JPH0239711B2 - HIITOHONPUSOCHI - Google Patents

HIITOHONPUSOCHI

Info

Publication number
JPH0239711B2
JPH0239711B2 JP20964183A JP20964183A JPH0239711B2 JP H0239711 B2 JPH0239711 B2 JP H0239711B2 JP 20964183 A JP20964183 A JP 20964183A JP 20964183 A JP20964183 A JP 20964183A JP H0239711 B2 JPH0239711 B2 JP H0239711B2
Authority
JP
Japan
Prior art keywords
refrigerant
nozzle
heat pump
pump device
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20964183A
Other languages
Japanese (ja)
Other versions
JPS60101454A (en
Inventor
Hiroyuki Sumitomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP20964183A priority Critical patent/JPH0239711B2/en
Publication of JPS60101454A publication Critical patent/JPS60101454A/en
Publication of JPH0239711B2 publication Critical patent/JPH0239711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)
  • Jet Pumps And Other Pumps (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 技術分野 この発明は、例えば、温排水等から回収した熱
を利用して高温の水蒸気を発生させることなどに
使用し得る、ヒートポンプ装置の改良に関する。 ロ 従来技術 ヒートポンプは熱の有効利用という面から近時
種々の分野において活用されるに至つている。従
来のヒートポンプにおいては第1図に示すよう
に、次に述べるごときサイクルが構成される。す
なわち、作動媒体液が蒸発器1で外部から熱を吸
収して蒸発し、生成した蒸気はセパレータ2を経
て圧縮機3へ吸入される。圧縮機3で圧縮されて
温度と圧力を高めた蒸気は次に、凝縮器4で外部
へ熱を捨てて液化し、膨脹弁5にて絞り膨脹して
セパレータ2に至る。このセパレータ2にて蒸気
から分離した液は蒸発器1に給液される。 このようなヒートポンプは、例えば蒸発器1に
管路6で工場等における温排水を熱源として導く
とともに凝縮器4に管路7で冷却水を供給し、し
かして温排水から回収した熱を利用して高温の水
蒸気を得る、といつた具合に応用される。 ここに、冷媒としてフレオン(R−114)を使
用した場合につき具体的数値をもつて説明するな
らば、蒸発器1からの40℃、3.47ataの冷媒蒸気
を圧縮機3で120℃、21.11ataまで圧縮して凝縮
器4に送給するとき、凝縮器4に管路7を通して
供給される冷却水は約118℃の水蒸気として取り
出すことができる。 しかしながら、近時のエネルギー事情の下、特
により高温のアウトプツトが要求される場合、圧
縮機3の動力を増大させねばならず、多大の電力
を消費することとなる。 ハ 発明の目的 この発明は従来のヒートポンプの上に述べたご
とき問題を解消せんとするものである。すなわち
この発明の目的は、所要動力が少なくてすみ省エ
ネルギー効果の高いヒートポンプ装置を提供する
ことである。 ニ 発明の構成 この発明のヒートポンプ装置は、凝縮器4から
の高温、高圧の飽和冷媒液を高速蒸気流として流
過せしめるためのノズル9と、ノズル9からの高
速蒸気流ならびにこれに吸引せられる蒸発器1か
らの冷媒蒸気とを流過せしめるための、ノズル9
と同軸状のデイフユーザ10とからなるエジエク
タ8;およびデイフユーザ10からの冷媒を受け
取り圧縮機3へ吸入されるべき冷媒蒸気と膨脹弁
5を経て蒸発器1へ至るべき冷媒液とに分離する
ためのセパレータ2;を具備する。 ホ 発明の作用 凝縮器1を出た高温、高圧の飽和冷媒液は、エ
ジエクタ8のノズル9を流過する際高速の蒸気流
となり、蒸発器1からの冷媒蒸気を吸引しつつデ
イフユーザ10へ進入する。デイフユーザ10内
を進むにつれて冷媒蒸気は流速が低下すると同時
に圧力を回復する。この圧力を回復した冷媒蒸気
はセパレータ2にて冷媒液と分離した上で圧縮機
3に導かれる。 エジエクタ8は、駆動蒸気(液)の圧力P1
ノズル9で絞つて速度エネルギーに変換し、ノズ
ル9出口における静圧を下げることにより、この
低い静圧に対して少し高い圧力P2の蒸気を吸引
し、駆動蒸気と混合して高速で流下させ、そして
デイフユーザ10により静圧を回復させて吸引圧
力P2よりも高い圧力P3となす。これは吸引蒸気
にとつては圧縮と同様の結果となるもので、熱的
作用面から捉えるならばエジエクタ8のことをサ
ーモコンプレツサと呼ぶことができる。 ヘ 発明の効果 この発明によれば、上に述べたごとく圧縮器の
入口圧力が高くなり、この結果圧縮機の仕事が軽
減され、動力低減が可能となる。別言すれば、同
じ動力で従来に比べて高温のアウトプツトの得ら
れる省エネルギー効果の高いヒートポンプ装置を
提供することができる。 ト 実施例 以下、図面に示すこの発明の実施例について説
明する。なお、第2図においても、第1図に示す
ものと同一の部品は同一の参照数字で指してあ
る。 まず第2図を参照すると、蒸発器1の出口側
は、冷媒管路aを介して、後述するエジエクタ8
の蒸気吸入口12と接続する。また、凝縮器4の
出口側は冷媒管路bを介してエジエクタ8の駆動
液入口11と接続する。エジエクタ8はさらに冷
媒管路cによりセパレータ2と接続する。このセ
パレータ2の蒸気出口は第1図におけると同様冷
媒管路dを介して圧縮機3の吸入口に通ずる。セ
パレータ2の液出口は膨脹弁5を備えた冷媒管路
eにより蒸発器1の入口側に接続する。 エジエクタ8は第3図に示すように、互いに同
軸状に延在するノズル9とデイフユーザ10を備
えている。凝縮器4の冷媒出口と接続する駆動液
入口11がノズル9と連絡しており、このノズル
9は蒸気吸入口12と連絡する室13に開口し、
かつ、同じく室13に開口するデイフユーザ10
と互いに軸方向に離隔して位置する。 ノズル9とデイフユーザ10の対は、その軸線
を鉛直にして配置するのが、液滴付着等による弊
害の防止といつた面で有利である。 14はノズル9内にそれと同軸状に、かつ、軸
線方向に進退自在に配置した円錐形部材(例えば
ニードル)であつて、サーボモータ15により駆
動される。このサーボモータ15はヒートポンプ
の負荷に応じて、ノズル9に対する円錐形部材1
4の軸方向位置を調整して冷媒循環量を制御す
る。かかる制御を達成するために、凝縮器4とエ
ジエクタ8とを接続する冷媒管路6の途中に冷媒
タンク16を設け、この冷媒タンクの液レベルを
一定に保つように冷媒タンク16の液レベルに応
じてサーボモータ15を電気的に制御する装置1
7を備えることができる。 次に、上述のごとき構成の本実施例における作
用について述べる。 凝縮器4により出た高温、高圧の飽和冷媒液は
冷媒タンク16に一旦流入し、そこから冷媒管路
bを通つてエジエクタ8の駆動液入口11へ進
む。この飽和冷媒液はノズル9を流過する際断熱
膨脹して高速蒸気流に転じ、蒸気吸入口12から
室13内へ流入する蒸発器1からの冷媒蒸気を吸
引しつつデイフユーザ10へ進入する。これらの
冷媒蒸気がデイフユーザ10内を進むにつれてそ
の流速が低下すると同時に圧力が回復する。デイ
フユーザ10を出ると冷媒蒸気はセパレータ2に
て気液分離した後、冷媒管路dを通つて圧縮機3
へ導かれる。セパレータ2にて蒸気から分離され
た冷媒液は、冷媒管路e、膨脹弁5を経て蒸発器
1へ至る。 かくして圧縮機3の入口圧力はエジエクタ8を
経ることにより回復した圧力分だけ高くなり、圧
縮機8の仕事が軽減される。いま理想気体として
試算した結果を示すならば、下表のとおりであ
る。
