導き
適宜の燃焼装置等のエネルギー源として利用し、浮遊性
の固形分の多くは回収して系外に排出し、処理水は溢流
方式等により処理水管5を通じて系外に排出するように
なっている。
FIG. 4 shows a typical example of a conventional upstream anaerobic treatment device (hereinafter abbreviated as UASB). Its structure is such that a plurality of raw water inflow pipes 4 are inserted horizontally at appropriate intervals into a reaction tank (processing tank) 1, which is usually constructed in the shape of a rectangular pool out of concrete or the like, at a position slightly higher than the bottom plate 7. A sludge bed 2, which is a layer of anaerobic microorganisms called a so-called granulation granule, is placed in a fixed manner hanging down vertically from above, and is formed at a position sufficiently higher than the raw water inflow pipe 4. Wastewater containing a high concentration of organic matter is introduced from the inflow pipe 4, and through contact and reaction with the anaerobic microorganisms in the sludge bed 2, most of the organic matter in the raw water is converted into generated gas mainly consisting of methane gas and carbon dioxide gas. The upper part of the sludge bed 2 is filled with gas and
A separation mechanism 3 called a solid separator is provided to collect generated gas 8 and guide it to the outside through a gas line 6 for use as an energy source for an appropriate combustion device, etc., and most of the floating solids are recovered. The treated water is discharged outside the system through a treated water pipe 5 using an overflow method or the like.

このような構造を有するIIAsBは、高濃度(例えば
BODとして1000mg/1以上)の有機物を含む排
水の処理に優れた機能を発揮するものの、嫌気性微生物
による有機物分解の速度はそれほど速いものとは言えず
、また嫌気性微生物の増殖もそれほど速いものではなく
、したがって反応槽容量当たりの処理量(したがって原
水流入の流量)もあまり大きなものとすることはできな
いものとしても知られている。
Although IIAsB, which has such a structure, exhibits excellent functionality in treating wastewater containing high concentrations of organic matter (for example, 1000 mg/1 or more as BOD), the rate of decomposition of organic matter by anaerobic microorganisms is not that fast. It is also known that the growth of anaerobic microorganisms is not very fast, and therefore the amount of treatment per reactor capacity (therefore, the flow rate of raw water inflow) cannot be made very large.

また、このUASBの実装置は通常、反応槽の底盤面積
として10〜数千ゴと広く、原水流入管を、水平挿入方
式で設けるにしろあるいは垂直垂下方式で設けるにしろ
、上記反応槽容量当たりの処理量が大きくないこともあ
って、あまり密な配置顕度とすることはできず、一般に
は管の流入口1個当たりが0.5〜1.Orn”程度の
面積をカバーするように設計され構築されているのが普
通である。
In addition, the actual UASB equipment usually has a wide bottom surface area of 10 to several thousand square meters, and whether the raw water inflow pipe is installed horizontally or vertically, it is difficult to install the raw water inlet pipe per the capacity of the reaction tank. Because the throughput is not large, it is not possible to arrange the arrangement very closely, and in general, each pipe inlet has a density of 0.5 to 1. They are usually designed and constructed to cover an area of approximately 1.5 cm.

(発明が解決しようとする問題点) ところで上記のようなIIAsBの実装置についての性
能向上を本発明者等が検討を重ねたところ、次のような
改善すべき問題のあることが知見された。すなわち、I
IAsBの実装置は上述のように、原水の流入口1個当
たりが一般的には0.5〜1.0 rn’程度ないしそ
れ以上の面積をカバーするように設計され構築されてい
ることに起因するためと考えられるが、配置された多数
の原水流入口の中間的な領域で原水の流通が実質的にな
いデッドスペースを生じ、これが装置全体としての効率
低下、あるいは装置稼動初期の長期化(いわゆる立ち上
げ時から定常状態への移行期間の長期化)という問題を
招く結果になっている。
(Problems to be Solved by the Invention) By the way, when the inventors of the present invention repeatedly considered improving the performance of the above-mentioned IIAsB actual device, it was discovered that there were the following problems that should be improved. . That is, I
As mentioned above, actual IAsB equipment is designed and constructed so that each raw water inlet generally covers an area of about 0.5 to 1.0 rn' or more. This is thought to be due to this, but a dead space is created in the middle area between the many raw water inlets where there is virtually no flow of raw water, which reduces the efficiency of the equipment as a whole or prolongs the initial operation of the equipment. This results in the problem of prolongation of the transition period from the so-called start-up to the steady state.

