JPH0238945A - Method of inspecting fatigue fracture of fiber reinforced composite material structure - Google Patents

Method of inspecting fatigue fracture of fiber reinforced composite material structure

Info

Publication number
JPH0238945A
JPH0238945A JP19000088A JP19000088A JPH0238945A JP H0238945 A JPH0238945 A JP H0238945A JP 19000088 A JP19000088 A JP 19000088A JP 19000088 A JP19000088 A JP 19000088A JP H0238945 A JPH0238945 A JP H0238945A
Authority
JP
Japan
Prior art keywords
fatigue
reinforced composite
composite material
resistance value
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19000088A
Other languages
Japanese (ja)
Inventor
Akira Yoshikawa
彰 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19000088A priority Critical patent/JPH0238945A/en
Publication of JPH0238945A publication Critical patent/JPH0238945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To quantitatively inspect the condition of the internal fatigue of the structure from the fluctuation in the electric resistance value of the single metallic wires between measuring terminals by disposing one to plural pieces of single metallic wires to the proper points in the structure in such a manner that both ends serve as measuring terminals. CONSTITUTION:The steel single wire 2 having 0.09mm diameter is embedded to nearly the intermediate position of the thickness of the fatigue test piece 2 formed of glass fiber reinforced polyester and both ends thereof are exposed as the measuring terminals 3, 3. The condition of the internal fatigue of the structure is quantitatively inspected by measuring the fluctuation in the electric resistance between the measuring terminals 3 and 3. The steel single wire 2 which is previously subjected to a film treatment by a silane coupling treatment and urethane primer treatment is used. The internal fatigue of the structure is quantitatively inspected and the fatigue fracture thereof is previously known in this way regardless of its size.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、繊維強化複合材料構造物の疲労破壊検査方法
に関する本のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a book related to a fatigue fracture testing method for fiber-reinforced composite material structures.

〔従来の技術〕[Conventional technology]

従来、繊維強化複合材料から成る構造物の疲労破壊検査
方法としては、一般的に、構造物の表面にひずみゲージ
を貼って、構造物表面の応力変動を測定する方法と、構
造物の表面状態を目視により白化やクラックの発生を観
察する方法とがある。
Conventional fatigue fracture inspection methods for structures made of fiber-reinforced composite materials generally include a method of attaching strain gauges to the surface of the structure and measuring stress fluctuations on the structure's surface, and a method of measuring the stress fluctuation on the surface of the structure. There is a method of visually observing the occurrence of whitening and cracks.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来方法は、いずれも繊維強化複合材料構造物の表
面の変化しか検査で色ず、厚みを有する構造物の内部疲
労の状況を知ることができなかった。
In all of the above conventional methods, only changes in the surface of the fiber-reinforced composite material structure are detected, and the state of internal fatigue of the thick structure cannot be determined.

更に、前者の方法では、表面の極部の状態しか検査でき
ず、大きな構造物の場合、多大な手数を要するという問
題点がある。
Furthermore, the former method has the problem that only the condition of the extreme parts of the surface can be inspected, and in the case of a large structure, it requires a great deal of effort.

また、後者の方法では、検査者によって観察結果に大き
なバラツキが生ずるばかりか、感舵検査であるため、疲
労状況の定量化ができず、破壊の認定基準の設定があい
まいにならざるを得ないなどの問題点を有している。
In addition, with the latter method, not only does the observation result vary greatly depending on the inspector, but because the inspection is conducted by sensing the steering wheel, fatigue conditions cannot be quantified, making the establishment of failure certification criteria ambiguous. It has problems such as:

本発明は、上述の従来技術の問題点を解決するためKな
したものであり、繊維強化複合材料構造物の内部疲労を
簡単に測定でき、疲労破壊を事前に知ることができ、さ
らに疲労状況の定量化かできるようになした111fa
強化複合材料構造物の疲労破壊検査方法を提供すること
を目的とする。
The present invention has been made in order to solve the problems of the prior art described above, and it is possible to easily measure the internal fatigue of a fiber reinforced composite material structure, to know in advance of fatigue failure, and to be able to determine the fatigue status. 111fa made it possible to quantify
The purpose of this invention is to provide a fatigue fracture inspection method for reinforced composite material structures.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の繊維強化複合材料
構造物の疲労破壊検査方法は、繊維強化複合材料から成
る構造物の内部の適所に、1乃至複数本の金属単線を、
この金属単線の両端部分が測定端子となるように配設し
、上記測定端子間の金属単線の電気抵抗値の変動を測定
するものである。
In order to achieve the above object, the fatigue fracture inspection method for a fiber-reinforced composite material structure of the present invention includes one or more metal single wires placed at appropriate locations inside a structure made of fiber-reinforced composite material.
This single metal wire is arranged so that both end portions serve as measurement terminals, and the variation in the electrical resistance value of the single metal wire between the measurement terminals is measured.