B. Technical Field The present invention relates to an improvement in a heat pump device that can be used, for example, to generate high-temperature water vapor using heat recovered from heated wastewater or the like. B. Prior Art Heat pumps have recently come to be used in various fields from the standpoint of effective use of heat. In a conventional heat pump, as shown in FIG. 1, the following cycle is configured. That is, the working medium liquid absorbs heat from the outside in the evaporator 1 and evaporates, and the generated vapor is sucked into the compressor 3 via the separator 2. The steam that has been compressed by the compressor 3 to increase its temperature and pressure is then liquefied by discarding heat to the outside in the condenser 4, is throttled and expanded by the expansion valve 5, and reaches the separator 2. The liquid separated from the vapor by the separator 2 is supplied to the evaporator 1. Such a heat pump, for example, supplies heated waste water from a factory or the like to an evaporator 1 through a pipe 6 as a heat source, and supplies cooling water to a condenser 4 through a pipe 7, thereby utilizing the heat recovered from the heated waste water. It is used in applications such as obtaining high-temperature water vapor. Here, to explain the case where Freon (R-114) is used as a refrigerant with specific numerical values, refrigerant vapor at 40℃ and 3.47ata from evaporator 1 is converted to 120℃ and 21.11ata by compressor 3. When the cooling water is compressed to a temperature of about 118°C and sent to the condenser 4, the cooling water supplied to the condenser 4 through the pipe 7 can be taken out as water vapor at about 118°C. However, under the current energy situation, especially when higher temperature output is required, the power of the compressor 3 must be increased, resulting in a large amount of electric power being consumed. C. Purpose of the Invention The present invention aims to solve the above-mentioned problems of conventional heat pumps. That is, an object of the present invention is to provide a heat pump device that requires less power and has a high energy-saving effect. D. Structure of the Invention The heat pump device of the present invention includes a nozzle 9 for causing a high-temperature, high-pressure saturated refrigerant liquid from the condenser 4 to flow through as a high-speed vapor flow, a high-speed vapor flow from the nozzle 9, and a high-speed vapor flow that is sucked into the nozzle 9. a nozzle 9 for passing refrigerant vapor from the evaporator 1;
and a coaxial diff user 10; A separator 2 is provided. E. Effect of the Invention The high-temperature, high-pressure saturated refrigerant liquid that exits the condenser 1 becomes a high-speed vapor flow when flowing through the nozzle 9 of the ejector 8, and enters the diffuser 10 while sucking refrigerant vapor from the evaporator 1. do. As the refrigerant vapor progresses through the diffuser 10, its flow rate decreases and at the same time its pressure is restored. The refrigerant vapor, which has recovered its pressure, is separated from the refrigerant liquid by the separator 2 and then guided to the compressor 3. The ejector 8 constricts the pressure P 1 of the driving steam (liquid) with the nozzle 9 and converts it into velocity energy, and lowers the static pressure at the outlet of the nozzle 9 to generate steam at a pressure P 2 slightly higher than this low static pressure. is sucked in, mixed with the driving steam and flowed down at high speed, and the static pressure is restored by the diffuser 10 to a pressure P3 higher than the suction pressure P2 . This results in the same result as compression for the suction steam, and from the standpoint of thermal action, the ejector 8 can be called a thermocompressor. F. Effects of the Invention According to the present invention, as described above, the inlet pressure of the compressor is increased, and