このような問題は、例えば原水流入口を高密度に配置し
たり、原水流入の速度を大きくすることによって一見解
消可能とも思えるが、実際はそれほど単純ではなく、例
えば原水流入口の高密度化は構造の複雑化を招くだけで
なく、反応槽全体の処理容量は大きくできないから一カ
所当たりの原水流入量は反比例的に少なくなり、結局実
質的な改善とならない。また原水流入の速度を大きくす
るために例えば流入口を小さくすることも、有機物を高
濃度に含んでいる原水を処理対象とするものであるから
目つまり等を考慮すると自ら限界があり、適当な対策と
ならない。
At first glance, it seems that such problems can be solved by, for example, arranging raw water inlets at a high density or increasing the speed of raw water inflow, but in reality it is not that simple. For example, increasing the density of raw water inlets can be done by Not only does this complicate the process, but also because the processing capacity of the entire reaction tank cannot be increased, the amount of raw water flowing into each location decreases inversely, resulting in no substantial improvement. Furthermore, reducing the inlet port to increase the speed of raw water inflow, for example, has its own limits when considering clogging, since the target of treatment is raw water that contains a high concentration of organic matter. This is not a countermeasure.

第5図はこのようなデッドスペース9がどのような状態
で現出するかを模式的に示した図である。このデッドス
ペース9は、汚泥床2の全体容量からすると容積的には
それほど大きなものではないと考えられるが、この部分
は微生物が沈積して圧密するため微生物濃度は他の部分
よりも高く(5倍程度以上と推測される)なっており、
したがって原水の分解処理に利用できない嫌気性微生物
の割合は見掛は以上に大きくその非効率的な影響は必ず
しも小さくないと考えられる。
FIG. 5 is a diagram schematically showing how such a dead space 9 appears. This dead space 9 is not considered to be very large in terms of volume considering the total volume of the sludge bed 2, but since microorganisms are deposited in this part and compacted, the concentration of microorganisms is higher than in other parts (5 It is estimated that it is more than twice as large.
Therefore, it is thought that the proportion of anaerobic microorganisms that cannot be used for decomposition of raw water is larger than it appears, and its inefficient effect is not necessarily small.

本発明者等は、以上のような従来装置の問題点を解消す
べく検討を重ねて本発明を開発するに至ったものであり
、その目的は、装置構造的には簡易な改良によってデッ
ドスペースを実質的になくし、嫌気性微生物の利用の有
効化という極めて優れた効果を期待できるtlAsBを
提供するところにある。
The inventors of the present invention have developed the present invention after repeated studies to solve the problems of the conventional device as described above. The purpose of the present invention is to provide tlAsB, which can be expected to have an extremely excellent effect of effectively eliminating anaerobic microorganisms and effectively utilizing anaerobic microorganisms.

また本発明の他の目的は、従来装置において存在するデ
ッドスペースをなくすことにより、装置の初期に没入す
べき種汚泥の量を削減可能とし、通常、大量確保が容易
ではない種汚泥の確保の負担を軽減させるところにある
Another object of the present invention is to eliminate the dead space that exists in conventional equipment, thereby making it possible to reduce the amount of seed sludge that must be immersed in the initial stage of the equipment, which makes it possible to secure seed sludge, which is normally difficult to secure in large quantities. It's about reducing the burden.

また本発明の更に別の目的は、嫌気性微生物の利用の有
効化によって、処理能力の向上を実現したUASBを提
供するところにある。
Still another object of the present invention is to provide a UASB that achieves improved processing capacity by effectively utilizing anaerobic microorganisms.