また、構造物内部に配設する金属単線は、その表面にシ
クン系、有機チタン系、ウレタン樹脂系、ブチクール樹
脂系、エポ中シ樹脂系、フェノール樹脂系の接着促進剤
の1種または2種以上による被膜処理を予め施したもの
を用いることもある。
In addition, the single metal wire installed inside the structure should be coated with one or two types of adhesion promoters such as Shikun, organic titanium, urethane resin, Buticool resin, Epo-silicone resin, and phenolic resin. A material that has been previously subjected to the coating treatment described above may also be used.

ところで、上記金属単線としては、スチール単線のほか
、電気抵抗が測定可能な金属線等を用いゐ屯のでああ。
By the way, as the above-mentioned solid metal wire, in addition to the solid steel wire, a metal wire whose electrical resistance can be measured can be used.

〔作 用〕[For production]

構造物が繰返し応力や同期応力を受けて疲労が進行する
と、構造物に歪が生じ、歪の生じた箇所に配設された金
属単線も追随して歪が生じ、この歪の変動に応じて測定
端子間の金属単線の電気抵抗値の変動を測定でき、構造
物の内部疲労の状況を定量的に検査できる。
When a structure undergoes repeated stress or synchronous stress and fatigue progresses, distortion occurs in the structure, and the metal wires installed at the locations where the distortion occurs also follow, and in response to the fluctuations in this distortion, It is possible to measure fluctuations in the electrical resistance value of a single metal wire between measurement terminals, and quantitatively inspect the internal fatigue status of a structure.

よって、構造物内部に配設した金属単線の電気抵抗値が
急激に増大した時点が、構造物の疲労破壊の直前である
と判定で睡る。
Therefore, it is determined that the point in time when the electrical resistance value of the single metal wire disposed inside the structure suddenly increases is immediately before fatigue failure of the structure.

〔実施例〕〔Example〕

以下本発明につき、図面に基づいて説明する。 The present invention will be explained below based on the drawings.

第1図は、疲労試験片の斜視図で、疲労試験片fil 
tiガラス繊維強化ポリエステルを成形したもので、こ
の試験片の成形時に、板厚のほり中間位置に直径αO1
?flのスチール単線(!)を埋設し、かつスプール単
線(2ンの両端部分を露出して測定端子fil fi+
となす。
FIG. 1 is a perspective view of a fatigue test piece, and the fatigue test piece fil
ti Glass fiber reinforced polyester is molded, and when molding this test piece, a diameter αO1
? Bury the fl solid steel wire (!) and expose both ends of the spool solid wire (2) to connect the measuring terminal fil fi+
Nasu.

本実施例で使用したスチール単、!J +!+は、直径
0.05〜Q、5ffiIIが好適であるか、こ九に限
定されるものではない。
The steel singleton used in this example! J+! + is preferably 0.05 to Q in diameter, 5ffil, but is not limited to these.

ところで、上記スチール単線(りは、疲労試験片fil
の構成樹脂との接層性を向上させるため、予め以下の手
順で被膜処理を行なった。
By the way, the above-mentioned single steel wire (the fatigue test piece fil
In order to improve the adhesion with the constituent resins, coating treatment was performed in advance according to the following procedure.