as a result, the work of the compressor is reduced, making it possible to reduce the power. In other words, it is possible to provide a heat pump device with a high energy-saving effect that can produce a higher temperature output than the conventional one with the same power. G. Embodiments Hereinafter, embodiments of the present invention shown in the drawings will be described. In FIG. 2, parts that are the same as those shown in FIG. 1 are designated by the same reference numerals. First, referring to FIG. 2, the outlet side of the evaporator 1 is connected to an ejector 8, which will be described later, via a refrigerant pipe a.
It is connected to the steam inlet 12 of the Further, the outlet side of the condenser 4 is connected to the driving liquid inlet 11 of the ejector 8 via a refrigerant pipe b. The ejector 8 is further connected to the separator 2 through a refrigerant pipe c. The vapor outlet of this separator 2 communicates with the suction port of the compressor 3 via the refrigerant line d, as in FIG. The liquid outlet of the separator 2 is connected to the inlet side of the evaporator 1 through a refrigerant pipe e provided with an expansion valve 5. As shown in FIG. 3, the ejector 8 includes a nozzle 9 and a diff user 10 that extend coaxially with each other. A driving liquid inlet 11 connected to the refrigerant outlet of the condenser 4 communicates with a nozzle 9 which opens into a chamber 13 which communicates with a steam inlet 12;
And a differential user 10 that also opens into the chamber 13
and are located axially apart from each other. It is advantageous to arrange the pair of nozzle 9 and diffuser 10 with their axes vertical in order to prevent problems caused by adhesion of droplets and the like. Reference numeral 14 denotes a conical member (for example, a needle) disposed coaxially within the nozzle 9 and movable back and forth in the axial direction, and is driven by a servo motor 15. This servo motor 15 moves the conical member 1 to the nozzle 9 depending on the load of the heat pump.
The amount of refrigerant circulation is controlled by adjusting the axial position of 4. In order to achieve such control, a refrigerant tank 16 is provided in the middle of the refrigerant pipe 6 that connects the condenser 4 and the ejector 8, and the liquid level of the refrigerant tank 16 is adjusted to keep the liquid level constant. A device 1 for electrically controlling a servo motor 15 according to the
7 can be provided. Next, the operation of this embodiment having the above-described configuration will be described. The high-temperature, high-pressure saturated refrigerant liquid discharged from the condenser 4 once flows into the refrigerant tank 16, and from there proceeds to the driving liquid inlet 11 of the ejector 8 through the refrigerant pipe b. When this saturated refrigerant liquid passes through the nozzle 9, it expands adiabatically and turns into a high-speed vapor flow, which enters the diffuser 10 while sucking the refrigerant vapor from the evaporator 1 flowing into the chamber 13 from the vapor inlet 12. As these refrigerant vapors progress through the diffuser 10, their flow velocity decreases and at the same time their pressure recovers. After leaving the diffuser 10, the refrigerant vapor is separated into gas and liquid by the separator 2, and then passes through the refrigerant pipe d to the compressor 3.
be led to. The refrigerant liquid separated from the vapor by the separator 2 reaches the evaporator 1 via the refrigerant pipe e and the expansion valve 5. In this way, the inlet pressure of the compressor 3 is increased by the pressure recovered by passing through the ejector 8, and the work of the compressor 8 is reduced. The table below shows the results of the trial calculations for an ideal gas.