(問題点を解決するための手段) 而して、かかる目的の実現のためになされた本発明より
なる上向流嫌気性処理装置(UASB)の特徴は、複数
の原水流入口のそれぞれを、凹凸に形成した嫌気性反応
槽の底盤の該凹凸の谷部に配置したところにある。
(Means for Solving the Problems) Therefore, the feature of the upflow anaerobic treatment device (UASB) according to the present invention, which was made to achieve the above object, is that each of the plurality of raw water inlets is It is located in the troughs of the uneven bottom plate of the anaerobic reaction tank.

本発明のIIAsBにおいて、反応槽の底盤の凹凸は例
えば該反応槽の構築に際して同時に一体形成させるもの
であフてもよいし、反応槽の構築後に所定の位置に三角
錐1円錐等の適宜の形状のブロックを載置する形式のも
のであってもよい。凹凸の形状は、上記したデッドスペ
ースの解消に必要十分なものであればよく、平面形状の
底盤の上に三角錐2円錐等のブロックが存在する形式の
他、底盤から下方に雌状あるいは断面逆山型の溝が形成
される等の形式のものであってもよく特にその形式を限
定されるものではない。一般的には原水流人管から流出
される原水の通水の挙動を考慮して、その流出原水の通
水の影響が及ばない範囲において嫌気性微生物の存在を
排除するように設けられる。
In IIAsB of the present invention, the unevenness on the bottom of the reaction tank may be formed integrally at the same time as the reaction tank is constructed, or an appropriate triangular pyramid, one cone, etc. may be formed at a predetermined position after the reaction tank is constructed. It may also be of a type in which shaped blocks are placed. The shape of the unevenness may be as long as it is necessary and sufficient to eliminate the above-mentioned dead space. It may be of a type in which an inverted mountain-shaped groove is formed, and the type is not particularly limited. Generally, in consideration of the flow behavior of the raw water flowing out from the raw water flow pipe, the pipe is installed so as to exclude the presence of anaerobic microorganisms within a range that is not affected by the flow of the raw water.

凹凸の谷部に配置される原水流入口の形状、配置は、従
来の1IAs8における原水流入管、原水流入口のそれ
に準じて形成すればよい。
The shape and arrangement of the raw water inlet located in the valleys of the unevenness may be formed in accordance with those of the raw water inlet pipe and raw water inlet in the conventional 1IAs8.

本発明の対象となる装置は、上向流式で反応槽の下部よ
り原水を流入する嫌気性微生物利用の方式の装置である
ことを必要十分の条件として適用され、具体的には、原
水中の有機物をメタン等に分解する狭義の上向流嫌気性
処理装置、上向流式脱窒装置等を例示することができる
The apparatus subject to the present invention is applied on the necessary and sufficient condition that it is an upward flow type apparatus that utilizes anaerobic microorganisms, in which raw water is introduced from the lower part of the reaction tank. Examples include an upflow anaerobic treatment device in a narrow sense that decomposes organic matter into methane and the like, an upflow type denitrification device, and the like.

(作用) 本発明は前記の構成をなすことによって、底盤上に従来
形成されていた嫌気性微生物の活動が実質的にないデッ
ドスペースが構造的に除去され、反応槽内の汚泥床が全
体として効率的に利用される。
(Function) By having the above-described configuration, the present invention structurally eliminates the dead space that is conventionally formed on the bottom plate, where there is substantially no activity of anaerobic microorganisms, and the sludge bed in the reaction tank is completely reduced. Used efficiently.

(実施例) 以下本発明を図面に示す実施例に基づいて説明する。(Example) The present invention will be described below based on embodiments shown in the drawings.

第1図は本発明を適用したUASBの反応槽の構造と原
水流入管の配置関係の一例を示したものであり、本例に
おいては、平面矩形の内空な提供する例えばコンクリー
ト製反応槽1の躯体下部の水平方向側方より複数本の原
水流入管4が底盤9より一定高の位置で等間隔で平行に
該反応槽内に挿入されている。
FIG. 1 shows an example of the structure of a UASB reaction tank to which the present invention is applied and the arrangement of raw water inflow pipes. A plurality of raw water inflow pipes 4 are inserted into the reaction tank from the horizontal sides of the lower part of the frame at a constant height from the bottom plate 9 and in parallel at regular intervals.

