JPH0239010A - Aspherical single lens - Google Patents

Aspherical single lens

Info

Publication number
JPH0239010A
JPH0239010A JP18971288A JP18971288A JPH0239010A JP H0239010 A JPH0239010 A JP H0239010A JP 18971288 A JP18971288 A JP 18971288A JP 18971288 A JP18971288 A JP 18971288A JP H0239010 A JPH0239010 A JP H0239010A
Authority
JP
Japan
Prior art keywords
aspherical
single lens
lens
aberration
conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18971288A
Other languages
Japanese (ja)
Other versions
JP2622160B2 (en
Inventor
Kazuhiko Matsuoka
和彦 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63189712A priority Critical patent/JP2622160B2/en
Priority to US07/385,374 priority patent/US4932763A/en
Publication of JPH0239010A publication Critical patent/JPH0239010A/en
Application granted granted Critical
Publication of JP2622160B2 publication Critical patent/JP2622160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To contrive the reduction in weight and the miniaturization of an optical head by satisfying specified conditions on an aspherical surface. CONSTITUTION:Both of a first surface and a second surface are composed of the aspherical surfaces, the surfaces are the aspherical surfaces expressed when a distance from an arbitrary point on the aspherical surface up to the contact plane surface of an aspherical top is denoted as X, a distance from such a point up to an optical axis is denoted as H, the reference curvature radius of a nu-th surface is shown by Rnu, the conic constant of the nu-th surface is shown by Knu and the aspherical coefficient of the nu-th surface is shown as Anu i (i=3, 4...), and simultaneously, conditions (1), (2) and (3) are satisfied. Provided that F is the focus distance of an aspherical single lens, D is the thickness on the optical axis of the aspherical single lens and N is a refraction factor to the using wavelength of the aspherical single lens. Thus, the aspherical single lens can be obtained in which an abberation correction is satisfactorily executed both on the axis and outside the axis through a parallel plate having the thickness of approximately 0.04F-0.111F.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、非球面を有する単レンズに関しとりわけNA
が0.42〜0.50程度の両面非球面単レンズに関す
るものである。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a single lens having an aspherical surface, and particularly relates to a single lens having an aspherical surface.
This relates to a double-sided aspherical single lens with a diameter of about 0.42 to 0.50.

(従来技術) 近年、ビデオディスクやコンパクトディスク等の光ディ
スクが大記憶容量の記録担体として多岐に亘り使用され
ている。
(Prior Art) In recent years, optical discs such as video discs and compact discs have been widely used as record carriers with large storage capacities.

又、光デイスク同様の光学的な記録担体として、記憶容
量の多さ、携帯性の良さ等の利点を有する光カードも注
目を浴びている。
Furthermore, optical cards, which have advantages such as large storage capacity and good portability, are also attracting attention as optical record carriers similar to optical disks.

この種の記録担体に情報を高密度に記録したり、記録情
報を正確に再生する為に、情報記録再生装置に用いる対
物レンズには数μmの分解能が要求される。即ち、0.
4を上回るNAの対物レンズが必要である。
In order to record information with high density on this type of record carrier and to accurately reproduce recorded information, an objective lens used in an information recording/reproducing apparatus is required to have a resolution of several μm. That is, 0.
An objective lens with a NA greater than 4 is required.

又、上記用途の対物レンズにおいては、光ディスクや光
カード等の担体表面と対物レンズとの間隔を十分にとり
、両者の接触を防止して記録担体や対物レンズの損傷を
回避する必要もある。
Furthermore, in the objective lens for the above-mentioned use, it is necessary to provide a sufficient distance between the surface of the carrier such as an optical disk or an optical card and the objective lens to prevent contact between the two to avoid damage to the record carrier or the objective lens.

更に、上述の情報記録再生装置では、オートフォーカス
やオートトラッキングを行う為に対物レンズを光軸方向
や光軸方向と直交する方向に移動させる方式が主流であ
る。依って、応答特性を向上させる為に、この種の対物
レンズには小型化・軽口化が要求される。
Furthermore, in the above-mentioned information recording/reproducing apparatus, the mainstream method is to move the objective lens in the optical axis direction or in a direction orthogonal to the optical axis direction in order to perform autofocus or autotracking. Therefore, in order to improve response characteristics, this type of objective lens is required to be smaller and lighter in weight.

従来、この種の対物レンズとして、特開昭58−420
21号公報、特開昭58−208719号公報、特開昭
60122915号公報等に4群4枚の構成から成るレ
ンズ系が開示されている。
Conventionally, as this type of objective lens, Japanese Patent Application Laid-Open No. 58-420
JP-A-21, JP-A-58-208719, JP-A-60122-915, etc. disclose lens systems having a configuration of four elements in four groups.

しかしながら、これらの公開公報に示された対物レンズ
はレンズ系の全長が大きく、前述の小型化・軽量化を図
ることができない。
However, the objective lenses disclosed in these publications have a large overall length of the lens system, and cannot be made smaller and lighter as described above.

上記の欠点を解消するため、最近は非球面単レンズの開
発が盛んであり、例えば特開昭59−23313号公報
、特開昭59−26714号公報、特開昭61−211
7号公報、特開昭61−11715号公報等に技術開示
されている。
In order to eliminate the above-mentioned drawbacks, the development of aspherical single lenses has recently been active.
The technology is disclosed in Japanese Patent Publication No. 7, Japanese Patent Application Laid-open No. 11715/1983, and the like.

しかしながら、上記公報に示された非球面単レンズは光
ディスクの仕様に併せて設計されたものであり、光カー
ド等の情報記録面を被う保護層が光ディスクの保護層に
比較して薄い記録担体に対して使用する場合には、はな
はだ不適当である。
However, the aspherical single lens shown in the above publication was designed in accordance with the specifications of the optical disk, and the protective layer covering the information recording surface of an optical card or the like is thinner than that of the optical disk. It is extremely inappropriate when used against

光カードの厚さは、一般に流通している磁気カードの厚
さと同程度の0.8mm程度である為、光カードの強度
等を考慮すると、光カードに於ける透明保護層の厚さt
は略々0 、4 m m程度となる。
The thickness of the optical card is about 0.8 mm, which is about the same as the thickness of commonly distributed magnetic cards, so when considering the strength of the optical card, the thickness of the transparent protective layer in the optical card t
is approximately 0.4 mm.

上記公開公報に示される非球面単レンズの実施例におい
ては、レンズの焦点距離をFとすると、実施例中に示さ
れるレンズが適用可能な記録担体の透明保護層の厚さt
は、0.26F〜0.28F程度である。従って光カー
ドにおける透明保護層の厚さt=0.4mmに対して適
切である対物レンズの焦点距離Fは1.43〜1.54
mmと成る。
In the example of the aspheric single lens shown in the above-mentioned publication, if the focal length of the lens is F, then the thickness t of the transparent protective layer of the record carrier to which the lens shown in the example can be applied is
is about 0.26F to 0.28F. Therefore, the appropriate focal length F of the objective lens for the thickness t = 0.4 mm of the transparent protective layer in the optical card is 1.43 to 1.54.
It becomes mm.

ところがこの場合には、曲率半径が小さくなり過ぎて製
作が極めて困難であること、更に、回折限界とみなせる
良好な結像特性を有する領域(像高)が極めてせまいこ
と等の欠点があり殆ど実用的ではない。
However, in this case, there are disadvantages such as the radius of curvature is too small, making it extremely difficult to manufacture, and the area (image height) with good imaging characteristics that can be considered as diffraction limited is extremely small, making it almost impractical. Not the point.

従って実用的な対策としては、対物レンズと光カードと
の間に保護層の厚み補正用の平行平板を介在させて使用
する手段が挙げられる。即ち、前記従来例の対物レンズ
の焦点距離を製作が容易なF=4.5mm程度に設定す
る。この時必要な保護層の厚みは1.17〜1.26m
mであり、他方光カードの保護層の厚みは0.4mmで
あるから、その差の0.77〜0.86mm程度の厚み
を有する平行平板を使用すれば良いことになる。
Therefore, a practical countermeasure is to use a parallel plate interposed between the objective lens and the optical card for correcting the thickness of the protective layer. That is, the focal length of the objective lens of the conventional example is set to approximately F=4.5 mm, which is easy to manufacture. The thickness of the protective layer required at this time is 1.17 to 1.26 m.
On the other hand, since the thickness of the protective layer of the optical card is 0.4 mm, it is sufficient to use a parallel plate having a thickness of about 0.77 to 0.86 mm, which is the difference between them.

しかしながら、この方法も光学系の小型・軽量化による
性能改善、部品点数の減少に伴なう低コスト化の要望に
反するものであり好ましくない。
However, this method is also undesirable because it goes against the demands for improved performance by reducing the size and weight of the optical system and for cost reduction due to a reduction in the number of parts.

更に、情報の記録を行う光メモリ装置に用いられる光ヘ
ッドにおいて、半導体レーザからの発散光束を光量の損
失が少ない状態で効率良(平行光束化するコリメータレ
ンズとして、上記の従来例に示されるレンズを使用する
場合にも同様の欠点が指摘されている。即ち、通常の半
導体レーザに装着されている保護用ガラス平板の厚みt
は略々0.25〜0.35mmであるからである。
Furthermore, in an optical head used in an optical memory device that records information, the lens shown in the conventional example above can be used as a collimator lens that efficiently converts the divergent light beam from a semiconductor laser into a parallel light beam with little loss of light quantity. A similar drawback has been pointed out when using the laser.
This is because it is approximately 0.25 to 0.35 mm.

(発明の概略) 本発明の目的は、上記従来の欠点を解消し、厚みtが略
々0.04F〜0.IIIFの平行平板を介して、1°
程度の画角の範囲内で良好に収差補正の成された非球面
単レンズを提供することにある。
(Summary of the Invention) An object of the present invention is to eliminate the above-mentioned conventional drawbacks, and to reduce the thickness t from approximately 0.04F to 0.04F. 1° through the parallel plate of IIIF
It is an object of the present invention to provide an aspherical single lens in which aberrations are well corrected within a certain angle of view.

本発明の上記目的は、以下に述べる本発明の非球面単レ
ンズにより達成される。
The above objects of the present invention are achieved by the aspheric single lens of the present invention described below.

(実施例) 本発明による非球面単レンズは、第1面、第2面が共に
非球面で構成される非球面単レンズであり、該非球面が
該非球面上の任意の点から非球面頂点の接平面までの距
離をX、前記任意の点から光軸までの距離をH1第ν面
の基準曲率半径をR,、第ν面の円錐定数をに7、第ν
面の非球面係数をA、+(+=3.4.・・・)とした
時に下記の式にて表わされる非球面であると共に次の条
件(1)、  (2)、  (3)を満足する非球面単
レンズ。
(Example) The aspherical single lens according to the present invention is an aspherical single lens in which both the first and second surfaces are aspherical, and the aspherical surface is connected to the aspherical vertex from any point on the aspherical surface. The distance to the tangent plane is
When the aspherical coefficient of the surface is A, + (+=3.4...), it is an aspherical surface expressed by the following formula, and the following conditions (1), (2), and (3) are satisfied. A satisfying aspheric single lens.

及びコマ収差を良好に補正するためのものである。and for properly correcting coma aberration.