【表】 明らかなごとく、本発明によるヒートポンプ装
置は従来例よりも格段に大きい成績係数を示し、
同じ負荷に対してより小さな動力ですむことがわ
かる。 なお、負荷に応じて動力を調節すれば一層のエ
ネルギー節減が可能となるが、本実施例はかよう
に制御される。すなわち、負荷が小さいとき、例
えばその1パラメータとして凝縮器4における冷
媒の凝縮量が少ないときは、冷媒タンク16内の
液レベルが減少し、これに応答してレベル・イン
ジケーシヨン・コントローラのごとき装置17が
サーボモータ15をして円錐形部材14をノズル
9内に進入させ、しかして冷媒液の循環量を減少
せしめる。負荷が大きいときは上に述べたところ
とは逆に、冷媒液の循環量を増加せしめるごとく
制御が行われる。
[Table] As is clear, the heat pump device according to the present invention exhibits a much larger coefficient of performance than the conventional example,
It can be seen that less power is required for the same load. Note that further energy savings can be achieved by adjusting the power according to the load, and this embodiment is controlled in this manner. That is, when the load is small, for example, when the amount of refrigerant condensed in the condenser 4 is small, the liquid level in the refrigerant tank 16 decreases, and in response, a device such as a level indication controller is activated. 17 causes the servo motor 15 to advance the conical member 14 into the nozzle 9, thus reducing the amount of refrigerant liquid circulated. When the load is large, control is performed to increase the amount of refrigerant liquid circulated, contrary to the above description.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のヒートポンプ装置のフローシー
ト、第2図はこの発明の実施例たるヒートポンプ
装置のフローシート、第3図は第2図のエジエク
タ部分の拡大断面略図である。 1……蒸発器、2……セパレータ、3……圧縮
機、4……凝縮器、5……膨脹弁、6……熱源管
路、7……冷却水管路、8……エジエクタ、9…
…ノズル、10……デイフユーザ、14……円錐
形部材、15……サーボモータ、16……冷媒タ
ンク、17……レベル・インジケーシヨン・コン
トローラ。
FIG. 1 is a flow sheet of a conventional heat pump device, FIG. 2 is a flow sheet of a heat pump device according to an embodiment of the present invention, and FIG. 3 is an enlarged schematic cross-sectional view of the ejector portion of FIG. 2. DESCRIPTION OF SYMBOLS 1... Evaporator, 2... Separator, 3... Compressor, 4... Condenser, 5... Expansion valve, 6... Heat source pipe line, 7... Cooling water pipe line, 8... Ejector, 9...
... Nozzle, 10 ... Diffuser, 14 ... Conical member, 15 ... Servo motor, 16 ... Refrigerant tank, 17 ... Level indication controller.