この原水流入管4には長尺方向に適宜の間隔で原水流入
口が開口され、原水流入口の1個当たりが概ね05〜1
.Orn’程度の面積をカバーするように設けられてい
る。
This raw water inlet pipe 4 has raw water inlets opened at appropriate intervals in the longitudinal direction, and each raw water inlet has approximately 0.5 to 1
.. It is provided so as to cover an area of about Orn'.

そして本例の特徴は、これら複数の原水流入管4の両側
に、断面山型のブロックlOを該流入管の長尺方向に沿
って延設させ、流入原水がこの山型ブロック10の斜面
に沿フて上方に流通案内されるようにしているところに
ある。
The feature of this example is that blocks 1O having a chevron-shaped cross section are installed on both sides of the plural raw water inflow pipes 4 along the longitudinal direction of the inflow pipes, and the inflow raw water flows onto the slopes of the chevron-shaped blocks 10. It is located in such a way that the distribution is guided upwards along the coast.

このような構成において山型ブロック1oの斜面の傾斜
角は一般的には20〜80’程度の範囲で選択すること
が適当である場合が多い。これは傾斜角が20°以下で
はこの斜面上に上記デッドスペースが形成される虞れが
あり、ブロック設置の効果が十分期待できないからであ
る。また嫌気性汚泥の安息角が通常約50°前後である
から、設置ブロックの傾斜角を60°以上としてもむし
ろ有効利用できる嫌気性微生物の存在領域を制限する傾
向となるからである。
In such a configuration, it is often appropriate to select the inclination angle of the slope of the chevron-shaped block 1o generally within a range of about 20 to 80'. This is because if the angle of inclination is less than 20 degrees, there is a risk that the dead space will be formed on this slope, and the effect of installing the blocks cannot be expected to be sufficient. Furthermore, since the angle of repose of anaerobic sludge is usually around 50°, even if the angle of inclination of the installation block is 60° or more, this tends to limit the area where anaerobic microorganisms exist that can be effectively utilized.

第2図は他の構成のUASBの反応槽の構造と原水流入
管の配置関係の一例を示したものであり、この例は、反
応槽31の上方から原水流入管34を垂直下方に垂下さ
せた形式のUASBに本発明を適用した場合を示してい
る。この例における原水流入口は、第2図(C)で示し
ているように原水流入管34の下端に放射状に複数(例
えば5コ)ノズル状に形成して構成されている。
FIG. 2 shows an example of the structure of a reaction tank and the arrangement of raw water inflow pipes in a UASB with another configuration. In this example, the raw water inflow pipe 34 is vertically suspended from above the reaction tank 31. This figure shows a case where the present invention is applied to a UASB of the same type. The raw water inlet in this example is configured by forming a plurality (for example, five) nozzles radially at the lower end of the raw water inlet pipe 34, as shown in FIG. 2(C).

そして本例におけるいわゆるデッドスペースを除去する
ためのブロックは、第2図(a)で示しているように原
水流入管の下端から放射方向に原水が流入されることに
鑑み、複数の原水流入口から遠い位置どなる部分に円錐
ブロック35、側壁に接して半円錐ブロク36.四角の
三角錐ブロック37として形成されている。
In this example, the block for removing the so-called dead space has multiple raw water inlets, considering that raw water flows in radially from the lower end of the raw water inlet pipe as shown in Fig. 2(a). A conical block 35 is placed at the farthest point from the groin, and a semi-conical block 36 is placed in contact with the side wall. It is formed as a square triangular pyramid block 37.

実施例1 第3図(a)〜(c)で示した底面寸法2X2m。Example 1 The bottom surface dimensions shown in FIGS. 3(a) to (c) are 2 x 2 m.