松居吉哉著「レンズ設計法」(共立出版)によれば、第
1面、第2面の3次の球面収差係数1.、 I2及び第
1面、第2面のコマ収差係数TI、、II2は、入射瞳
を第1面に一致させ物体距離が無限遠の場合、次の様に
表わされる。
According to "Lens Design Method" by Yoshiya Matsui (Kyoritsu Shuppan), the third-order spherical aberration coefficient of the first and second surfaces is 1. , I2 and the coma aberration coefficients TI, , II2 of the first surface and the second surface are expressed as follows when the entrance pupil coincides with the first surface and the object distance is infinite.

+ A 114H’+・・・ (ν=1.2) ただし、Fは非球面単レンズの焦点距離、Dは非球面単
レンズの光軸上肉厚、Nは非球面単レンズの使用波長に
対する屈折率である。
+ A 114H'+... (ν=1.2) However, F is the focal length of the aspherical single lens, D is the thickness of the aspherical single lens on the optical axis, and N is the wavelength of the aspherical single lens used. It is the refractive index.

次に条件(1)から(3)について説明する。Next, conditions (1) to (3) will be explained.

本発明の条件(1)、 (2)は3次の領域で球面収差
II、 = 2R1 ここで、ψ1.ψ2はそれぞれ第1面、第2面の3次の
非球面項であり、RIは第1面の近軸曲率半径、R2は
第2面の近軸曲率半径である。
Conditions (1) and (2) of the present invention are spherical aberration II in the third-order region, = 2R1, where ψ1. ψ2 is a third-order aspherical term of the first surface and the second surface, respectively, RI is the paraxial radius of curvature of the first surface, and R2 is the paraxial radius of curvature of the second surface.

そして、レンズ全体の3次の球面収差係数I及びコマ収
差係数IIは各面のそれぞれの収差係数の和、I=1.
+12 TI = II 、 + II 2 で求まり、I、IIが適切な値となるようにレンズ形状
及び各非球面量を定める。
The third-order spherical aberration coefficient I and coma aberration coefficient II of the entire lens are the sum of the respective aberration coefficients of each surface, I=1.
+12 TI = II, + II 2 is determined, and the lens shape and each aspherical amount are determined so that I and II have appropriate values.

上述した式より明らかな様に、レンズの形状(焦点距離
9作動距離など)が決まるとR,、R2,D。
As is clear from the above equation, once the shape of the lens (focal length, working distance, etc.) is determined, R, , R2, and D.

Nの値はほぼ定まってしまい、収差係数I、■を適切な
値にするために残される自由度はψ1.ψ2しかない。
The value of N is almost fixed, and the degree of freedom left to set the aberration coefficients I and ■ to appropriate values is ψ1. There is only ψ2.

従って、レンズ形状もある程度収差補正を考慮した上で
決められることが必要で、そのための数値範囲が条件(
1)、  (2)である。
Therefore, the lens shape must be determined with some consideration for aberration correction, and the numerical range for this is the condition (
1), (2).

条件(1)の数値範囲を外れると、特に第1面の球面収
差が大きくなり、第1面の非球面項φ1では収差が補正
しきれなくなる。
If the numerical value range of condition (1) is exceeded, the spherical aberration of the first surface in particular becomes large, and the aberration cannot be corrected completely by the aspherical term φ1 of the first surface.

条件(2)は第2面でコマ収差をバランス良(補正する
ための条件であり、この数値範囲を外れると、第2面の
非球面項ψ2では収差が補正しきれなくなり、軸外の結
像性能が著しく劣化する。
Condition (2) is a condition for comatic aberration to be well-balanced (corrected) on the second surface. If this value is outside this numerical range, the aspherical term ψ2 of the second surface will not be able to fully correct the aberration, and off-axis coupling will occur. Image performance deteriorates significantly.

条件(3)は主に正弦条件を満足させるための条件であ
る。本発明においては軸上収差と共に一定範囲内の軸外
収差、特に、コマ収差を良好に補正しているが、条件(
3)の範囲を外れるとアイソプラナティックな条件が著
しく失なわれ好ましくないものである。条件の上限を越
える場合には、第1面の曲率半径が小さ(なりすぎ、負
の球面収差が大きく発生り、て収差補正が難しくなる事
、又、作動距離W、Dが短くなって実用上の難点を生じ
てしまうという欠点がある。
Condition (3) is mainly a condition for satisfying the sine condition. In the present invention, not only on-axis aberration but also off-axis aberration within a certain range, especially coma aberration, is corrected well.
Outside the range of 3), isoplanatic conditions are significantly lost, which is undesirable. If the upper limit of the condition is exceeded, the radius of curvature of the first surface becomes too small (too much), negative spherical aberration will occur, making it difficult to correct the aberration, and the working distances W and D will become short, making it impractical. It has the disadvantage of causing the above disadvantages.

以下に本発明の非球面単レンズの実施例を示す。Examples of the aspheric single lens of the present invention are shown below.

ただし第1図に示す様に、Fはレンズの焦点距離、NA
は開口数、βは近軸横倍率、R1は第1面の非球面の近
軸曲率半径、R2は第2面の非球面の近軸曲率半径、D
はレンズの中心肉厚、W、Dは作動距離、tは平行平板
の厚み、Nは使用波長λ=830nmでのレンズの屈折
率、Ntは使用波長λ=830nmでの平行平板の屈折
率、△v (j) (ν=1. 2)は第ν面において
NA(開口数)で決まるレンズ有効径内の1割における
非球面と近軸曲率半径R,を有する球面との光軸方向の
差(但し、△、(j)は非球面の曲率か弱くなる方向を
正とする。)である。
However, as shown in Figure 1, F is the focal length of the lens, and NA
is the numerical aperture, β is the paraxial lateral magnification, R1 is the paraxial radius of curvature of the aspherical surface of the first surface, R2 is the paraxial radius of curvature of the aspherical surface of the second surface, D
is the center thickness of the lens, W, D are the working distance, t is the thickness of the parallel plate, N is the refractive index of the lens at the wavelength used λ = 830 nm, Nt is the refractive index of the parallel plate at the used wavelength λ = 830 nm, △v (j) (ν=1.2) is the optical axis direction of an aspheric surface in 10% of the lens effective diameter determined by NA (numerical aperture) and a spherical surface with paraxial radius of curvature R on the νth surface. difference (where △ and (j) are positive in the direction in which the curvature of the aspherical surface becomes weaker).

尚、非球面の形状は、該非球面上の任意の点から非球面
頂点の接平面までの距離をX、前記任意の点から光軸ま
での距離をH1第ν面の基準曲率半径をR,、第ν面の
円錐定数をに、、第ν面の非球面係数をA□(i=3.
 4.・・・)とした時に下記の式にて表わされる非球
面である。
The shape of the aspherical surface is expressed as follows: X is the distance from any point on the aspherical surface to the tangent plane of the apex of the aspherical surface, H is the distance from the arbitrary point to the optical axis, R is the reference radius of curvature of the νth surface, , the conic constant of the νth surface is, , the aspherical coefficient of the νth surface is A□(i=3.
4. ), it is an aspherical surface expressed by the following formula.

+A 、4H’+・・・ (ν=1.2) また、第2図、第3図、第4図、第5図、第6図は夫々
本発明の実施例1. 2.3.4. 6のレンズの収差
図である。ここでは、球面収差、非点収差K 、 = 
 6.28361 x 10−2A I3 = −2,
16317X 10−2A 、4= −4,24898
X10−2A 、5=−5,03660X 10−’A
 、6=−1,36336X10゜ A1□=  1,54304X10゜ A、8=  3.63946X10’ A、、=  4.33953X10゜ Aoo= −1,63823X10゜ A+++= −3,89130xlOづA++2=  
7.83997X10−’及び歪曲収差を示してあり、
SAは球面収差、scは正弦条件不満足量、Mはメリジ
オナル面の像面彎曲、Sはサジタル面の像面彎曲を表わ
す。
+A, 4H'+... (ν=1.2) Moreover, FIG. 2, FIG. 3, FIG. 4, FIG. 5, and FIG. 6 respectively show Example 1 of the present invention. 2.3.4. FIG. 6 is an aberration diagram of lens No. 6. Here, spherical aberration, astigmatism K, =
6.28361 x 10-2A I3 = -2,
16317X 10-2A, 4=-4,24898
X10-2A, 5=-5,03660X 10-'A
, 6 = -1,36336X10゜A1□ = 1,54304X10゜A, 8 = 3.63946X10' A,, = 4.33953X10゜Aoo = -1,63823X10゜A+++ = -3,89130xlO゜A++2=
7.83997X10-' and distortion are shown,
SA represents spherical aberration, sc represents the amount of unsatisfactory sine condition, M represents curvature of field on the meridional surface, and S represents curvature of field on the sagittal surface.