(D 脱脂、洗浄 偵) トリクロロエチレン蒸気洗浄       1分
(b)  冷水洗浄                
5分(C)  乾 燥  40℃        3o
分■ シランカップリング処理 ・処理剤  次の混合物 ガンマ−アミノプロピルトリエトキシシラン(KBE9
03  信越化学′!JJ)     5部エテルアル
;−ル        95部(a)   浸  漬 
                   10秒(b)
乾燥 80℃    10分 (D クレクンプクイマー処理 ・処理剤  次の混合物 登録商漂タケネートM402  50部(武田薬品製) トルエン            50部(a3   
浸  漬                     
10秒Φ)乾燥 80℃    10分 次に、上記疲労試験片(1)を用いて万nピ疲労試験機
(島津製VF−500容1に表9窟)で以て片振り引張
疲労試験を行なった。
(D Degreasing, cleaning) Trichlorethylene steam cleaning 1 minute (b) Cold water cleaning
5 minutes (C) Dry 40℃ 3o
■ Silane coupling treatment/treatment agent The following mixture gamma-aminopropyltriethoxysilane (KBE9
03 Shin-Etsu Chemical'! JJ) 5 parts ethyl alcohol 95 parts (a) Soaking
10 seconds (b)
Drying 80℃ 10 minutes (D Crekumpkuimer treatment/treatment agent The following mixture Registered trade name: Takenate M402 50 parts (manufactured by Takeda Pharmaceutical Co., Ltd.) Toluene 50 parts (A3
Soaking
10 seconds Φ) Dry at 80°C for 10 minutes Next, using the above fatigue test piece (1), perform a oscillating tensile fatigue test using a 10,000-pin fatigue tester (Shimadzu VF-500 volume 1, Table 9). I did it.

疲労試験中のスチール単@ f!lの抵抗値の変化を四
点法により測定し、メモソノ1イコーダに記録された波
形の−Mを第2図に示す。第8図中Δには抵抗値の最小
値の増加量を示し、Kは抵抗値の変動の振幅を示す。上
記抵抗値の最小値の増加量Δにおよび振幅蝋にの変化を
第8図に示す。縦軸には抵抗値をとったが、抵抗値の0
点は初期振幅の最小値とし、横軸には疲労回数をとった
。第3図によると、疲労寿命の90<以後に抵抗値の急
激な上昇が認められた。
Single steel during fatigue test @f! The change in the resistance value of 1 was measured by the four-point method, and the waveform -M recorded on the memosono 1 equalizer is shown in FIG. In FIG. 8, Δ indicates the amount of increase in the minimum value of the resistance value, and K indicates the amplitude of variation in the resistance value. FIG. 8 shows the changes in the increase amount Δ of the minimum resistance value and the amplitude wax. The resistance value is plotted on the vertical axis, and the resistance value is 0.
The point is the minimum value of the initial amplitude, and the horizontal axis is the number of times of fatigue. According to FIG. 3, a rapid increase in resistance value was observed after the fatigue life of 90<.

初期振幅を1として、初期の抵抗値に対する疲労中の抵
抗値の比は、Δd、Aで表わされる。
Assuming that the initial amplitude is 1, the ratio of the resistance value during fatigue to the initial resistance value is expressed as Δd,A.

これを歪の比をとるために平方して、Pす■屡とし、初
期の歪量を1とした場合の歪量の比を第4図に示す。
This is squared to obtain the strain ratio, and it is set as P square, and the strain amount ratio when the initial strain amount is 1 is shown in FIG.

第4図にみられる歪量の変化においても、第8図で示し
た抵抗値の変化同様、寿命の90%以IK急激な上昇か
認められた。
Similar to the change in resistance value shown in FIG. 8, a rapid increase in IK was observed in the change in strain shown in FIG. 4 over 90% of the life.

上記の通り測定端子間のスチール単線の電気抵抗値の測
定結果は、疲労試験片の塑性伸びに対応しており、この
電気抵抗値の変動を測定することが、構造物の内部疲労
状況を判定するのに有効であることが判明した。
As mentioned above, the measurement result of the electrical resistance value of the single steel wire between the measurement terminals corresponds to the plastic elongation of the fatigue test piece, and measuring the fluctuation of this electrical resistance value determines the internal fatigue state of the structure. It was found to be effective in

次に、繊維強化複合材料製自動車用ホイールを用いて実
・車走行テストを行なった例について述べる。第5図は
、am強化複合材料製自動車用ホイール(4)に8本の
スチール単線fIl園を配設した例を示し、(イ)は正
面図、(=)は(イ)のA−入断面図である。
Next, we will discuss an example of an actual car driving test using a fiber-reinforced composite material automobile wheel. Figure 5 shows an example in which eight single steel wires are arranged on an automobile wheel (4) made of am-reinforced composite material, where (a) is a front view and (=) is an A-input of (a). FIG.

上記自動軍用ホイール(4)を自動車に装着し、過負荷
状態で走行テストを実施した。この場合、スチール単m
 (sl (glの電気抵抗は常時測定するのが困難で
あるので、10G−走行毎に抵抗値の変動の振幅tg、
抵抗値の最小値の増加量ΔKをホイールを数回転させる
ことで測定した。
The above-mentioned automatic military wheel (4) was mounted on a car, and a running test was conducted under overload conditions. In this case, steel single meter
(sl (Since it is difficult to constantly measure the electrical resistance of gl, the amplitude tg of the resistance value fluctuation every 10G-running,
The amount of increase ΔK in the minimum resistance value was measured by rotating the wheel several times.