有効高さ4mの反応槽1に、平面においてL = 12
00mIII、 J2 = 400mmの位置4カ所に
、原水流入管4を各々配置(底盤からの設置高さio。
In the reaction tank 1 with an effective height of 4 m, L = 12 on the plane
Raw water inlet pipes 4 are placed at four locations with J2 = 400mm (installation height from the bottom plate: io).

mm) L/、また底盤9の上に図示T = 700m
m 。
mm) L/, also shown on the bottom plate 9 T = 700m
m.

t 1 = 500mm 、 t 2 = 150mm
 、傾斜角θ=406の寸法の山型ブロック10を設置
した。
t 1 = 500mm, t 2 = 150mm
, a chevron-shaped block 10 having dimensions of an inclination angle θ=406 was installed.

この反応槽に、下水処理場から得られた嫌気性汚泥(M
LS518000mg/ 1 )を6rn’投入し、反
応槽内を35℃に保って原水を流入させ処理を行なった
。流入原水は、グルコース:グルタミン酸ナトリウムを
2=1で混合したものを主成分としこれに窒素、リン等
を加えて原水BOD5000mg/ILに調整した合成
排水を用いた。
Anaerobic sludge (M
LS518,000 mg/1) was added for 6 rn', and the inside of the reaction tank was kept at 35° C., and raw water was introduced to carry out the treatment. The inflow raw water used was synthetic wastewater whose main component was a mixture of glucose and monosodium glutamate at a ratio of 2=1, and which was adjusted to a raw water BOD of 5000 mg/IL by adding nitrogen, phosphorus, etc.

また比較のために、上記山型ブロック39を設置せずに
底盤を平面とした以外は同様の構成の比較例の反応槽を
設けた。
For comparison, a reaction tank of a comparative example having the same configuration was provided except that the chevron-shaped block 39 was not installed and the bottom plate was made flat.

これらの実施例および比較例の反応槽について、それぞ
れBOD容積負荷0.5kgBOD/rn” 7日で運
転開始し、その後1週間毎に負荷を20零づつ増加させ
て最終的に5 kgBOD/rn″/日の負荷とした。
For the reaction vessels of these examples and comparative examples, operation was started in 7 days with a BOD volume load of 0.5 kgBOD/rn'', and thereafter the load was increased by 20 zero every week to finally reach 5 kgBOD/rn''. /day load.

運転開始約半月後に反応槽内の汚泥の状態を調べたとこ
ろ、比較例の反応槽では底盤の上に5カ所のデッドスペ
ースが生じ、このデッドスペース内の汚泥量は投入した
種汚泥量の約半量を占めていた。その後、比較例の反応
槽からの処理水は水質が悪化し、1.5kgBOD/ 
rn”/8以上への負荷上昇は実質的に不可能であった
When we investigated the state of the sludge in the reaction tank about half a month after the start of operation, we found that in the reaction tank of the comparative example, there were five dead spaces above the bottom plate, and the amount of sludge in these dead spaces was about the same as the amount of seed sludge input. It took up half of the amount. After that, the quality of the treated water from the reaction tank of the comparative example deteriorated, and it was reduced to 1.5 kg BOD/
It was virtually impossible to increase the load to rn''/8 or higher.

なおデッドスペースの判定、およびデッドスペース内の
汚泥量の算出は次により行なった。
The dead space was determined and the amount of sludge in the dead space was calculated as follows.

デッドスペースの判定: 反応槽上部よりサンプラーを挿入し、反応槽底部の各位
置における汚泥濃度を測定した。デッドスペースの判定
は、汚泥がタール状を呈し、汚泥濃度が3万mg/fL
以上の部分をデッドスペースとした。
Determination of dead space: A sampler was inserted from the top of the reaction tank and the sludge concentration at each position at the bottom of the reaction tank was measured. Dead space is determined when the sludge is tar-like and the sludge concentration is 30,000 mg/fL.
The above area was defined as dead space.

汚泥量の算出: (上記サンプリング結果によるデッドスペース容積)×
(デッドスペースにおける平均的汚泥濃度)をデッドス
ペース内汚泥濃度とした。
Calculation of sludge volume: (Dead space volume based on the above sampling results) ×
(average sludge concentration in the dead space) was defined as the sludge concentration in the dead space.