実施例工 F  =1.O R、=0.68755 R2=−2,27906 NA=0.42     β=O D=0.66529    N=1.57532W −
D=0.58786 t=o、08871    Nt=1.510K 2=
 −7,00091x 10 ’A23= −3,35
328xlO−”A24= −3,37362XIO A2. =  1.75490X10 A2.=  3.64952xlO A 27= −3,01,265X 10゜A22. 
=  2.47448XIO’A 、、、= −2,8
5179x 10A210:   1.59293X1
0’A211:  4.51401X10−’A212
: −8,89595xlO−’AI+3”= Al14= Aos”= Al16”: 3.70513X10−’ 2.22663 X 10−’ 5.06124X、0−’ 4.72031X10−” △、(10)=0.00724 △、(9)=0.00541 △、(7)=0.00208 △+ (5)= 0.00051 A213= 2.90965X lo −’A214=
  5.13745X10−’A215=  6.74
467 X 10−’A216= −1,11644X
10づ実施例2 F=1.O R+ =0.68647 R2=−2,16986 A2 (to ) A2(9) A2(7) A2(5) NA=0.42 D=0.73183 W−D=0.55190 t=0.08871 = 0.00078 0.00086 0.00051 =O,0OO17 β=O N=1.57532 Nt=1.510 K 、 = 5.20593X10−”A 、3= −
2,22406X 10−2A 、、 = −6,84
116X10→A+s=  3.08303X10−’
A 、6=−1,35893xlO6 A1□=  7.34739 x 10A、8=  3
.24484xlO6 A 、、=  4.54175xlO6Auo=  5
.93378xlO8 Am= −3,66118xlO−’ Al12=  7.82079X10−’Al13= 
 3.34636X10−’AI+4= −2,201
91X 10−’Au5=  4.72685XIO−
’Aos=  1,55052x 10−’K 2= 
−6,79105xlO A23= −1,13810×10−2A2. =−3
,13410×10− A 2. =  7.17002 x 10−”A28
=  4.28976X10 A 2. =−2,50630X 10゜A28=  
4.67335xlO’ A 29 = −6,59390X 10゜A210=
  1.46333X10 Azo=  4,77442xlO−’A212: −
4,88410X 10−’A213=  2.443
66XIO−’A214: −2,42219X 10
−’A215=  5.84567X 10−’A21
6: −8,87000X 10−’△I (10)=
0.00657 △+ (9)=0.00512 △、(7)=0.00202 A1(5)=O,0O051 A2(10)=0.00152 A2(9)  =O,0O112 A2(7)  =O,0O051 A2(5)  =O,0OO15 実施例3 F  =1.0 R、=0.68780 R2=−2,10947 K 、 =  5.07475XIO−”A 、、 =
 −2,33838X 10−2A 、、 = −4,
89668x 10 ”Al5=  3.76532x
tO−’A 、6=−1,23402XlO’ A、7=  7.50548X10” A、8=  3.27949X10゜ A、、、=  4.35688X10’Aoo=  5
.89298XlO’ Am= −3,73027x 10−’NA=0.42
     β=O D=0.75403    N=1.57532W −
D=0.54087 t=0.08871    Nt=1.510K 2=
 −7,00444X 10 A 23= −1,55837x 10−”A24= 
−3,30849xlO= A2.=  8.20143X、0−”A 2I!= 
 4,98421 X 10 ”A 27= −2,4
9824X 10゜A、 =  3.57727X10
’ A29= −6,88698XIO’ A2+o=  5.93651X10’A211:  
5.21078X10−’AI+2=  8.0803
7XlO−’A++3=  3.40408X10−’
Al14= −2,18674X 10〜6Aos= 
 4.58225XIO−’Aos=  1.5405
2XlO−’△、(10)=0.00630 △、(9)=0.00496 △、(7)=0.00198 △+ (5)=O,0O050 A2I2= −2,49735X 10−’A213=
  2.451.36X10づA2+4: −2,99
231X 10−’A21s=  6.65433Xl
O−’A2111: −8,98316xlO−’△2
(lO) A2(9) A2(7) A2(5) =O,0O172 =0.00122 =O,0O053 =O,0OO16 実施例4 F  =1.O R、=0.68781 R2=−2,02646 NA=0.42 D=0.79838 W −D=0.51732 t=0.08871 β=O N=1.57532 Nt=1.510 K 、 =  3.97960xlO−2A 5.= 
−2,73614X 10−’A 、4= −2,06
205x 10−”A 15= −3,52632x 
10−’A 、、 =−1,24433xlO0A、7
=  7.21406X10 A、8=  1.87860X10゜ A 1g =  5.94830 X 10 ’Ano
=  6.10239X]O’ Am= −3,353801x: 10−’Al12=
  8.10202X10−’Al13=  3.41
865X10−’A114= −2,18053X10
−’A月s=   4.01024X10−’Al16
:−1.67946XIO−’K 2= −7,803
49XIO A23= −2,46279X 10−”A24= −
3,63186X10−’A2. =  6.5612
1X40”A 、=  6.74671 X 10A 
2. = −2,28982X 10゜A28=  3
.619o6xlO6 A ?、 = −6,75624X 10 ’A210
:   1.17621 X 10 ”A2o=  5
.21078X10−’A2+2= −2,49735
x 10−’A213:  2.48567X 10−
’A214= −2,43292X 10−’A215
: −3,73073X 10−’A216= −1,
02985X 10−’△+ (10)= 0.006
41 △+ (9)=0.00492 A1(7)=O,0OI92 △、(5)=0.00049 A2(10)=O,0O197 A2(9)  =O,0O136 A2(7)  =0.00057 A2(5)  =0.0OO17 実施例5 F  =1.Q R、=0.68756 R2=−1,94683 K 、 =  3.05536xlO−’A 、3= 
−3,26784X 10−”A、、=  5.799
08xlO−”A 、5= −3,36915X10 A 、6=−1,23850XIO’ A、7=  6.45142xlO A、、=  1.88819X10゜ Al9=  5.65378xlO’ A11o=  6.85574X10゜A…= −3,
26935x 10 ′□6NA=0.42     
β=O D=0.84270    N=1.57532 ’W
 −D=0.49363 t=o、08871    Nt=1.510K 2=
 −7,56830X70 A 23= −3,47628X to −2A2. 
= −3,21018X10−’A25=  1.20
435X10−’A26=  1,49034X10’ A27=−3,59431X10’ A28=  4.37917X10゜ A2.=  6.35230XIO6 A210=  8.77797X 10゜A21 +=
  4.96850 X 10−’AI+2=  8.
10270X 10−’Aoa=  3.48110x
lO−’Ao4= −2,18487X 10−’An
s=  3.59681 X 10−’A宜+6=−1
.92897X10−’A212= −2,33107
X 10−’A213:  1.32798XlO−’
A214: −1,32597XlO−’A2+s= 
−2,62954X10−’A2+6:  1.847
36X10−’好な結像性能を有する。即ち、0.06
5F<t<0.IIIFの範囲であれば良好な結像性能
が得られる。
Example work F=1. O R, = 0.68755 R2 = -2,27906 NA = 0.42 β = O D = 0.66529 N = 1.57532W -
D=0.58786 t=o, 08871 Nt=1.510K 2=
-7,00091x 10'A23= -3,35
328xlO-"A24= -3,37362XIO A2. = 1.75490X10 A2.= 3.64952xlO A27= -3,01,265X 10°A22.
= 2.47448XIO'A ,, = -2,8
5179x 10A210: 1.59293X1
0'A211: 4.51401X10-'A212
: -8,89595xlO-'AI+3"= Al14=Aos"=Al16": 3.70513X10-' 2.22663 00724 △, (9) = 0.00541 △, (7) = 0.00208 △+ (5) = 0.00051 A213 = 2.90965X lo -'A214=
5.13745X10-'A215=6.74
467 X 10-'A216= -1,11644X
10th Example 2 F=1. O R+ =0.68647 R2=-2,16986 A2 (to) A2(9) A2(7) A2(5) NA=0.42 D=0.73183 WD=0.55190 t=0.08871 = 0.00078 0.00086 0.00051 =O,0OO17 β=ON N=1.57532 Nt=1.510 K, = 5.20593X10-”A, 3=-
2,22406X 10-2A,, = -6,84
116X10→A+s= 3.08303X10-'
A, 6=-1,35893xlO6 A1□=7.34739 x 10A, 8=3
.. 24484xlO6 A,, = 4.54175xlO6Auo = 5
.. 93378xlO8 Am= -3,66118xlO-' Al12= 7.82079X10-'Al13=
3.34636X10-'AI+4=-2,201
91X 10-'Au5= 4.72685XIO-
'Aos= 1,55052x 10-'K 2=
−6,79105xlO A23= −1,13810×10−2A2. =-3
, 13410×10-A 2. = 7.17002 x 10-”A28
= 4.28976X10 A 2. =-2,50630X 10°A28=
4.67335xlO' A29 = -6,59390X 10°A210=
1.46333X10 Azo= 4,77442xlO-'A212: -
4,88410X 10-'A213= 2.443
66XIO-'A214: -2,42219X 10
-'A215= 5.84567X 10-'A21
6: -8,87000X 10-'△I (10)=
0.00657 △+ (9) = 0.00512 △, (7) = 0.00202 A1 (5) = O, 0O051 A2 (10) = 0.00152 A2 (9) = O, 0O112 A2 (7) = O,0O051 A2(5) =O,0OO15 Example 3 F = 1.0 R, = 0.68780 R2 = -2,10947 K, = 5.07475XIO-"A,, =
-2,33838X 10-2A,, = -4,
89668x 10” Al5= 3.76532x
tO-'A, 6=-1,23402XlO'A, 7=7.50548X10"A, 8=3.27949X10°A,,,=4.35688X10'Aoo=5
.. 89298XlO' Am=-3,73027x 10-'NA=0.42
β=OD=0.75403 N=1.57532W −
D=0.54087 t=0.08871 Nt=1.510K 2=
-7,00444X 10 A23= -1,55837x 10-"A24=
−3,30849xlO=A2. = 8.20143X, 0-”A 2I!=
4,98421 x 10”A 27= -2,4
9824X 10°A, = 3.57727X10
'A29=-6,88698XIO'A2+o=5.93651X10'A211:
5.21078X10-'AI+2=8.0803
7XlO-'A++3=3.40408X10-'
Al14=-2,18674X 10~6Aos=
4.58225XIO-'Aos=1.5405
2XlO-'△, (10)=0.00630 △, (9)=0.00496 △, (7)=0.00198 △+ (5)=O,0O050 A2I2= -2,49735X 10-'A213=
2.451.36X10zu A2+4: -2,99
231X 10-'A21s= 6.65433Xl
O-'A2111: -8,98316xlO-'△2
(lO) A2(9) A2(7) A2(5) =O,0O172 =0.00122 =O,0O053 =O,0OO16 Example 4 F =1. O R, = 0.68781 R2 = -2,02646 NA = 0.42 D = 0.79838 W −D = 0.51732 t = 0.08871 β = O N = 1.57532 Nt = 1.510 K, = 3.97960xlO-2A 5. =
-2,73614X 10-'A, 4=-2,06
205x 10-”A 15=-3,52632x
10-'A,, =-1,24433xlO0A, 7
= 7.21406X10A, 8=1.87860X10゜A 1g = 5.94830X10'Ano
= 6.10239X]O' Am= -3,353801x: 10-'Al12=
8.10202X10-'Al13=3.41
865X10-'A114=-2,18053X10
-'A month s= 4.01024X10-'Al16
:-1.67946XIO-'K2=-7,803
49XIO A23=-2,46279X 10-"A24=-
3,63186X10-'A2. = 6.5612
1 x 40”A, = 6.74671 x 10A
2. = -2,28982X 10°A28= 3
.. 619o6xlO6 A? , = -6,75624X 10'A210
: 1.17621 x 10”A2o=5
.. 21078X10-'A2+2=-2,49735
x 10-'A213: 2.48567X 10-
'A214=-2,43292X 10-'A215
: -3,73073X 10-'A216= -1,
02985X 10-'△+ (10)= 0.006
41 △+ (9) = 0.00492 A1 (7) = O, 0OI92 △, (5) = 0.00049 A2 (10) = O, 0O197 A2 (9) = O, 0O136 A2 (7) = 0. 00057 A2(5) =0.0OO17 Example 5 F =1. Q R, = 0.68756 R2 = -1,94683 K, = 3.05536xlO-'A, 3 =
-3,26784X 10-”A,, = 5.799
08xlO-"A, 5=-3,36915X10A, 6=-1,23850XIO'A, 7=6.45142xlOA,, = 1.88819X10°Al9=5.65378xlO'A11o=6.85574X10°A...= -3,
26935x 10'□6NA=0.42
β=O D=0.84270 N=1.57532'W
-D=0.49363 t=o, 08871 Nt=1.510K 2=
-7,56830X70 A 23= -3,47628X to -2A2.
= -3,21018X10-'A25= 1.20
435X10-'A26= 1,49034X10'A27=-3,59431X10' A28= 4.37917X10°A2. = 6.35230XIO6 A210= 8.77797X 10゜A21 +=
4.96850 x 10-'AI+2=8.
10270X 10-'Aoa= 3.48110x
lO-'Ao4=-2,18487X 10-'An
s= 3.59681 X 10-'A+6=-1
.. 92897X10-'A212=-2,33107
X10-'A213: 1.32798XlO-'
A214: -1,32597XlO-'A2+s=
-2,62954X10-'A2+6: 1.847
36X10-' has good imaging performance. That is, 0.06
5F<t<0. Good imaging performance can be obtained within the range of IIIF.

上述した実施例1.2. 3.4. 5に見られるよレ
ンズにおいては上述した(1)から(3)の条件に加え
て、以下の条件(4)から(6)を満足することが好ま
しい。
Example 1.2 described above. 3.4. In addition to the above-mentioned conditions (1) to (3), it is preferable for the lens shown in No. 5 to satisfy the following conditions (4) to (6).