この測定結果を第6図に示す。なシ、第6図において、
縦軸Fi第4図と同様 ノー6口〔Frつ71とし、横
軸は走行距離をとった。
The measurement results are shown in FIG. In Figure 6,
The vertical axis Fi is the same as in Figure 4, with 6 units and 71 units, and the horizontal axis is the distance traveled.

@6図から明らかなように、走行距離が700−までは
テスト開始時と比べて余り変化のない状態であったが、
800−走行後の測定では急激な増加が見られ九ので、
テストを中上した。
As is clear from Figure @6, there was not much change in the mileage up to 700- compared to the start of the test.
Measurements after 800-km run showed a rapid increase, so
I passed the test.

そして、テストホイールを検査したところ、疲労損傷が
数箇所確認された。
When the test wheels were inspected, fatigue damage was found in several locations.

ところで、本発明による方法を用いるときには、繊維強
化複合材料構造物の応力負荷かかかり、内部破壊を生じ
る箇所を予め知ることができ、その用途に応じた構造物
を製造できる。
By the way, when using the method according to the present invention, it is possible to know in advance the parts of the fiber-reinforced composite material structure where a stress load is applied and cause internal destruction, and a structure suitable for its use can be manufactured.

また、金属単線を配設した繊維強化複合材料で以て自動
車用ホイールのほか、薬品タンク、貯水槽、浄化槽、船
体1機体(飛行機)その他の構造物を作るときには、上
記構造物の内部疲労の状況を定期的にチエツクすること
により、疲労破壊による事故を未然に防止できる等、広
範囲に応用できる。
In addition, when manufacturing automobile wheels, chemical tanks, water storage tanks, septic tanks, ship bodies (airplanes), and other structures using fiber-reinforced composite materials with single metal wires, it is important to avoid internal fatigue of the structures. By checking the status regularly, accidents due to fatigue failure can be prevented, and can be applied to a wide range of applications.

〔発明の効果〕〔Effect of the invention〕

本発明によるときは、極めて簡単な方法で構造1の内部
疲労を検査でき、また疲労状況を足端的に測定でき、更
に構造物の大きさに何ら制限されることなく適用できる
等の優れた効果を奏するものである。
According to the present invention, the internal fatigue of the structure 1 can be inspected using an extremely simple method, the fatigue situation can be measured at the end of the foot, and the present invention has excellent effects such as being able to be applied without any restrictions on the size of the structure. It is something that plays.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図は本発明の方法に用いた試験片の斜視図、第2図
は測定記録の波形図、第8図は抵抗値と疲労回数の関係
図、第4図は歪量の比と疲労回数の関係図、第5図は本
発明の方法に用いた自動車用ホイールの例を示し、(5
)は正面図。 (ロ)は(イ)のA−A断面図、第6図は歪量の比と走
行距離の関係図である。 fi+・・・・・・・・・・・・ 疲労試験片(gl 
+lll [61・・・ スチール単線fs)・・・・
・・・・・・・・ 測定端子(4)・・・・・・・・・
・・・ 自動車用ホイール第 図 第 図 (イ) (ロ) A 第 図 第 図 疲労回数 (回) 第 図 走4テ2臣貰t (Km)
@Figure 1 is a perspective view of the test piece used in the method of the present invention, Figure 2 is a waveform diagram of measurement records, Figure 8 is a relationship between resistance value and fatigue number, and Figure 4 is a relationship between strain ratio and fatigue. Figure 5 shows an example of an automobile wheel used in the method of the present invention.
) is a front view. (B) is a sectional view taken along the line A-A in (A), and FIG. 6 is a diagram showing the relationship between the ratio of strain amount and travel distance. fi+・・・・・・・・・・・・ Fatigue test piece (gl
+lll [61... Steel single wire fs)...
・・・・・・・・・ Measurement terminal (4)・・・・・・・・・
... Automobile wheel diagram (a) (b) A diagram diagram fatigue count (times) diagram run 4te2omit (Km)

Claims (2)