他方、実施例の反応槽においてはデッドスペースの形成
は実質的に確認されず、その後も良好な処理水質のまま
負荷上昇を続け、約2カ月後に5 kgBOD/rri
″/日の負荷が許容された。
On the other hand, in the reaction tank of the example, virtually no dead space formation was observed, and the load continued to increase with good treated water quality, reaching 5 kgBOD/rri after about 2 months.
″/day load was allowed.

(発明の効果) 以上述べたように、本発明よりなるIIAS8は、構造
的には反応槽の底盤を凹凸にするという簡易な改良によ
り、原水の流通のない嫌気性微生物のデッドスペースを
実質的になくし、これにより嫌気性微生物の利用が有効
化されるという極めて優れた効果が期待できる。
(Effects of the Invention) As described above, IIAS8 according to the present invention can substantially eliminate the dead space for anaerobic microorganisms where raw water does not flow through a simple structural improvement of making the bottom of the reaction tank uneven. This can be expected to have the extremely excellent effect of making the use of anaerobic microorganisms more effective.

また従来装置において存在するデッドスペースをな(す
ことにより、装置の初期に投入すべき種汚泥の量を削減
可能とし、通常、大量確保が容易ではない種汚泥の確保
の負担を軽減させるという効果もある。
In addition, by eliminating the dead space that exists in conventional equipment, it is possible to reduce the amount of seed sludge that must be input at the initial stage of the equipment, and it has the effect of reducing the burden of securing seed sludge, which is normally difficult to secure in large quantities. There is also.

また嫌気性微生物の利用の有効化によって、装置の原水
処理能力が向上されるという効果もある。
Furthermore, effective use of anaerobic microorganisms has the effect of improving the raw water treatment capacity of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明を適用した上向流嫌気性処理装置
の反応槽の底盤部分の構成概要−例(原水流入管の水平
挿入型)を示した平面図、第1図(b)は同縦断正面図
、第2図(a)は他の例(原水流入管の垂直垂下型)の
反応槽の平面図、第2図(b)は第2図(a)A’−A
線の縦断面図、第2図(c)は原水流入管部分の拡大図
である。 第3図(a) 、 (b) 、 (c)は本発明の試験
に供した反応槽の構成概要を説明するための底盤部分の
構造を説明するための図である。 第4図は従来の上向流嫌気性処理装置の構成概要を示し
た図、第5図は従来装置において発生するデッドスペー
スの状態を説明するための図である。 1:反応M     2:汚泥床 3:分離機構 4:原水流入管   5:処理水管 6:ガスライン   7:底盤 8:発生ガス    9:デッドスペースlO:山型ブ
ロック  31:反応禮 34 : 原水流入管 35:円錐ブロック 36 : 半円錐ブロック 37 : 三角錐ブロック 第1図(α) 第4図
Fig. 1(a) is a plan view showing an outline of the configuration of the bottom plate of the reaction tank of the upflow anaerobic treatment device to which the present invention is applied (horizontal insertion type of raw water inflow pipe), and Fig. 1(b) ) is a longitudinal front view of the same, FIG. 2(a) is a plan view of another example (vertical hanging type of raw water inflow pipe), and FIG. 2(b) is a plan view of the reaction tank in FIG.
The longitudinal cross-sectional view along the line, FIG. 2(c), is an enlarged view of the raw water inlet pipe portion. FIGS. 3(a), 3(b), and 3(c) are diagrams for explaining the structure of the bottom plate portion for explaining the general configuration of the reaction tank used in the test of the present invention. FIG. 4 is a diagram showing an outline of the configuration of a conventional upflow anaerobic treatment apparatus, and FIG. 5 is a diagram for explaining the state of dead space that occurs in the conventional apparatus. 1: Reaction M 2: Sludge bed 3: Separation mechanism 4: Raw water inflow pipe 5: Treated water pipe 6: Gas line 7: Bottom plate 8: Generated gas 9: Dead space 1O: Mountain-shaped block 31: Reaction 34: Raw water inflow pipe 35: Conical block 36: Half-conical block 37: Triangular pyramidal block Fig. 1 (α) Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 1 原水流入口を、凹凸に形成した嫌気性反応槽の底盤
の該凹凸の谷部に配置したことを特徴とする上向流嫌気
性処理装置。
1. An upflow anaerobic treatment device characterized in that the raw water inlet is arranged in the valley of the uneven bottom plate of the anaerobic reaction tank formed in the uneven shape.
JP63187354A 1988-07-27 1988-07-27 Apparatus for anaerobically treating upward flow Pending JPH0240292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63187354A JPH0240292A (en) 1988-07-27 1988-07-27 Apparatus for anaerobically treating upward flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63187354A JPH0240292A (en) 1988-07-27 1988-07-27 Apparatus for anaerobically treating upward flow