△+(10)=0.00608    △2(10)=
0.00212△1(9)=0.00472    △
2(9)  =0.00147△、(7)=0.001
87    △2(7)  =O,0O059△+ (
5)”0.00049    △2(5)  =0.0
0016以上示した実施例1. 2. 3. 4. 5
においては焦点距離Fを4.5mmとし、NAを0.4
2、平行平板の厚さtを0.4mmとして設計したもの
であり、略々10 の画角範囲内において回折限界に近
い結像性能を有する。更に平行平板の厚さtは、上記N
A。
△+(10)=0.00608 △2(10)=
0.00212△1(9)=0.00472△
2 (9) = 0.00147△, (7) = 0.001
87 △2(7) =O,0O059△+ (
5)”0.00049 △2(5) =0.0
0016 Example 1 shown above. 2. 3. 4. 5
In this case, the focal length F is 4.5 mm and the NA is 0.4.
2. It is designed so that the thickness t of the parallel plate is 0.4 mm, and has imaging performance close to the diffraction limit within a field angle range of approximately 10°. Furthermore, the thickness t of the parallel plate is equal to the above N
A.

画角の条件下では±0.1mm程度の変動までは良条件
(4)、  (5)は3次の領域で球面収差及びコマ収
差を良好に補正するためのものである。
Conditions (4) and (5) are good for correcting spherical aberration and coma aberration in the third-order region under the angle of view condition, which is good up to a variation of about ±0.1 mm.

条件(4)の数値範囲を外れると、特に第1面の球面収
差が太き(なり、第1面の非球面項ψ1では収差が補正
しきれなくなる。
If the numerical value range of condition (4) is exceeded, the spherical aberration of the first surface becomes particularly thick (and the aberration cannot be corrected completely by the aspherical term ψ1 of the first surface).

条件(5)は第2面でコマ収差をバランス良く補正する
だめの条件であり、この数値範囲を外れると、第2面の
非球面項ψ2では収差が補正しきれなくなり、軸外の結
像性能が著しく劣化する。
Condition (5) is a condition for correcting comatic aberration in a well-balanced manner on the second surface. If this value is outside this numerical range, the aspherical term ψ2 of the second surface will not be able to fully correct the aberration, resulting in off-axis imaging. Performance deteriorates significantly.

条件(6)は主に正弦条件を満足させるための条件であ
る。本発明においては軸上収差と共に一定範囲内の軸外
収差、特に、コマ収差を良好に補正しているが、条件(
6)の範囲を外れるとアイソプラナティックな条件が著
しく失なわれ好ましくないものである。
Condition (6) is mainly a condition for satisfying the sine condition. In the present invention, not only on-axis aberration but also off-axis aberration within a certain range, especially coma aberration, is corrected well.
If it is outside the range of 6), the isoplanatic condition will be significantly lost, which is undesirable.

条件の上限を越える場合には、第1面の曲率半径が小さ
くなりすぎ、負の球面収差が大きく発生して収差補正が
難しくなる事、又、作動距離W、Dが短(なって実用上
の難点を生じてしまうという欠点がある。
If the upper limit of the condition is exceeded, the radius of curvature of the first surface will become too small, and a large amount of negative spherical aberration will occur, making it difficult to correct the aberration, and the working distances W and D will be short (which makes it difficult to use in practice). The disadvantage is that it causes the following problems.

単レンズにおいては上述した(1)から(6)の条件に
加えて、以下の条件(7)から(10)を満足すること
により、特に球面収差を良好に補正しうるものである。
In a single lens, by satisfying the following conditions (7) to (10) in addition to the conditions (1) to (6) described above, spherical aberration can be particularly well corrected.

(7)  0.005F  <△、(10)<O,oo
8F(8)  0,0O18F <△、 (7)  <
0.0022F(9)  0.0005F < △2 
(10)<0.0025F(10)0.0004F <
  △2 (7)   <0.0O07F条件(7)か
ら(10)はレンズ第1面及び第2面の有効径の10割
、7割での非球面量を決定する条件である。条件(7)
から(lO)の条件を満足することにより、特に球面収
差を更に良好に補正しうるちのである。
(7) 0.005F <△, (10) <O,oo
8F (8) 0,0O18F <△, (7) <
0.0022F(9) 0.0005F < △2
(10)<0.0025F (10)0.0004F<
Δ2 (7) <0.0O07F Conditions (7) to (10) are conditions for determining the aspheric amount at 100% and 70% of the effective diameter of the first and second surfaces of the lens. Condition (7)
By satisfying the condition from (lO), spherical aberration in particular can be corrected even better.

条件(7)、  (8)の上限値を越えると球面収差が
オーバーとなり、逆に下限値を下回るとアンダーとなっ
て軸上性能が劣化する。
If the upper limits of conditions (7) and (8) are exceeded, the spherical aberration becomes excessive, and conversely, if it falls below the lower limits, the spherical aberration becomes under, and the axial performance deteriorates.

条件(9)、  (10)は主に軸外収差の補正に関す
るものであり、上限値及び下限値の範囲を外れるとコマ
収差の発生量が大きくなって軸外性能が劣化する。
Conditions (9) and (10) mainly relate to correction of off-axis aberrations, and when the range is outside the upper and lower limits, the amount of coma aberration increases and off-axis performance deteriorates.

球面収差の異なる補正については (11) 0.004F  <△、  (9)  < 
0.006F(12) O,0O04F <△、 (5
)  < O,0o06Fなる条件を、コマ収差の異な
る補正については(13)O,0O05F  <  A
2  (9)   <、0.002F(14) O,0
OOIF <A2(5)  < O,0O02Fなる条
件を、上述した(1)から(lO)の条件に加えて満足
することが好ましい。
For different corrections of spherical aberration, (11) 0.004F <△, (9) <
0.006F(12) O,0O04F <△, (5
) < O, 0o06F, and for different corrections of coma aberration, (13) O, 0O05F < A
2 (9) <, 0.002F (14) O, 0
It is preferable to satisfy the condition OOIF < A2 (5) < O, 0O02F in addition to the conditions (1) to (lO) described above.

ここで、条件(11)から(14)はレンズ第1面及び
第2面の有効系の9割、5割での非球面量を決定する条
件である。
Here, conditions (11) to (14) are conditions for determining the amount of asphericity at 90% and 50% of the effective system of the first and second surfaces of the lens.

或は、又、上述した(1)から(10)の条件に加えて
、以下の条件(15)を満足することが収差補正の上で
好ましい。
Alternatively, in addition to the conditions (1) to (10) described above, it is preferable for aberration correction to satisfy the following condition (15).

条件(15)の下限値を下回ると非点収差の悪化を招き
、他方上限値を上回るとコマ収差が残存して好ましくな
い。
Below the lower limit of condition (15), astigmatism worsens, while above the upper limit, comatic aberration remains, which is undesirable.

以下に本発明の非球面単レンズの他の実施例を示す。Other examples of the aspherical single lens of the present invention will be shown below.

ただし第1図に示す様に、Fはレンズの焦点距離、NA
は開口数、βは近軸横倍率、R1は第1面の非球面の近
軸曲率半径、R2は第2面の非球面の近軸曲率半径、D
はレンズの中心肉厚、W、Dは作動距離、tは平行平板
の厚み、Nは使用波長λ=830nmでのレンズの屈折
率、Ntは使用波長λ=830nmでの平行平板の屈折
率、△v (D (ν=1.2)は第2面においてNA
(開口数)で決まるレンズ有効径内の1割における非球
面と近軸曲率半径R1を有する球面との光軸方向の差(
但し、△、(j)は非球面の曲率か弱くなる方向を正と
する。)である。
However, as shown in Figure 1, F is the focal length of the lens, and NA
is the numerical aperture, β is the paraxial lateral magnification, R1 is the paraxial radius of curvature of the aspherical surface of the first surface, R2 is the paraxial radius of curvature of the aspherical surface of the second surface, D
is the center thickness of the lens, W, D are the working distance, t is the thickness of the parallel plate, N is the refractive index of the lens at the wavelength used λ = 830 nm, Nt is the refractive index of the parallel plate at the used wavelength λ = 830 nm, △v (D (ν=1.2) is NA on the second surface
The difference (
However, △ and (j) are positive in the direction in which the curvature of the aspherical surface becomes weaker. ).

尚、非球面の形状は、該゛非球面上の任意の点から非球
面頂点の接平面までの距離をX、前記任意の点から光軸
までの距離をH1第ν面の基準曲率半径をR,、第2面
の円錐定数をに、、第2面の非球面係数をA 、i (
i=3. 4.・・・)とした時に下記の式にて表わさ
れる非球面である。
The shape of the aspherical surface is defined by the distance from an arbitrary point on the aspherical surface to the tangent plane of the aspherical apex, and the distance from the arbitrary point to the optical axis to H1, the standard radius of curvature of the νth surface. R,, the conic constant of the second surface is, , the aspherical coefficient of the second surface is A, i (
i=3. 4. ), it is an aspherical surface expressed by the following formula.

また、 第7図。Also, Figure 7.

第8図。Figure 8.

+A、4H’+・・・ (ν=1.2) 第9図、第10図、第1I 図は夫々本発明の実施例6.7.8.9. 10のレン
ズの収差図である。ここでは、球面収差、非点収差及び
歪曲収差を示してあり、SAは球面収差、SCは正弦条
件不満足量、Mはメリジオナル面の像面彎曲、Sはサジ
タル面の像面彎曲を表わす。
+A, 4H'+... (ν=1.2) FIGS. 9, 10, and 1I show examples 6.7.8.9. of the present invention, respectively. 10 is an aberration diagram of lens No. 10. Here, spherical aberration, astigmatism, and distortion are shown, where SA is the spherical aberration, SC is the amount of unsatisfactory sine condition, M is the curvature of field of the meridional surface, and S is the curvature of field of the sagittal surface.