Claims (1)

【特許請求の範囲】 1 凝縮器よりの高温高圧の飽和冷媒液を高速蒸
気流として流下せしめるためのノズルと、該高速
蒸気流ならびにこれに吸引せられる蒸発器よりの
冷媒蒸気をともに流下せしめるため前記ノズルと
同軸状に位置するデイフユーザとからなるエジエ
クタ;および前記デイフユーザより冷媒を受け取
り圧縮機へ吸入されるべき冷媒蒸気と膨張弁を経
て蒸発器へ至るべき冷媒液とに分離するためのセ
パレータ;を具備することを特徴とするヒートポ
ンプ装置。 2 互いに同軸状の前記ノズルおよび前記デイフ
ユーザが鉛直に延在していることを特徴とする特
許請求の範囲の記載1のヒートポンプ装置。 3 前記エジエクタが、前記ノズルと同軸状に、
かつ、前記ノズル内に向けて軸方向に進退自在に
配置された円錐形部材を備えており、該円錐形部
材の軸方向位置が当該ヒートポンプ装置の負荷に
応じて調節されることを特徴とする特許請求の範
囲の記載1のヒートポンプ装置。 4 前記凝縮器と前記エジエクタとを接続する冷
媒管路の途中に設けた冷媒タンクと、前記円錐形
部材を駆動するサーボモータと、前記冷媒タンク
の液レベルに応じて前記サーボモータを制御する
装置とをさらに具備していることを特徴とする特
許請求の範囲の記載3のヒートポンプ装置。
[Scope of Claims] 1. A nozzle for causing high-temperature, high-pressure saturated refrigerant liquid from a condenser to flow down as a high-speed vapor stream, and for causing both the high-speed vapor stream and refrigerant vapor from an evaporator sucked into the nozzle to flow down. an ejector comprising a diff user located coaxially with the nozzle; and a separator for receiving refrigerant from the diff user and separating it into refrigerant vapor to be sucked into the compressor and refrigerant liquid to be delivered to the evaporator via an expansion valve; A heat pump device comprising: 2. The heat pump device according to claim 1, wherein the nozzle and the diffuser, which are coaxial with each other, extend vertically. 3 The ejector is coaxial with the nozzle,
The heat pump device further comprises a conical member disposed so as to move forward and backward in the axial direction toward the inside of the nozzle, and the axial position of the conical member is adjusted according to the load of the heat pump device. A heat pump device according to claim 1. 4. A refrigerant tank provided in the middle of a refrigerant pipe connecting the condenser and the ejector, a servo motor that drives the conical member, and a device that controls the servo motor according to the liquid level of the refrigerant tank. The heat pump device according to claim 3, further comprising:
JP20964183A 1983-11-07 1983-11-07 HIITOHONPUSOCHI Expired - Lifetime JPH0239711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20964183A JPH0239711B2 (en) 1983-11-07 1983-11-07 HIITOHONPUSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20964183A JPH0239711B2 (en) 1983-11-07 1983-11-07 HIITOHONPUSOCHI

Publications (2)

Publication Number Publication Date
JPS60101454A JPS60101454A (en) 1985-06-05
JPH0239711B2 true JPH0239711B2 (en) 1990-09-06

Family

ID=16576150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20964183A Expired - Lifetime JPH0239711B2 (en) 1983-11-07 1983-11-07 HIITOHONPUSOCHI

Country Status (1)

Country Link
JP (1) JPH0239711B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109338A (en) * 1992-09-25 1994-04-19 Morikawa Sangyo Kk Refrigerating machine circuit and gas recovering device employing the circuit
JP4599782B2 (en) * 2001-09-19 2010-12-15 株式会社デンソー Refrigeration cycle using ejector

Also Published As

Publication number Publication date
JPS60101454A (en) 1985-06-05

Similar Documents

Publication Publication Date Title
KR101441765B1 (en) A jet pump system for heat and cold management, apparatus, arrangement and methods of use
JP5341182B2 (en) Refrigeration system
US20070101760A1 (en) Refrigerant pressurization system with a two-phase condensing ejector
CN101464069B (en) Thermal injection and vortex flow combined air conditioner
JP2004044412A (en) Ejector
CN213066639U (en) Gas bearing gas supply system for compressor and refrigeration system
KR101679782B1 (en) Steam production system
JPH0239711B2 (en) HIITOHONPUSOCHI
CA3117235C (en) System and method of mechanical compression refrigeration based on two-phase ejector
CN107198887B (en) A kind of steam compression system and working method
JP2010046571A (en) Method and device for concentrating aqueous solution by evaporation
JPH0788934B2 (en) Vacuum steam generator
CN219392531U (en) Temperature control device of temperature verification box
JPS6337289Y2 (en)
JPH0117011Y2 (en)
JPH0524415B2 (en)
JPH10111041A (en) Device for supplying constant temperature air
JP2005307813A (en) Ejector
JPH0712848Y2 (en) Absorption refrigerator
JPH07243715A (en) Absorption type chilled and warm water generator
CN116062839A (en) Membrane distillation system and control method thereof
JPH046858B2 (en)
JPH06100402B2 (en) Absorption refrigerator
JPS6045772B2 (en) Heating/cooling device and method for controlling the device to satisfy heating and cooling demands
JPH07850Y2 (en) Double-effect absorption refrigerator