【特許請求の範囲】[Claims] (1)繊維強化複合材料から成る構造物の内部に1乃至
複数本の金属単線を、この金属単線の両端部分が測定端
子となるよう一体に配設し、上記測定端子間の金属単線
の電気抵抗値の変動を測定することを特徴とする繊維強
化複合材料構造物の疲労破壊検査方法。
(1) One or more single metal wires are installed inside a structure made of fiber-reinforced composite material so that both ends of the single metal wires serve as measurement terminals, and the electricity of the single metal wire between the measurement terminals is A fatigue fracture inspection method for fiber-reinforced composite material structures, characterized by measuring fluctuations in resistance.
(2)上記金属単線が、その表面に予めシラン系、有機
チタン系、ウレタン樹脂系、ブチラール樹脂系、エポキ
シ樹脂系、フェノール樹脂系の接着促進剤の1種または
2種以上による被膜処理を施したものである請求項1記
載の繊維強化複合材料構造物の疲労破壊検査方法。
(2) The surface of the single metal wire is coated with one or more adhesion promoters such as silane, organic titanium, urethane resin, butyral resin, epoxy resin, and phenol resin. A method for inspecting fatigue fracture of a fiber-reinforced composite material structure according to claim 1.
JP19000088A 1988-07-29 1988-07-29 Method of inspecting fatigue fracture of fiber reinforced composite material structure Pending JPH0238945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19000088A JPH0238945A (en) 1988-07-29 1988-07-29 Method of inspecting fatigue fracture of fiber reinforced composite material structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19000088A JPH0238945A (en) 1988-07-29 1988-07-29 Method of inspecting fatigue fracture of fiber reinforced composite material structure

Publications (1)

Publication Number Publication Date
JPH0238945A true JPH0238945A (en) 1990-02-08

Family

ID=16250714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19000088A Pending JPH0238945A (en) 1988-07-29 1988-07-29 Method of inspecting fatigue fracture of fiber reinforced composite material structure

Country Status (1)

Country Link
JP (1) JPH0238945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011718A (en) * 2010-07-02 2012-01-19 Bridgestone Corp Method of producing resin-metal composite material, resin-metal composite material, and tire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114741A (en) * 1983-11-28 1985-06-21 Mazda Motor Corp Detection for fatigue fracture of frp member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114741A (en) * 1983-11-28 1985-06-21 Mazda Motor Corp Detection for fatigue fracture of frp member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011718A (en) * 2010-07-02 2012-01-19 Bridgestone Corp Method of producing resin-metal composite material, resin-metal composite material, and tire

Similar Documents

Publication Publication Date Title
US3910105A (en) Method for detection of flaws in composite fiberglass structures
CA2668815C (en) Monitoring device for detecting stress strain and method for using same
US20020001073A1 (en) Method for detecting stress and strain
Awerbuch et al. Monitoring Acoustic Emission During Quasi-Static Loading--Unloading Cycles of Filament-Wound Graphite--Epoxy Laminate Coupons
FR3090106A1 (en) Method and device for detecting an impact event and associated vehicle
JPH0238945A (en) Method of inspecting fatigue fracture of fiber reinforced composite material structure
US5237875A (en) Metal fatigue detector
DE102010008397B4 (en) Sensor system for the determination of fatigue on metallic components
US2449883A (en) Fatigue indicator
Adams et al. Experimental strain analysis of the losipescu shear test specimen
JPH04204114A (en) Distribution-type optical fiber sensor
US3937073A (en) Method of non-destructively testing aluminum-to-copper welds
WO1995001564A1 (en) Method for detecting changes of property of rubber element
DE102011107576A1 (en) Sensor support of e.g. piezoresistive strain gauge sensors, installed at pressure tank, has several support structures provided with electrical contact points that are connected by synthetic fiber
Hockenhull et al. The mechanical properties of anodic oxides and their influence on fatigue behaviour of aluminium alloys
JPH02298854A (en) Method for inspecting flaw of fiber reinforced composite material
SU1580220A1 (en) Method of determining inelasticity of material in cyclic deformation
JPH09159652A (en) Method for foreseeing danger of containing structure
Wibowo Self-Loosening Failure Analysis Considering Vibration Frequency: Experimental Study for the Spare Tire Carrier
SU1170343A1 (en) Method of nondestructive inspection of traction electric motor shafts
SU798558A1 (en) Method of determining adhesion strength of combination-material layers
Shen et al. Study of the performance of adhesive bonded joints
JPS63231240A (en) Method for detecting crack generation limit strain of thin film coating
RU2365875C1 (en) Method for diagnostics of structure condition
Dubois Measurement of the thermoelastic coefficient of metals by strain gauges