実施例6 F  =1.O R、=0.68754 R2ニー2.07077 NA=0.47      β=O D=0.77662     N=1.57532W・
D=0.54341 t=0.06653    Nt=1.510K 2=
 −7,00400X 10 ’A 23= −1,7
2085X 10−”A2. = −2,35772X
10 A25=−3,52770xtO− A26=  1.62899xlO6 A 2. = −4,02051X 10゜A28=2
゜13750X10−’ A 29=  1.45131 x 10 ’A210
=  6.48502X 10゜A2+1=  4.7
6052XIO−’K 、 =  2.22488X1
0−”A 、3= −2,14320X10−”A 、
、 = −5,19200X10−2A 、、= −2
,96041x 10−’A +e =−1,2654
4X10’A、=  8.42816xlO−’ A 、8=  2.04761 x 10゜A 、、 
=  5.32620 X 10゜ん+o=  5.1
4725XIO’ A+++= −3,33063X 10−’AI+2=
  7.88360X10−’Ao3=  2.863
41X10−’Al14= −1,82936X 10
−’Aos=  3.44032X10−’AI+6=
 −1,90544X10−’A212: −]、35
632X10−’A2+3=  1.07469X10
−’Az+4=−1.65195X 10−’A215
:  5.95045X10−’A2+6= −1,4
3275X10−’△I (10)=0.00658 △1(9)=0.00672 △+ (7)=0.00305 △、(5)=0.00077 A2 (10) A2(9) A2(7) A2(5) 実施例7 F  =1.O R、=0.68814 R2=−1,97884 NA=0.47 D=0.82172 W−D=0.51983 t=0.06654 =0.00289 =0.00211 =0.00098 =0.00031 β=O N=1.57532 Nt=1.510 K 、 =  3.43328xlO−’A 、3= 
−2,49918xlO−”A 、、 = −4,54
385x to −”A 、、= −2,83119X
 10 ”’A l6=−1,24364X10゜ A、7=  7.83725X10−’A l8=  
1.84642X10゜A 、、=  5.43972
X 10OAno=  4.94049X100 A+n = −3,33180X 10−’Al12=
  8.01624X to −’Al13:  3.
40693X to −’An4= −2,05618
X 10−’Aos=  3.43040X10−’A
os= −1,13037X 10−’K 2= −7
,21457X10’ A 23= −2,64123X to −”A2.=
−3,18729X10− A25= −1,26877xlO−’A、 =  2
.20196X10’ A 27= −4,87064X 10゜A 、= −
1,00041X 10−’A2. =  1.435
13X10’A+o=  4.19918X10−’A
211=  3.28153X10−’A212: −
1,35856X10−’A213=  1.1673
6Xlo−’A214= −1,66002Xlo−’
A215=  5.10681 X 10−’A216
= −1,55776X10−’△、(10)=0.0
0647 △、(9)=0.00657 △+ (7)=0.00299 △、(5)=0.00077 △2 (10) △2(9) △2(7) △2(5) =0.00304 =0.00218 =0.0O095 =0.00028 実施例8 F  =1.0 R、=Q、68746 R2ニー1.90418 K 、 =  3.43135X10−2A 、3= 
−2,81689xlO−”A 、、 = −3,30
653X 10−2A 、、 = −2,56224x
 10A 、6=−1,23347X10’ A 、? =  7,64429XIOA 、、 = 
 1.60759X10゜A、、=  5.49206
XIO1lAoo=  5.18999X10゜ Am= −3,29995X 10−’NA=0.47
     β=O D=0.86611     N=1.57532W−
D=0.49581 t=0.06654    Nt=1.510K 2=
 −7,45115xlO A 23= −3,58902x 10−”A 、、 
= −3,22769X 10 ”’A、 =  1.
10918xlO− A28=  1.99634XIO’ A、 = −4,40615XIO’ A、=  3.20784XIO”” A2. =  1.43888X10’A210= −
2,50794X10 A211=  3.69678X10−’Al12= 
 8.04748X10−’A口3=   3.396
78xlO−’Ao4= −2,02564xlO−5
Aos=  3.38730XIO−’Al16= −
6,12022X 10−’△I (10)=0.00
594 △+ (9)=0.00622 △I (7)=0.00288 △+ (5)=0.0O075 A212= −4,3628X10−’A213:  
6.14399X10−”A214= −4,0326
8X10−’A215=  1.16566XIO−’
A216= −1,10195XIo −’実施例9 F  =1.0 R、=0.68867 R2=−1,84771 △2 (to ) へ2(9) △2(7) △2(5) NA=0.47 D=0.88889 W−D=0.48446 t=0.06667 =0.00334 =0.00238 =0.00101 =0.00029 β=O N=1.57532 Nt=1.510 K 、 =  3.17260X10〜2A 、3= 
−2,32442x 10−2AI4”5゜41829
XIO−” A 、、 = −2,82427X 10A 、6=−
1,04034XlO6 A1□=  7.97214X10−’A、8=  1
.75503X10’ A 、、 =  5.32803 x 10゜Aoo=
 −1,31536X 10 ’Au+= −3,32
477X 10−’Al12=  1.02202X1
0−’A++3=  2.86361 X 10−’A
I+4: −1,84403X 10−’A++s= 
 3.31557X10−’Ana= −2,6534
9X 10−”K 2= −6,78021X 10 A、 = −3,80066X 10−”A 2. =
 −2,50428X 10月A25= −7,033
30xlO−”A、 =  1.87137xlo’ A 、 =−2,68110X 10゜A 28= −
2,85849X to。
Example 6 F = 1. O R,=0.68754 R2 knee 2.07077 NA=0.47 β=O D=0.77662 N=1.57532W・
D=0.54341 t=0.06653 Nt=1.510K 2=
-7,00400X 10'A 23= -1,7
2085X 10-”A2. = -2,35772X
10 A25=-3,52770xtO- A26=1.62899xlO6 A2. = -4,02051X 10°A28=2
゜13750X10-'A29=1.45131x10'A210
= 6.48502X 10°A2+1= 4.7
6052XIO-'K, = 2.22488X1
0-”A, 3=-2,14320X10-”A,
, = -5,19200X10-2A ,, = -2
,96041x 10-'A +e =-1,2654
4X10'A, = 8.42816xlO-'A, 8=2.04761 x 10°A,,
= 5.32620 x 10゜ + o = 5.1
4725XIO' A+++= -3,33063X 10-'AI+2=
7.88360X10-'Ao3=2.863
41X10-'Al14=-1,82936X 10
-'Aos= 3.44032X10-'AI+6=
-1,90544X10-'A212: -], 35
632X10-'A2+3= 1.07469X10
-'Az+4=-1.65195X 10-'A215
: 5.95045X10-'A2+6=-1,4
3275 ) A2(5) Example 7 F = 1. O R, = 0.68814 R2 = -1,97884 NA = 0.47 D = 0.82172 WD = 0.51983 t = 0.06654 = 0.00289 = 0.00211 = 0.00098 = 0. 00031 β=O N=1.57532 Nt=1.510 K, = 3.43328xlO-'A, 3=
−2,49918xlO−”A,, = −4,54
385x to −”A,, = −2,83119X
10 ”'A l6=-1,24364X10°A, 7= 7.83725X10-'A l8=
1.84642X10°A,,=5.43972
X 10OAno= 4.94049X100 A+n = -3,33180X 10-'Al12=
8.01624X to -'Al13: 3.
40693X to −'An4= −2,05618
X 10-'Aos= 3.43040X10-'A
os=-1,13037X 10-'K 2=-7
,21457X10' A 23= -2,64123X to -”A2.=
-3,18729X10- A25= -1,26877xlO-'A, = 2
.. 20196X10' A 27= -4,87064X 10°A , = -
1,00041X 10-'A2. = 1.435
13X10'A+o=4.19918X10-'A
211= 3.28153X10-'A212: -
1,35856X10-'A213= 1.1673
6Xlo-'A214=-1,66002Xlo-'
A215= 5.10681 X 10-'A216
= -1,55776X10-'△, (10) = 0.0
0647 △, (9) = 0.00657 △+ (7) = 0.00299 △, (5) = 0.00077 △2 (10) △2 (9) △2 (7) △2 (5) = 0 .00304 =0.00218 =0.0O095 =0.00028 Example 8 F =1.0 R, =Q, 68746 R2 knee 1.90418 K, = 3.43135X10-2A, 3=
−2,81689xlO−”A,, = −3,30
653X 10-2A,, = -2,56224x
10A, 6=-1,23347X10'A,? = 7,64429XIOA,, =
1.60759X10°A,, = 5.49206
XIO1lAoo= 5.18999X10゜Am=-3,29995X 10-'NA=0.47
β=OD=0.86611 N=1.57532W-
D=0.49581 t=0.06654 Nt=1.510K 2=
-7,45115xlO A 23= -3,58902x 10-”A ,,
= -3,22769X 10''A, = 1.
10918xlO- A28 = 1.99634XIO' A, = -4,40615XIO' A, = 3.20784XIO"" A2. = 1.43888X10'A210= -
2,50794X10 A211= 3.69678X10-'Al12=
8.04748X10-'A port 3=3.396
78xlO-'Ao4=-2,02564xlO-5
Aos= 3.38730XIO-'Al16=-
6,12022X 10-'△I (10)=0.00
594 △+ (9)=0.00622 △I (7)=0.00288 △+ (5)=0.0O075 A212= -4,3628X10-'A213:
6.14399X10-”A214=-4,0326
8X10-'A215= 1.16566XIO-'
A216=-1,10195XIo-'Example 9 F=1.0 R,=0.68867 R2=-1,84771 △2 (to) 2(9) △2(7) △2(5) NA= 0.47 D=0.88889 W-D=0.48446 t=0.06667 =0.00334 =0.00238 =0.00101 =0.00029 β=O N=1.57532 Nt=1.510 K , = 3.17260X10~2A , 3=
-2,32442x 10-2AI4”5゜41829
XIO-" A,, = -2,82427X 10A, 6=-
1,04034XlO6 A1□= 7.97214X10-'A, 8= 1
.. 75503X10' A,, = 5.32803 x 10゜Aoo=
-1,31536X 10'Au+= -3,32
477X 10-'Al12= 1.02202X1
0-'A++3= 2.86361 X 10-'A
I+4: -1,84403X 10-'A++s=
3.31557X10-'Ana=-2,6534
9X 10-"K 2 = -6,78021X 10 A, = -3,80066X 10-"A 2. =
-2,50428X October A25= -7,033
30xlO-”A, = 1.87137xlo' A, =-2,68110X 10°A 28=-
2,85849X to.

A29=  9.92178XIO’ A210= −1,49024X10 A2o= −2,20336xlO−5Az+2== 
−7,27432x 10−’A2+3=  1.16
742X 10−’A214: −3,l1163X1
0−’A215= −2,34088X 10−’A2
16= −1,08451X 10“6、(10)=0
.00816 1(9)=0.00686 、(7)=0.00289 + (5)=0.00074 A2 (10) A2(9) A2(7) A2(5) =0.00332 =0.00236 =0.00099 =O,,0O028 実施例10 F  =1.0 R、=0.68673 R2=−1,78956 NA = 0.47      β=OD=0.931
47 W−D=0.46057 t=o、06653     Nt=1.510K 2
= −7,11075xlO’ A 23= −4,51875x 10−”A2. =
 −2,28284X10 ’A、l= −6,010
62X10−”A26=  1.92250xlO6 A 2. = −8,92777X 10 ”A28=
  1.o0164XlO−’A 29=  6.91
414 X 10−’A210= −8,43895X
 10 ’A211= −3,08490X 10−’
N=1.57532 AlI3:  1.43247X 10−5AI+3:
  2.84211X10−’An4= −2,774
70X 10−’Aos=  3.33257X10−
’AIIa==  4.88828X 10−’A21
2=  4.39181 X 10−’A2+3=  
9.03455X 10−’A214:  9.383
76X10−’A215=  4.99674X10−
’A2+6== −1,61383X10−’K 、 
=  3.06362X10−’A 、3= −2,6
0717X 10−”A 、4= −3,09516x
 10−”A 、5= −2,79953XIO”A 
、6=−1,19755XIO’ A、7=  7,98588XIO−’A 、8=  
2.91033X10’A 、、=  5.21606
XIO6Auo= −8,51268x 10’A+n
= −3,31804X 10−’△1(10)=0.
01014   A2(10)=0.00343△+ 
(9)=0.00739    へ2(9)  =0.
00244△、(7)=0.00289    A2(
7)  =0.0O101△、(5)=0.0O073
A2(5)  =0.00028以上示した実施例6.
7.8.9. 10においては焦点距離Fを4 、5 
m mとし、NAを0.47、平行平板の厚さtを0.
3mmとして設計したものであり、略々10 の画角範
囲内において回折限界に近い結像性能を有する。更に平
行平板の厚さtは、上記NA。
A29= 9.92178XIO' A210= -1,49024X10 A2o= -2,20336xlO-5Az+2==
-7,27432x 10-'A2+3= 1.16
742X 10-'A214: -3,l1163X1
0-'A215=-2,34088X 10-'A2
16=-1,08451X 10"6, (10)=0
.. 00816 1(9)=0.00686 , (7)=0.00289 + (5)=0.00074 A2 (10) A2(9) A2(7) A2(5) =0.00332 =0.00236 = 0.00099 =O,,0O028 Example 10 F = 1.0 R, = 0.68673 R2 = -1,78956 NA = 0.47 β = OD = 0.931
47 W-D=0.46057 t=o, 06653 Nt=1.510K 2
= -7,11075xlO' A 23= -4,51875x 10-"A2. =
-2,28284X10'A,l=-6,010
62X10-”A26= 1.92250xlO6 A2.=-8,92777X10”A28=
1. o0164XlO-'A 29= 6.91
414 X 10-'A210= -8,43895X
10'A211=-3,08490X 10-'
N=1.57532 AlI3: 1.43247X 10-5AI+3:
2.84211X10-'An4=-2,774
70X 10-'Aos= 3.33257X10-
'AIIa==4.88828X 10-'A21
2= 4.39181 X 10-'A2+3=
9.03455X 10-'A214: 9.383
76X10-'A215= 4.99674X10-
'A2+6==-1,61383X10-'K,
= 3.06362X10-'A, 3=-2,6
0717X 10-”A, 4=-3,09516x
10-”A, 5=-2,79953XIO”A
, 6=-1,19755XIO'A, 7=7,98588XIO-'A, 8=
2.91033X10'A,,=5.21606
XIO6Auo=-8,51268x 10'A+n
= -3,31804X 10-'Δ1(10)=0.
01014 A2(10)=0.00343△+
(9) = 0.00739 to 2 (9) = 0.
00244△, (7)=0.00289 A2(
7) =0.0O101△, (5) =0.0O073
Example 6 where A2(5) = 0.00028 or more.
7.8.9. 10, the focal length F is 4 or 5
mm, NA is 0.47, and the thickness t of the parallel plate is 0.
It is designed to have a diameter of 3 mm, and has imaging performance close to the diffraction limit within an angle of view of approximately 10°. Furthermore, the thickness t of the parallel plate is the above NA.