Publications (1)

Publication Number Publication Date
JPH0240292A true JPH0240292A (en) 1990-02-09

Family

ID=16204526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63187354A Pending JPH0240292A (en) 1988-07-27 1988-07-27 Apparatus for anaerobically treating upward flow

Country Status (1)

Country Link
JP (1) JPH0240292A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499284U (en) * 1991-01-16 1992-08-27
JP2008221181A (en) * 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820293A (en) * 1981-07-30 1983-02-05 ドル−オリバ−・インコ−ポレイテツド Fluid bed type reactor
JPS6182894A (en) * 1984-09-27 1986-04-26 Kurita Water Ind Ltd Apparatus for fluidized bed type biological treatment of waste water
JPS62152596A (en) * 1985-12-27 1987-07-07 Kurita Water Ind Ltd Sprinkler for treatment of contaminated water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820293A (en) * 1981-07-30 1983-02-05 ドル−オリバ−・インコ−ポレイテツド Fluid bed type reactor
JPS6182894A (en) * 1984-09-27 1986-04-26 Kurita Water Ind Ltd Apparatus for fluidized bed type biological treatment of waste water
JPS62152596A (en) * 1985-12-27 1987-07-07 Kurita Water Ind Ltd Sprinkler for treatment of contaminated water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499284U (en) * 1991-01-16 1992-08-27
JP2008221181A (en) * 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method

Similar Documents

Publication Publication Date Title
EP0213691B1 (en) A bioconversion reactor
US5091315A (en) Bioconversion reactor
US5049266A (en) Device and method for microbiological water treatment
US5855785A (en) Three-phase separator for a fluidized bed apparatus
NL8201293A (en) FLUID BED REACTOR FOR PURIFICATION OF WASTE WATER.
AU602612B2 (en) Improved fluidized bed process and apparatus
CA1179790A (en) Integral flow circulator for fluid bed reactor
Frankin et al. Application of the Biobed® upflow fluidized bed process for anaerobic waste water treatment
CA1331892C (en) Fluidized bed process and apparatus
CN110627196A (en) Inclined tube precipitation device and high ammonia nitrogen organic sewage treatment system
CN202849153U (en) Microvortex internal-recycle anaerobic bioreactor
EP0311216B1 (en) Improved fluidized bed process and apparatus
JPH0240292A (en) Apparatus for anaerobically treating upward flow
EP1408009B1 (en) Reactor with two gas separators and method for the anaerobic treatment of liquids
CN114409069B (en) Annular spiral-flow type anaerobic reactor for pretreatment of high-concentration chemical fiber wastewater
US3976568A (en) Method of wastewater treatment
US4714548A (en) Device for purification of waste water
JPH01215397A (en) Anaerobic bioreactor
CN114275890A (en) High-efficiency skid-mounted three-phase separator in high-load anaerobic system
JPH02157096A (en) Fixed bed type bioreactor
US3894953A (en) Wastewater treatment plant
JP2003033793A (en) Biological denitration equipment and biological denitration method
JP2001259681A (en) Upward flow anaerobic treating device
CN215667591U (en) Prevent oxygen filling out basin
Hack et al. Growth of granular sludge in the Biopaq IC-reactor