画角の条件下では±0.1mm程度の変動までは良好な
結像性能を有する。即ち、0.04F < t < 0
.09Fの範囲であれば良好な結像性能が得られる。
Under the conditions of the angle of view, it has good imaging performance up to a variation of about ±0.1 mm. That is, 0.04F < t < 0
.. Good imaging performance can be obtained within the range of 09F.

上述した実施例6,7.8.9.10に見られるように
、においては上述した(1)から(3)の条件に加えて
、以下の条件(16)から(18)を満足することが好
ましい。
As seen in Examples 6, 7.8.9.10 above, in addition to the conditions (1) to (3) above, the following conditions (16) to (18) must be satisfied. is preferred.

条件(I7)は第2面でコマ収差をバランス良(補正す
るための条件であり、この数値範囲を外れると第2面の
非球面項ψ2では収差が補正しきれな(なり、軸外の結
像性能が著しく劣化する。
Condition (I7) is a condition for well-balanced (correcting) comatic aberration on the second surface. If this numerical value range is exceeded, the aspherical term ψ2 of the second surface cannot fully correct the aberration (and the off-axis Imaging performance deteriorates significantly.

条件(18)は主に正弦条件を満足させるための条件で
ある。本発明においては軸上収差と共に一定範囲内の軸
外収差、特に、コマ収差を良好に補正しているが、条件
(18)の範囲を外れるとアイソプラナティックな条件
が著しく失なわれ好ましくないものである。条件の上限
を越える場合には、第1面の曲率半径が小さくなりすぎ
、負の球面収差が大きく発生して収差補正が難しくなる
事、又、作動距離W、Dが短(なって実用上の難点を生
じてしまうという欠点がある 条件(16)、(17)は3次の領域で球面収差及びコ
マ収差を良好に補正するためのものである。
Condition (18) is mainly a condition for satisfying the sine condition. In the present invention, off-axis aberrations within a certain range, especially comatic aberration, are well corrected as well as on-axis aberrations, but outside the range of condition (18), the isoplanatic condition is significantly lost, which is undesirable. It is something. If the upper limit of the condition is exceeded, the radius of curvature of the first surface will become too small, and a large amount of negative spherical aberration will occur, making it difficult to correct the aberration, and the working distances W and D will be short (which makes it difficult to use in practice). Conditions (16) and (17), which have the drawback of causing the following disadvantages, are intended to satisfactorily correct spherical aberration and coma aberration in the third-order region.

条件(16)の数値範囲を外れると、特に第1面の球面
収差が大きくなり、第1面の非球面項ψ、では収差が補
正しきれなくなる。
When the numerical value range of condition (16) is exceeded, the spherical aberration of the first surface in particular becomes large, and the aberration cannot be corrected completely by the aspherical term ψ of the first surface.

レンズにおいては上述した(1)から(3)及び(16
)から(18)の条件に加えて、以下の条件(I9)か
ら(22)を満足することにより、特に球面収差を良好
に補正しうるちのである。
For lenses, the above-mentioned (1) to (3) and (16)
In addition to the conditions (19) to (18), the following conditions (I9) to (22) can be satisfied to particularly favorably correct spherical aberration.

(19)   0.005F<△、(10)<O,01
lF(20)   0.0027F<・△、(7)  
<0.0032F(21)  0.0027F<△2 
(lo)<o、ooa6F(22)  0.0O09F
< △2 (7)  <0.0011F条件(19)か
ら(22)はレンズ第1面及び第2面の有効径の10割
、7割での非球面量を決定する条件である。条件(19
)から(22)の条件を満足することにより、特に球面
収差を更に良好に補正しうるものである。
(19) 0.005F<△, (10)<O,01
IF(20) 0.0027F<・△, (7)
<0.0032F(21) 0.0027F<△2
(lo)<o,ooa6F(22) 0.0O09F
<Δ2 (7) <0.0011F Conditions (19) to (22) are conditions for determining the aspheric amount at 100% and 70% of the effective diameter of the first and second surfaces of the lens. Condition (19
) to (22), spherical aberration in particular can be corrected even better.

条件(19)、  (22)の上限値を越えると球面収
差がオーバーとなり、逆に下限値を下回るとアンダーと
なって軸上性能が劣化する。
If the upper limits of conditions (19) and (22) are exceeded, the spherical aberration becomes excessive, and conversely, if it falls below the lower limits, the spherical aberration becomes under, and the axial performance deteriorates.

条件(19)、  (22)は主に軸外収差の補正に関
するものであり、上限値及び下限値の範囲を外れるとコ
マ収差の発生量が大きくなって軸外性能が劣化する。
Conditions (19) and (22) mainly relate to correction of off-axis aberrations, and when the range is outside the upper and lower limits, the amount of coma aberration increases and off-axis performance deteriorates.

球面収差の異なる補正については (23) 0.006F  <△+ (9)  < 0
.008F(24) O,0O07F <△、 (5)
  < 0.0O08Fなる条件を、コマ収差の異なる
補正については(25)  0.002F   <  
△2 (9)   <  0.003F(26) O,
0O02F <△2(5)  < 0.0003Fなる
条件を、上述した(1)から(3)及び(16)から(
18)の条件に加えて満足することが好ましい。
For different corrections of spherical aberration, (23) 0.006F <△+ (9) < 0
.. 008F(24) O,0O07F <△, (5)
< 0.0008F, and for different corrections of coma aberration (25) 0.002F <
△2 (9) < 0.003F (26) O,
The conditions 0O02F <△2(5) < 0.0003F are determined from (1) to (3) and (16) to (
It is preferable that condition 18) is also satisfied.

ここで、条件(23)から(26)はレンズ第1面及び
第2面の有効系の9割、5割での非球面量を決定する条
件である。
Here, conditions (23) to (26) are conditions for determining the aspheric amount at 90% and 50% of the effective system of the first and second surfaces of the lens.

或は、又、上述した(1)から(3)及び(16)から
(18)の条件に加えて、以下の条件(27)を満足す
ることが収差補正の上で好ましい。
Alternatively, in addition to the conditions (1) to (3) and (16) to (18) described above, it is preferable for aberration correction to satisfy the following condition (27).

条件(27)の下限値を下回ると非点収差の悪化を招き
、他方上限値を上回るとコマ収差が残存して好ましくな
い。
Below the lower limit of condition (27), astigmatism worsens, while above the upper limit, comatic aberration remains, which is undesirable.

以下に本発明の非球面単レンズの他の実施例を示す。Other examples of the aspherical single lens of the present invention will be shown below.

ただし第1図に示す様に、Fはレンズの焦点距離、NA
は開口数、βは近軸横倍率、R2は第1面の非球面の近
軸曲率半径、R2は第2面の非球面の近軸曲率半径、D
はレンズの中心肉厚、W、Dは作動距離、tは平行平板
の厚み、Nは使用波長λ= 830 n mでのレンズ
の屈折率、Ntは使用波長λ=830nmでの平行平板
の屈折率、△p (D (ν=1.2)は第ν面におい
てNA(開口数)で決まるレンズ有効径内の1割におけ
る非球面と近軸曲率半径R1を有する球面との光軸方向
の差(但し、△、(j)は非球面の曲率か弱くなる方向
を正とする。)である。
However, as shown in Figure 1, F is the focal length of the lens, and NA
is the numerical aperture, β is the paraxial lateral magnification, R2 is the paraxial radius of curvature of the aspherical surface of the first surface, R2 is the paraxial radius of curvature of the aspherical surface of the second surface, D
is the center thickness of the lens, W and D are the working distance, t is the thickness of the parallel plate, N is the refractive index of the lens at the wavelength used λ = 830 nm, and Nt is the refraction of the parallel plate at the used wavelength λ = 830 nm. The ratio, Δp (D (ν=1.2), is the optical axis direction of the aspheric surface in 10% of the lens effective diameter determined by NA (numerical aperture) on the νth surface and the spherical surface with paraxial radius of curvature R1. difference (where △ and (j) are positive in the direction in which the curvature of the aspherical surface becomes weaker).

尚、非球面の形状は、該非球面上の任意の点から非球面
頂点の接平面までの距離をX、前記任意の点から光軸ま
での距離をH1第ν面の基準曲率半径をR3、第ν面の
円錐定数をに、、第ν面の非球面係数をA v+ (+
=3. 4.・・・)とした時に下記の式にて表わされ
る非球面である。
The shape of the aspherical surface is expressed as follows: X is the distance from any point on the aspherical surface to the tangent plane of the apex of the aspherical surface, H1 is the distance from the arbitrary point to the optical axis, R3 is the standard radius of curvature of the νth surface, Let the conic constant of the νth surface be , and the aspherical coefficient of the νth surface be A v+ (+
=3. 4. ), it is an aspherical surface expressed by the following formula.

+ A v 4H’+・・・ (シ二1,2) また、第12図、第13図、第14図は夫々本発明の実
施例11. 12. 13のレンズの収差図である。
+ A v 4H'+... (S2 1, 2) In addition, FIGS. 12, 13, and 14 show Example 11 of the present invention, respectively. 12. 13 is an aberration diagram of lens No. 13.

ここでは、球面収差、非点収差及び歪曲収差を示してあ
り、SAは球面収差、SCは正弦条件不満足量、Mはメ
リジオナル面の像面彎曲、Sはサジタル面の像面彎曲を
表わす。
Here, spherical aberration, astigmatism, and distortion are shown, where SA is the spherical aberration, SC is the amount of unsatisfactory sine condition, M is the curvature of field of the meridional surface, and S is the curvature of field of the sagittal surface.

実施例11 F  =1.0 R、=0.68769 R2=−2,38714 NA=0.50       β=O D=060633 W拳り=0.61924 t=0.08871      Nt=1.510K 
2= −6,Q9045XIO A 23= −7,19034x 10−2A 24=
−2,01016x 10−”A 、 = −5,04
343X 10−’A、=  1.33064X10゜ A、 =−3,78361X100 A、=  4.48779xlO6 A 2.= −2,95692X 10゜A210= 
−1,38834X1O N=1,57532 K 、=−7,43082xlO−” A 、3= −1,10638x 10−2A 、4=
 −2,98267X10 A、5=  2.96247xlO A 、6=−1,21161X10゜ A1□= −6,]]]]878X] 0−A8=  1.49100X10゜A 、、=  
1.44.201 X 10Ano= −2,5017
1X 10 ’Au+= −2,95133X10−’
AI+2:  8.69794X10−’Au3=  
2.95233xlO’ An4= −1,16804xlO−@Aos=  3
.02181X10−’Aoa= −8,25661X
 10−’△1(10)=0.02529 △I(9)=0.01542 △+ (7)=0.00529 △+(5)=0.0O134 A211: −7,82587xlO−’A2宜2=−
1.57923X10−’A2+3=  1.4223
4xlO−’A214:  1.07694X10−’
A215:  1.53902X10−’A216: 
−7,23157xlO−’△2(10)=−0,00
266 △2 (9)  =   0.00069△2(7) 
 =   0.00016△2 (5)  =   0
.00003実施例12 F  =1.0 R、=0.68768 R2=−2,19402 NA=0.50 D=0.70969 W −D=0.56434 β=O N=1.57532 K 、 =  1.67757XIO”A 、、 = 
−3,46061X 10−”A 、、 = −8,4
7761X 10−”A 、、 = −5,99075
XIO→A 、6=−1,81711XIO’ A 、7=  6.61295xIO−’A、、=  
1.73882X10O A、、=  1.69163X10’ Aoo= −1,92578X10’ A11l: −3,33521xtO−’AI+2 =
  8.74426X10〜6An3=  2.910
32X10−’Au4= −1,57531X 10−
’Aoa=  4.11672XIO−’A+u= −
6,52422X 10−’N”R,’ t=0.08871    Nt=1.510K 2=
 −6,08502xlO’ A23= −7,56380X10−’A24= 3.
11476XIO−” A 2. = −7,95033X 10−’A2.l
=  2,51097XlO’A2□=−3,7930
4xlO’ A28=  3.02655X10゜ A 29= −4,40557X 10 ’Az+o=
 −1,83521X 10 ’A2++−= −6,
28316X 10−’A212= −1,58249
xlOづA2+3=1.4.1389X10−’A2+
4:  1,29097X10−’A215:  1.
13129X10−’A2+s= −6,94110X
10−’NKI △1(10)=0.01200 △、(9)=0.01019 △+ (7)=0.00451 △+(5)=0.00121 △2(10)=0,00146 △2(9)  =0.00153 △2(7)  =0.00076 △2(5)  =0.00017 実施例13 F  =1.0 R、=0.68768 R2=−2,06269 K 、 =  1.82870X10−”A 、3= 
−2,44392X 10−”A I4= −8,45
372xlO−”A 、、 = −9,34272x 
10−”A 、6=−1,40660X10゜ A1□=  8.42223xlO−’A 、8=  
1,18096X10゜A 、、 =  4.3695
0X10’NA=0.50     β=O D=0.77996    N=1.57531W・D
=0.52702 t=o、08871    Nt=1.510K 2=
 −6,00928X 10 ’A 23= −3,0
0087x 10−”A 2. = −1,40769
x 10−’A 25= −7,57093x 10−
’A 28=  3.97949 X 10゜A 、 
= −5,69922x lo ’A、、 =  2.
65503X10゜A 、 = −4,61243x 
10 ’Aoo=  1.29290X10’ Am= −3−31097xlO−’ A112=  6.41128X10−’AI+3= 
 3.21519X10−’An4= −1,7844
2xlo−’Ao5=  4.08316xlOイ Ao6= −4,64873XIO−’A2+o= −
1,87730x io ’A2+1: −6,283
16x 10−’A212= −1,58258X10
−’A2+3=  1.42401 X 10−’A2
+4=  1.32498x 10−’A215=  
1.38229X 10−’A2+a= −6,944
76X 10−’△1(10)=0.00079   
△2(10)=0.00345△、(9)=0.006
21   △2(9)=0.00269△、(7)=0
.00387   △2(7)=O,0O120△、(
5)=O,0O105△2(5)=O,0O034以上
示した実施例11. 12. 13においては焦点距離
Fを4.5mmとし、NAを0.50.平行平板の厚さ
tを0.4mmとして設計したものであり、略々1°の
画角範囲内において回折限界に近い結像性能を有する。
Example 11 F = 1.0 R, = 0.68769 R2 = -2,38714 NA = 0.50 β = O D = 060633 W fist = 0.61924 t = 0.08871 Nt = 1.510K
2= -6,Q9045XIO A 23= -7,19034x 10-2A 24=
-2,01016x 10-”A, = -5,04
343X 10-'A, = 1.33064X10°A, = -3,78361X100 A, = 4.48779xlO6 A 2. = -2,95692X 10°A210=
-1,38834X1O N=1,57532K,=-7,43082xlO-"A,3=-1,10638x10-2A,4=
-2,98267X10 A, 5= 2.96247xlO A , 6=-1,21161
1.44.201 x 10Ano= -2,5017
1X 10'Au+=-2,95133X10-'
AI+2: 8.69794X10-'Au3=
2.95233xlO' An4= -1,16804xlO-@Aos= 3
.. 02181X10-'Aoa=-8,25661X
10-'△1(10)=0.02529 △I(9)=0.01542 △+ (7)=0.00529 △+(5)=0.0O134 A211: -7,82587xlO-'A2G2 =-
1.57923X10-'A2+3= 1.4223
4xlO-'A214: 1.07694X10-'
A215: 1.53902X10-'A216:
-7,23157xlO-'△2(10)=-0,00
266 △2 (9) = 0.00069△2 (7)
= 0.00016△2 (5) = 0
.. 00003 Example 12 F = 1.0 R, = 0.68768 R2 = -2, 19402 NA = 0.50 D = 0.70969 W - D = 0.56434 β = O N = 1.57532 K, = 1 .67757XIO”A ,,=
-3,46061X 10-”A,, = -8,4
7761X 10-”A,, = -5,99075
XIO→A, 6=-1,81711XIO' A, 7= 6.61295xIO-'A,,=
1.73882X10O A,, = 1.69163X10' Aoo= -1,92578X10' A11l: -3,33521xtO-'AI+2 =
8.74426X10~6An3=2.910
32X10-'Au4=-1,57531X 10-
'Aoa= 4.11672XIO-'A+u= -
6,52422X 10-'N''R,' t=0.08871 Nt=1.510K 2=
-6,08502xlO'A23=-7,56380X10-'A24=3.
11476XIO-" A2. = -7,95033X 10-'A2.l
= 2,51097XlO'A2□=-3,7930
4xlO' A28= 3.02655X10°A 29= -4,40557X 10'Az+o=
-1,83521X 10 'A2++-= -6,
28316X 10-'A212= -1,58249
xlOzuA2+3=1.4.1389X10-'A2+
4: 1,29097X10-'A215: 1.
13129X10-'A2+s=-6,94110X
10-'NKI △1(10)=0.01200 △, (9)=0.01019 △+ (7)=0.00451 △+(5)=0.00121 △2(10)=0,00146 △ 2(9) =0.00153 △2(7) =0.00076 △2(5) =0.00017 Example 13 F = 1.0 R, = 0.68768 R2 = -2,06269 K, = 1 .82870X10-”A, 3=
-2,44392X 10-”A I4= -8,45
372xlO-”A,, = -9,34272x
10-”A, 6=-1,40660X10゜A1□=8.42223xlO-'A, 8=
1,18096X10゜A,, = 4.3695
0X10'NA=0.50 β=O D=0.77996 N=1.57531W・D
=0.52702 t=o, 08871 Nt=1.510K 2=
-6,00928X 10'A 23= -3,0
0087x 10-”A 2. = -1,40769
x 10-'A 25= -7,57093x 10-
'A 28= 3.97949 x 10゜A,
= −5,69922x lo 'A,, = 2.
65503X10゜A, = -4,61243x
10 'Aoo= 1.29290X10' Am= -3-31097xlO-' A112= 6.41128X10-'AI+3=
3.21519X10-'An4=-1,7844
2xlo-'Ao5= 4.08316xlOiAo6=-4,64873XIO-'A2+o=-
1,87730x io 'A2+1: -6,283
16x 10-'A212=-1,58258X10
-'A2+3= 1.42401 X 10-'A2
+4= 1.32498x 10-'A215=
1.38229X 10-'A2+a= -6,944
76X 10-'Δ1(10)=0.00079
△2(10)=0.00345△, (9)=0.006
21 △2(9)=0.00269△, (7)=0
.. 00387 △2(7)=O, 0O120△, (
5)=O,0O105△2(5)=O,0O034 Example 11 shown above. 12. In No. 13, the focal length F was 4.5 mm and the NA was 0.50. It is designed so that the thickness t of the parallel plate is 0.4 mm, and has imaging performance close to the diffraction limit within a field angle range of approximately 1°.

更に平行平板の厚さtは、上記NA、画角の条件下では
±0.1mm程度の変動までは良好な結像性能を有する
。即ち、0.065F<t<0.IIIFの範囲であれ
ば良好な結像性能が得られる。
Further, the thickness t of the parallel plate has good imaging performance up to a variation of about ±0.1 mm under the conditions of the above NA and angle of view. That is, 0.065F<t<0. Good imaging performance can be obtained within the range of IIIF.

上述した実施例11. 12. 13に見られるように
、においては上述した(1)から(3)の条件に加えて
、以下の条件(28)から(30)を満足することが好
ましい。
Example 11 described above. 12. 13, it is preferable that the following conditions (28) to (30) be satisfied in addition to the conditions (1) to (3) described above.

条件(28)、(29)は3次の領域で球面収差及びコ
マ収差を良好に補正するためのものである。
Conditions (28) and (29) are for properly correcting spherical aberration and coma aberration in the third-order region.

条件(28)の数値範囲を外れると、特に第1面の球面
収差が大きくなり、第1面の非球面項ψ、では収差が補
正しきれなくなる。
When the numerical value range of condition (28) is exceeded, the spherical aberration of the first surface in particular becomes large, and the aberration cannot be corrected completely by the aspherical term ψ of the first surface.

条件(29)は第2面でコマ収差をバランス良く補正す
るための条件であり、この数値範囲を外れると、第2面
の非球面項ψ2では収差が補正しきれなくなり、軸外の
結像性能が著しく劣化する。
Condition (29) is a condition for correcting comatic aberration in a well-balanced manner on the second surface. If this value falls outside this numerical range, the aspherical term ψ2 of the second surface will not be able to fully correct the aberration, resulting in off-axis imaging. Performance deteriorates significantly.

条件(30)は主に正弦条件を満足させるための条件で
ある。本発明においては軸上収差と共に一定範囲内の軸
外収差、特に、コマ収差を良好に補正しているが、条件
(30)の範囲を外れるとアイソプラナティックな条件
が著しく失なわれ好ましくないものである。
Condition (30) is mainly a condition for satisfying the sine condition. In the present invention, off-axis aberrations within a certain range, especially comatic aberration, are well corrected as well as on-axis aberrations, but outside the range of condition (30), the isoplanatic condition is significantly lost, which is undesirable. It is something.

条件の上限を越える場合には、第1面の曲率半径が小さ
くなりすぎて、負の球面収差が大きく発生して収差補正
が難しくなる事、又、作動距離W、Dが短くなって実用
上の難点を生じてしまうという欠点がある レンズにおいては上述した(1)から(3)及び(28
)から(30)の条件に加えて、以下の条件(31)か
ら(34)を満足することにより、特に球面収差を良好
に補正しつるものである。
If the upper limit of the conditions is exceeded, the radius of curvature of the first surface will become too small, causing a large amount of negative spherical aberration, making it difficult to correct the aberration, and working distances W and D will become too short to be practical. For lenses that have the disadvantage of causing problems, the above-mentioned (1) to (3) and (28)
By satisfying the following conditions (31) to (34) in addition to the conditions (31) to (30), spherical aberration can be particularly well corrected.

(31)     O<△、 (10) <0.03F
(32)  0.0033F < △1 (7)<0.
006F(33)   −0,005F< △2  (
10) <0.005F(34)       0 <
 △2 (7)  <0.002F条件(31)から(
34)はレンズ第1面及び第2面の有効径の10割、7
割での非球面量を決定する条件である。条件(31)か
ら(34)の条件を満足することにより、特に球面収差
を更に良好に補正しうるちのである。
(31) O<△, (10) <0.03F
(32) 0.0033F < △1 (7) <0.
006F(33) −0,005F< △2 (
10) <0.005F(34) 0 <
△2 (7) <0.002F From condition (31) (
34) is 100% of the effective diameter of the first and second surfaces of the lens, 7
This is the condition for determining the amount of aspherical surface in terms of %. By satisfying conditions (31) to (34), spherical aberration in particular can be corrected even better.

条件(31)、  (32)の上限値を越えると球面収
差がオーバーとなり、逆に下限値を下回るとアンダーと
なって軸上性能が劣化する。
When the upper limits of conditions (31) and (32) are exceeded, the spherical aberration becomes excessive, and conversely, when it falls below the lower limits, the spherical aberration becomes under, and the axial performance deteriorates.

条件(33)、  (34)は主に軸外収差の補正に関
するものであり、上限値及び下限値の範囲を外れるとコ
マ収差の発生量が大きくなって軸外性能が劣化する。
Conditions (33) and (34) mainly relate to correction of off-axis aberrations, and when the range is outside the upper and lower limits, the amount of coma aberration increases and off-axis performance deteriorates.

球面収差の異なる補正については (35)     O<△+ (9)  < 0.02
F(36)O,0O05F  <  △、  (5) 
  <  0.0O15Fなる条件を、コマ収差の異な
る補正については(37)−0,001F<△2(9)
  < 0.003F(38)   O<△2(5) 
 < 0.0005Fなる条件を、上述した(1)から
(3)及び(28)から(30)の条件に加えて満足す
ることが好ましい。
For different corrections of spherical aberration, (35) O<△+ (9) <0.02
F(36)O,0O05F <△, (5)
< 0.0O15F, for different corrections of coma aberration (37) - 0,001F < △2 (9)
<0.003F(38) O<△2(5)
It is preferable to satisfy the condition <0.0005F in addition to the conditions (1) to (3) and (28) to (30) described above.

ここで、条件(35)から(38)はレンズ第1面及び
第2面の有効系の9割、5割での非球面1を決定する条
件である。
Here, conditions (35) to (38) are conditions for determining the aspheric surface 1 at 90% and 50% of the effective system of the first and second surfaces of the lens.

或は、又、上述した(1)から(3)及び(28)から
(30)の条件に加えて、以下の条件(39)を満足す
ることが収差補正の上で好ましい。
Alternatively, in addition to the conditions (1) to (3) and (28) to (30) described above, it is preferable for aberration correction to satisfy the following condition (39).

条件(39)の下限値を下回ると非点収差の悪化を招き
、他方上限値を上回るとコマ収差が残存して好ましくな
い。
If the lower limit of condition (39) is less than this, astigmatism will worsen, while if it exceeds the upper limit, coma aberration will remain, which is undesirable.

(発明の効果) 以上、本発明によれば略々0.04F〜O,1llFの
厚みを有する平行平板を介して、軸上及び軸外共に良好
に収差補正の成された非球面単レンズを提供できる。
(Effects of the Invention) As described above, according to the present invention, an aspheric single lens with excellent aberration correction both on-axis and off-axis can be produced through a parallel plate having a thickness of approximately 0.04F to 0.11F. Can be provided.

光カード記録再生装置等の光メモリー装置の光ヘッドに
おいて、対物レンズとして、或いはコリメータレンズと
して本発明に係る非球面単レンズを採用することによっ
て、光ヘッドの軽量、小型化が達成可能である。
In an optical head of an optical memory device such as an optical card recording/reproducing device, by employing the aspherical single lens according to the present invention as an objective lens or a collimator lens, it is possible to reduce the weight and size of the optical head.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る非球面単レンズのレンズ断面を示
す図、第2図、第3図、第4図、第5図。 第6図、第7図、第8図、第9図、第10図、第11図
、第12図、第13図、第14図は本発明に係る非球面
単レンズの各実施例に於ける球面収差、非点収差、歪曲
収差を示す図である。 l ・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・非球面単レンズ2・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・平行平
板D・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・レンズ肉厚W−D・・・・・・・・・
・・・・・・・・・・・・・・作動距離t・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・平行平板の肉厚R,,R2・・・・・・・・・・・・
・第1面、第2面の曲率半径N、Nt・・・・・・・・
・・・・・・・・・・・・屈折率tA 躬3図 球面収至 A閣収范 企曲淘又差。 躬4図 も5図 A/A も7図 A 第8図 A A 探面収蔓 非点M免痩 を曲収笈
FIG. 1 is a diagram showing a lens cross section of an aspherical single lens according to the present invention, FIG. 2, FIG. 3, FIG. 4, and FIG. 5. 6, 7, 8, 9, 10, 11, 12, 13, and 14 show examples of the aspheric single lens according to the present invention. FIG. 3 is a diagram showing spherical aberration, astigmatism, and distortion aberration. l ・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・Aspherical single lens 2・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・Parallel plate D・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・Lens thickness W-D・・・・・・・・・
・・・・・・・・・・・・・・・Working distance t・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・Thickness R,, R2 of parallel plate...
・Radius of curvature N, Nt of the first and second surfaces...
・・・・・・・・・Refractive index tA 3rd figure spherical convergence A cabinet convergence plan curve taomata difference. Figure 4 and Figure 5 A/A Figure 7 A Figure 8 A A

Claims (1)

【特許請求の範囲】 第1面、第2面が共に非球面で構成される非球面単レン
ズであり、該非球面が該非球面上の任意の点から非球面
頂点の接平面までの距離をX、前記任意の点から光軸ま
での距離をH、第ν面の基準曲率半径をR_ν、第ν面
の円錐定数をK_ν、第ν面の非球面係数をA_ν_i
(i=3、4、・・・)とした時に下記の式にて表わさ
れる非球面であると共に次の条件(1)、(2)、(3
)を満足する非球面単レンズ。 X=(H^2/R_ν)/[1+√{1−(1+K_ν
)(H/R_ν)^2}]+A_ν_3H^3+A_ν
_4H^4+・・・ (ν=1、2) (1)0.70<(N−1)F^3/N^2R_1^3
<0.73(2)0.31<(N−1)D/NR_1<
0.51(3)−0.40<R_1/R_2<−0.2
7ただし、Fは非球面単レンズの焦点距離、Dは非球面
単レンズの光軸上肉厚、Nは非球面単レンズの使用波長
に対する屈折率である。
[Claims] An aspherical single lens in which both the first and second surfaces are aspherical, and the aspherical surface defines the distance from any point on the aspherical surface to the tangent plane of the apex of the aspherical surface. , the distance from the arbitrary point to the optical axis is H, the standard radius of curvature of the νth surface is R_ν, the conic constant of the νth surface is K_ν, and the aspherical coefficient of the νth surface is A_ν_i.
(i = 3, 4, ...), it is an aspheric surface expressed by the following formula, and the following conditions (1), (2), (3
) is an aspherical single lens that satisfies the following. X=(H^2/R_ν)/[1+√{1-(1+K_ν
)(H/R_ν)^2}]+A_ν_3H^3+A_ν
_4H^4+... (ν=1, 2) (1) 0.70<(N-1)F^3/N^2R_1^3
<0.73(2)0.31<(N-1)D/NR_1<
0.51(3)-0.40<R_1/R_2<-0.2
7, where F is the focal length of the aspherical single lens, D is the thickness of the aspherical single lens on the optical axis, and N is the refractive index of the aspherical single lens with respect to the wavelength used.
JP63189712A 1988-07-28 1988-07-28 Aspheric single lens Expired - Fee Related JP2622160B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63189712A JP2622160B2 (en) 1988-07-28 1988-07-28 Aspheric single lens
US07/385,374 US4932763A (en) 1988-07-28 1989-07-27 Aspherical single lens system for use with optical cards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63189712A JP2622160B2 (en) 1988-07-28 1988-07-28 Aspheric single lens

Publications (2)

Publication Number Publication Date
JPH0239010A true JPH0239010A (en) 1990-02-08
JP2622160B2 JP2622160B2 (en) 1997-06-18

Family

ID=16245932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63189712A Expired - Fee Related JP2622160B2 (en) 1988-07-28 1988-07-28 Aspheric single lens

Country Status (1)

Country Link
JP (1) JP2622160B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201210A (en) * 1981-06-04 1982-12-09 Sony Corp Condenser lens
JPS60250320A (en) * 1984-05-28 1985-12-11 Matsushita Electric Ind Co Ltd Large aperture single lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201210A (en) * 1981-06-04 1982-12-09 Sony Corp Condenser lens
JPS60250320A (en) * 1984-05-28 1985-12-11 Matsushita Electric Ind Co Ltd Large aperture single lens

Also Published As

Publication number Publication date
JP2622160B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
US4657352A (en) Image optical system including a non-spherical single lens
JP2641514B2 (en) Single group objective lens
US4842388A (en) Single optical lense with diffraction limit converging capability and wide field angle
US4768867A (en) Aspherical single lens
US4701032A (en) Graded refractive index lens system
KR100300520B1 (en) Zoom lens system
US4684221A (en) Graded refractive index single lens system
US4772105A (en) Graded refractive index lens system
JPS6156314A (en) Recording and reproducing objective lens of optical information recording medium
JPS60120310A (en) Aspherical single lens
JPH10104507A (en) Objective lens and recording and reproducing device
US4932763A (en) Aspherical single lens system for use with optical cards
JPH0239010A (en) Aspherical single lens
JPH0239009A (en) Aspherical single lens
JP2613761B2 (en) Condensing optical system for optical information recording media
JP2622155B2 (en) Aspheric single lens
JPH01214811A (en) Aspherical single lens
JPH02150816A (en) Aspherical single lens
JPH04163510A (en) Object lens for optical disk
US4741606A (en) Objective lens system for optical recording and reading device
JP2511275B2 (en) Optical system for recording / reproducing optical information media
JPH04114112A (en) High numerical aperture lens
JPH02271312A (en) Both-sided aspherical single lens for optical information recording and reproducing device
JPH02271311A (en) Both-sided aspherical single lens for optical information recording and reproducing device
JPS62215223A (en) Condenser lens for optical memory

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees