JPH02298854A - Method for inspecting flaw of fiber reinforced composite material - Google Patents

Method for inspecting flaw of fiber reinforced composite material

Info

Publication number
JPH02298854A
JPH02298854A JP11874989A JP11874989A JPH02298854A JP H02298854 A JPH02298854 A JP H02298854A JP 11874989 A JP11874989 A JP 11874989A JP 11874989 A JP11874989 A JP 11874989A JP H02298854 A JPH02298854 A JP H02298854A
Authority
JP
Japan
Prior art keywords
fiber
reinforced composite
composite material
resistance value
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11874989A
Other languages
Japanese (ja)
Inventor
Eiki Tsushima
栄樹 津島
Hiroyuki Yoshizawa
弘之 吉澤
Isao Kanehara
金原 勲
Isamu Osawa
大沢 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP11874989A priority Critical patent/JPH02298854A/en
Publication of JPH02298854A publication Critical patent/JPH02298854A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily inspect a flaw by a method wherein the electric resistance value of a fiber reinforced composite material is measured while tensile load is allowed to act on said material in a fiber arranging direction and the damage due to the cutting of a fiber and the development thereof are detected from a change in the electric resistance value. CONSTITUTION:The electric resistance value of a fiber reinforced composite material is measured while tensile load is allowed to act on said material in the fiber arranging direction thereof, and, when the electric resistance value again increases suddenly, said load is read. This load becomes the max. load received in the past and the past history of the load received by the fiber reinforced composite material can be known. In this case, it can be simply and clearly judged whether the electric resistance value again increases suddenly from a change in the electric resistance value and, by testing the relation between an electric resistance value and tensile load simultaneously or preliminarily with respect to a standard sample composed of the same material as an object to be inspected, the stress history of a material can be also easily known.

Description

【発明の詳細な説明】[Detailed description of the invention]

11△且1±j 本発明は、強化繊維として炭素1amなどの導電性繊維
を用いた繊維強化複合材料の繊維の切断による損傷の進
展を非破壊で容易に検出して検査することができる繊維
強化複合材料の欠陥検査方法に関するものである。
11Δ and 1±j The present invention provides a fiber reinforced composite material that uses conductive fibers such as carbon 1am as reinforcing fibers, and can easily detect and inspect the progress of damage due to fiber cutting in a non-destructive manner. The present invention relates to a method for inspecting defects in reinforced composite materials.

【1立且遣 強化繊維とマトリクス樹脂とからなる繊維強化複合材料
として、強化繊維に炭素繊維を用いた炭素繊維強化複合
材料が知られている。 従来、繊維の切断など炭素繊維強化複合材料の欠陥を非
破壊で検査するためには、主として超音波探傷法やX−
線法、AE法等が利用されている。 しかしながら、これらの方法は、いずれも検査機器が大
型であること、またその操作も難しく、更には高価であ
る難点もあった。また定量的検査法として利用されてい
る超音波探傷法、X−線法では、検出した欠陥が材料の
使用中に進展する有害なものか又は無害なものかについ
て判定できない欠点があった。一方、AE法では、検出
音が繊維切断などの有害な損傷によるAE音であるか。 外部からの単なるノイズであるかの判定が難しい問題が
あった。 が        −    る 以上のようなことから、検査機器が簡便で操作が容易で
あり、外部からの影響を受けずに検出をすることができ
、繊維の切断による損傷およびその進展を定量的に検査
することも可能とした炭素繊維強化複合材料の欠陥検査
方法の開発が望まれている。 本発明者等は、長繊維を用いた一方向繊維強化複合材料
の破壊はどのようなメカニズムで起こるかを研究した結
果、繊維の配列方向に繊維強化複合材料に引張荷重を与
えたときに、繊維強化複合材料の破壊は、材料全体が破
壊する前に繊維が弱いものから切れて行き、やがて材料
全体の破壊に至ることを解明した。従って、強化繊維と
して炭素繊維など導電性繊維を用いた繊維強化複合材料
にその繊維の配列方向に引張荷重を作用させながら、繊
維の配列方向における繊維強化複合材料の電気抵抗値を
測定すれば、その電気抵抗値の変化から繊維強化複合材
料の繊維の切断による損傷およびその進展を検出して、
欠陥を容易に検査することができることを知見した。 本発明は上記知見に基づいてなされたもので、炭素繊維
など導電性繊維を用いた繊維強化複合材料のmA!の切
断による損傷およびその進展を容易に検査することがで
き、検査機器が簡便で操作が容易であり、外部からの影
響を受けずに検出をすることができ、損傷等の欠陥の定
量的検査を可能とすることができる繊維強化複合材料の
欠陥検査方法を提供することを目的とするものである。 11上亙豆41ムヱヱJ】 上記目的は本発明の繊維強化複合材料の欠陥検査方法に
て達成される。要約すれば本発明は、導電性繊維とマト
リクス樹脂とからなる繊維強化複合材料の前記繊維の配
列方向に引張荷重を作用させながら、前記繊維の配列方
向における前記繊維強化複合材料の電気抵抗値を測定し
、前記電気抵抗値の変化から前記繊維強化複合材料の繊
維の切断による損傷およびその進展を検出することを特
徴とする繊維強化複合材料の欠陥検査方法である。 以下、本発明について詳述する。 本発明は、上述したように、長繊維を用いた一方向繊維
強化複合材料の破壊はどのようなメカニズムで起こるか
を解明した結果、得られたものである。 一方向繊維強化複合材料は、強度分布を持つ繊維とマト
リクス樹脂とからなるもので、その繊維配列方向(繊維
軸方向)に繊維強化複合材料に引張荷重を与えて引っ張
ると、繊維強化複合材料が破壊する前に繊維が弱いもの
から切れて行き、やがて繊維強化複合材料全体の破壊に
至ることが一般的である。 炭素繊維など導電性la、11iを用いた繊維強化複合
材料の場合には、繊維配列方向に引張荷重を与えて引っ
張ることにより繊維が切断すると、切断したamは引っ
張りによりその切断端同志の間が離れるので、切断箇所
で導通を失う、従って、繊維の切断本数が増加するに従
い、mII!配列方向における繊維強化複合材料の電気
抵抗が増加し、その電気抵抗値の増加は、繊維強化複合
材料中の切断した繊維数の増加に対応する。 そこで2本発明の如く、導電性繊維を用いた繊維強化複
合材料に繊維の配列方向に引張荷重を作用させながら、
引張荷重の作用下に繊維配列方向における繊維強化複合
材料の電気抵抗値を測定すれば、その電気抵抗値の変化
から繊維強化複合材料の!1雑の切断欠陥が検出でき、
繊維の切断の程度を検査することができる。 なお、上記において、繊維強化複合材料が使用されてい
る箇所等の状況によって繊維配列方向に傾斜させて引張
荷重を作用させざるを得ない場合、その傾斜した引張荷
重の繊維配列方向成分により繊維配列方向の引張荷重を
代用させることもできる。また繊維強化複合材料の使用
箇所等の関係から使用状況に応じて、繊維強化複合材料
に繊維配列方向に引張荷重がかかる場合には、その荷重
を利用することができ、この場合には特別に荷重を作用
させないで済む。 本発明の検査方法は、次のような大きな特長を有する。 (1)原則として、導電性繊維を用いた繊維強化複合材
料の繊維配列方向に引張荷重を作用させながら、繊維配
列方向における材料の電気抵抗値を測定すればよいので
、測定機器が簡便であり、測定が極めて簡単、容易であ
る。 (2)測定の結果が外部要因により影響を受けない。 (3)得られる測定データ(電気抵抗値)は繊維強化複
合材料の繊維の切断本数に対応しており、極めて定量的
であるため、繊維強化複合材料の安全性評価等に対する
確度の高い基準値になりえる。 (4)繊維強化複合材料の繊維の切断欠陥を単純に検査
するだけでなく、繊維強化複合材料の使用箇所に適用し
て、繊維強化複合材料の過去の最大荷重の履歴を調べた
り、繊維強化複合材料の繊維切断による損傷等の欠陥の
動向をモニターしたり、繊維強化複合材料の安全性等を
評価したりするなど、種々の利用法がある。 (5)繊維強化複合材料の破壊過程における繊維の挙動
などを調べる手段として利用することもできる。 (6)本検査方法は、導電性繊維としてPAN系やピッ
チ系の炭素繊維を用いた繊維強化複合材料ばかりでなく
、金属線を細線化した金属繊維、メッキや蒸着により金
属を被覆した金属被覆繊維、炭素微粒子を被覆する複合
紡糸や表面コーティングによる炭素被覆繊維、炭素微粒
子を内部に配合したり、コアとして複合紡糸した炭素複
合繊維を用いた繊維強化複合材料にも適用できる。 実jL例 次に、本発明の検査方法の一実施例について説明する。 本実施例は、本発明の検査方法を繊維強化複合材料が受
けた過去の最大荷重を求めることに適用した例である。 第1図は、本発明の検査方法での測定によって得られる
繊維強化複合材料の引張荷重−電気抵抗値増加率変化曲
線の一例を模式的に示したグラフである。 第1図において、A−B−Cの過程は繊維強化複合材料
へ付加した繊維配列方向引張荷重の付加過程を示し、C
−D−Aの過程は繊維強化複合材料が示した引張荷重の
除荷過程を示し、A−D→C→Eの過程は繊維強化複合
材料が示した引張荷重の再付加過程を示す。 第1図に示されるように、導電性繊維を用いた繊維強化
複合材料の電気抵抗値の増加率は、繊維配列方向の引張
荷重の増加と共に増大し、B点付近から急激に立上がっ
て0点に至っており、繊維強化複合材料中の繊維の切断
は、B点に近づくにつれて顕著になり、B点から0点の
間では荷重増加と共に繊維の切断が盛んに起こっている
。0点で荷重の増加を停止させると、電気抵抗値は増加
を停止する。 次に、荷重の除荷を行なうと初め電気抵抗値の低下は少
ない、続けて除荷をして行くと、D点付近から電気抵抗
値が急激に低下し出す、これは、一度切断した繊維が除
荷により接触し始めるためである。荷重が零で電気抵抗
値の増加率もほぼ零の値を回復し、A点付近に戻る。 次に荷重の再付加を行なうと、AからDへ除荷の経路を
逆に経て電気抵抗値が急激に増加する。 これは、一度切断した繊維が直ぐに離れ出すことによる
0次いでD点を経て緩やかに上昇したのち、最大荷重点
Cに達すると再び電気抵抗値は急激に上昇し出す。 従って、第1図に示すような関係を利用すると、繊維強
化複合材料に繊維の配列方向に引張荷重を作用させなが
ら電気抵抗値を測定して行って、電気抵抗値が再び急激
に増加したときに、その荷重を読み取れば、それが過去
に受けた最大荷重になる。即ち、この方法によって繊維
強化複合材料が受けた荷重の過去の履歴を知ることがで
きる。 この場合、繊維強化複合材料の電気抵抗値が再び急激に
増加したかどうかは、電気抵抗値の変化から簡単、明瞭
に判断できる。また電気抵抗値を測定するものと同一の
繊維強化複合材料の標準試料を用意し、その標準試料の
電気抵抗値の変化を予め測定して応力と電気抵抗の関係
を把握しておけば、それを対照させることにより容易に
材料の応力履歴も知ることが可能である。更に標準試料
について破壊に至るまでの電気抵抗値の変化を試験して
おけば、対象とする繊維強化複合材料の安全性等を評価
し、予測することもできる。 次に、本発明の検査方法の他の実施例について説明する
。 未実施例は、本発明の検査方法を炭素繊維強化複合材料
の破壊の進展状況を把握することについて適用した例で
ある。 本発明による試験方法を第2図に示す。 第2図において、1は炭素強化繊維複合材料のストラン
ド試験片(長さ250 mm)で、試験片1は、その両
端部直近に取り付けられた形タブ(長さ70 m m、
縦、横30mm)2.2を介して引張試験機(図示せず
)に装着して、繊維の配列方向(即ち繊維の軸方向)に
引張荷重を付加した。また試験片1は1両端部を円錐状
に研削して導電性塗料3を塗布し、その導電性塗料3を
介して電気抵抗測定器(図示せず)により繊維配列方向
の電気抵抗値を測定した。 繊維強化複合材料ストランド試験片1には、炭素繊維が
PAN系からなるPAN系繊維強化複合材料を使用した
。そのストランド試験片の仕様を第1表に、ストランド
強度等の物性値を第2表に、切断応力の試験結果を第3
表に示す、また試験片の歪および電気抵抗値増加量と引
張荷重との関係を、PAN系ストストランド試験片表と
して第3表のNo3の場合を取り上げて、第3図に示す
。 第1表 第2表 第3表 以上の試験結果を要約すると次の通りである。 (1)第1表から明らかなように、PAN系ストストラ
ンド試験片初期電気抵抗値(無荷重時の電気抵抗値)が
約23Ωであった。 (2)電気抵抗値増加量は、引張荷重の増加に従い初期
の段階で微増し、ストランド破断荷重の約1/2の40
Kg付近から急増している。モノフィラメント強度(2
70Kg/mrn’)で抵抗増加量は1Ω程度であるの
に対し、ストランド強度(切断強度)(350Kg/m
rn’)では約2.6Ωとなっている。 試験結果について考察すると次の通りである。 (1)低負荷部の電気抵抗値の増加割合は、繊維の伸び
が少量のとき、例えば引張歪1%のときの繊維長増加お
よび断面積減少による電気抵抗値の増大量を、実測値で
の増大量と比べることにより、繊維が伸びることによる
繊維長の増加と断面積の減少効果に基づいていることが
分る。 (2)高負荷部での電気抵抗値の急増は、上記(1)の
結果からもストランド破断前に微視的に繊維の切断が発
生したためと考えられる。一般に炭素繊維のような脆性
材料は、強度に分布があると言われており、モノフィラ
メント平均強度を中心に正規分布に近い分布を示す、即
ち、モノフィラメント平均強度270 K g/mrn
’ (荷重62Kgに相当)の前の段階から弱い繊維は
切断を起こしている。このためストランド中の通電面積
が減少し、その結果急激な電気抵抗値の増加が始まった
と考えられる。 以上のように、繊維強化複合材料のストランド試験片に
引張荷重を作用させながらその電気抵抗値を測定して、
その結果を解析することにより、炭素H&維強化複合材
料の破壊の進展状況を把握することができた。 及」LΩ」L釆 以上説明したように、本発明の検査方法では、炭素繊維
など導電性繊維を用いた繊維強化複合材料に繊維配列方
向に引張荷重を作用させながら、繊維の配列方向におけ
る繊維強化複合材料の電気抵抗値を測定し、電気抵抗値
の変化から前記繊維強化複合材料の繊維の切断欠陥を検
出するので、繊維の切断による損傷およびその進展等の
欠陥を容易に検査することができ、また検査機器が簡便
で操作が容易であり、外部からの影響も受けない、また
電気抵抗値の増加量は、繊維の切断本数に対応している
ので、繊維切断による欠陥の定量的検査を可能とするこ
ともできる。また検査対象とするm#s強化複合材料と
同一材料の標準試料について同時または予め電気抵抗値
と引張荷重との関係を試験しておくことにより、検査対
象の繊維強化複合材料についての過去の荷重の履歴を求
めたり、安全性等を評価、予測するなど種々の利用法、
応用法がある。
[A carbon fiber-reinforced composite material using carbon fiber as the reinforcing fiber is known as a fiber-reinforced composite material made of a single straight reinforcing fiber and a matrix resin. Conventionally, ultrasonic flaw detection and X-
Line method, AE method, etc. are used. However, all of these methods have disadvantages in that the testing equipment is large, difficult to operate, and furthermore expensive. Furthermore, the ultrasonic flaw detection method and the X-ray method used as quantitative inspection methods have the drawback that it cannot be determined whether the detected defect is a harmful one that develops during the use of the material or a harmless one. On the other hand, in the AE method, the question is whether the detected sound is an AE sound caused by harmful damage such as fiber cutting. There was a problem in which it was difficult to determine whether it was just noise from the outside. - From the above, the inspection equipment is simple and easy to operate, can detect without being affected by external influences, and can quantitatively inspect damage caused by fiber cutting and its progress. It is desired to develop a defect inspection method for carbon fiber-reinforced composite materials that also enables this. The present inventors researched the mechanism by which a unidirectional fiber-reinforced composite material using long fibers breaks down, and found that when a tensile load is applied to a fiber-reinforced composite material in the direction in which the fibers are arranged, It was discovered that fiber-reinforced composite materials break down as the weaker fibers break before the entire material breaks down, and eventually the entire material breaks down. Therefore, if a tensile load is applied to a fiber-reinforced composite material using conductive fibers such as carbon fibers as reinforcing fibers in the direction in which the fibers are arranged, and the electrical resistance value of the fiber-reinforced composite material is measured in the direction in which the fibers are arranged, Detecting damage caused by cutting fibers in fiber-reinforced composite materials and its progress from changes in electrical resistance.
It has been found that defects can be easily inspected. The present invention was made based on the above knowledge, and the mA of fiber-reinforced composite materials using conductive fibers such as carbon fibers! The damage caused by cutting and its progression can be easily inspected, the inspection equipment is simple and easy to operate, the detection can be performed without external influences, and it is possible to quantitatively inspect defects such as damage. The object of the present invention is to provide a method for inspecting defects in fiber-reinforced composite materials. 11上亙米41MUッヱJ] The above object is achieved by the method for inspecting defects in fiber reinforced composite materials of the present invention. In summary, the present invention provides an electrical resistance value of the fiber-reinforced composite material in the fiber-arrangement direction while applying a tensile load in the fiber-arrangement direction of the fiber-reinforced composite material made of conductive fibers and a matrix resin. This is a defect inspection method for a fiber-reinforced composite material, characterized in that damage due to cutting of fibers of the fiber-reinforced composite material and its progress are detected from changes in the electric resistance value. The present invention will be explained in detail below. As mentioned above, the present invention was obtained as a result of elucidating the mechanism by which a unidirectional fiber-reinforced composite material using long fibers breaks down. A unidirectional fiber-reinforced composite material is made of fibers with a strength distribution and a matrix resin. When a tensile load is applied to the fiber-reinforced composite material in the fiber arrangement direction (fiber axial direction) and the material is pulled, the fiber-reinforced composite material becomes Generally, the weaker fibers break before breaking, and eventually the entire fiber-reinforced composite material breaks. In the case of fiber-reinforced composite materials using conductive la, 11i such as carbon fibers, when the fibers are cut by applying a tensile load in the fiber arrangement direction and pulling, the cut am will have a gap between the cut ends due to the tension. As the number of cut fibers increases, the mII! The electrical resistance of the fiber-reinforced composite material in the alignment direction increases, and the increase in electrical resistance value corresponds to an increase in the number of cut fibers in the fiber-reinforced composite material. Therefore, as in the present invention, while applying a tensile load to a fiber reinforced composite material using conductive fibers in the direction in which the fibers are arranged,
If you measure the electrical resistance of a fiber-reinforced composite material in the direction of fiber arrangement under the action of a tensile load, the change in electrical resistance value will reveal the difference in the electrical resistance of the fiber-reinforced composite material. 1 miscellaneous cutting defects can be detected,
The degree of fiber cutting can be inspected. In addition, in the above, if the tensile load must be applied at an angle in the direction of fiber arrangement due to the location where the fiber-reinforced composite material is used, the fiber arrangement is affected by the component of the inclined tensile load in the direction of fiber arrangement. A tensile load in the direction can also be substituted. In addition, if a tensile load is applied to the fiber-reinforced composite material in the direction of fiber arrangement depending on the usage location etc. of the fiber-reinforced composite material, that load can be used. No load is required. The inspection method of the present invention has the following major features. (1) In principle, it is sufficient to measure the electrical resistance value of the material in the direction of fiber arrangement while applying a tensile load in the direction of fiber arrangement of a fiber-reinforced composite material using conductive fibers, so the measuring equipment is simple. , measurement is extremely simple and easy. (2) Measurement results are not affected by external factors. (3) The obtained measurement data (electrical resistance value) corresponds to the number of cut fibers in fiber-reinforced composite materials and is extremely quantitative, so it is a highly accurate reference value for safety evaluation of fiber-reinforced composite materials. can become (4) In addition to simply inspecting the fibers of fiber-reinforced composite materials for cutting defects, they can also be applied to locations where fiber-reinforced composite materials are used to investigate the past maximum load history of fiber-reinforced composite materials, It has various uses, such as monitoring trends in defects such as damage caused by fiber cutting in composite materials and evaluating the safety of fiber-reinforced composite materials. (5) It can also be used as a means to investigate the behavior of fibers during the fracture process of fiber-reinforced composite materials. (6) This inspection method is applicable not only to fiber-reinforced composite materials using PAN-based or pitch-based carbon fibers as conductive fibers, but also to metal fibers made of thinned metal wires, and metal coatings coated with metal by plating or vapor deposition. It can also be applied to fiber-reinforced composite materials that use carbon-coated fibers formed by composite spinning or surface coating to coat fibers and carbon particles, carbon composite fibers that incorporate carbon fine particles, or composite-spun carbon composite fibers as a core. Practical Example Next, an example of the inspection method of the present invention will be described. This example is an example in which the inspection method of the present invention is applied to determining the past maximum load that a fiber-reinforced composite material has received. FIG. 1 is a graph schematically showing an example of a tensile load-electrical resistance value increase rate change curve of a fiber-reinforced composite material obtained by measurement using the testing method of the present invention. In Fig. 1, the process A-B-C indicates the process of applying a tensile load in the fiber alignment direction to the fiber-reinforced composite material, and C
The process -D-A shows the unloading process of the tensile load exhibited by the fiber-reinforced composite material, and the process A-D→C→E shows the re-applying process of the tensile load exhibited by the fiber-reinforced composite material. As shown in Figure 1, the rate of increase in electrical resistance of a fiber-reinforced composite material using conductive fibers increases with increasing tensile load in the fiber arrangement direction, and rises rapidly from around point B to 0. The cutting of fibers in the fiber-reinforced composite material becomes more noticeable as it approaches point B, and between point B and point 0, cutting of fibers occurs frequently as the load increases. When the load stops increasing at the 0 point, the electrical resistance value stops increasing. Next, when the load is unloaded, the decrease in the electrical resistance value is small at first, but when the load is continuously unloaded, the electrical resistance value starts to decrease rapidly from around point D. This is because the fibers that have been cut once This is because they begin to come into contact with each other due to unloading. When the load is zero, the rate of increase in electrical resistance value also recovers to a value of almost zero, returning to around point A. When the load is then reapplied, the electrical resistance value rapidly increases through the unloading path from A to D. This is because once the cut fibers immediately separate, the electrical resistance value gradually increases from 0 to point D, and then when the maximum load point C is reached, the electrical resistance value starts to rise again rapidly. Therefore, if we use the relationship shown in Figure 1, we can measure the electrical resistance value while applying a tensile load to the fiber reinforced composite material in the fiber arrangement direction, and when the electrical resistance value suddenly increases again, If you read that load, it will be the maximum load you have received in the past. That is, by this method, it is possible to know the past history of loads applied to the fiber reinforced composite material. In this case, whether the electrical resistance value of the fiber-reinforced composite material has suddenly increased again can be easily and clearly determined from the change in the electrical resistance value. In addition, if you prepare a standard sample of the same fiber-reinforced composite material as the one whose electrical resistance value is to be measured, and measure the change in electrical resistance value of the standard sample in advance to understand the relationship between stress and electrical resistance, it is possible to It is also possible to easily know the stress history of the material by comparing the values. Furthermore, by testing the change in electrical resistance value of a standard sample up to failure, it is possible to evaluate and predict the safety of the target fiber-reinforced composite material. Next, another embodiment of the inspection method of the present invention will be described. The unimplemented example is an example in which the inspection method of the present invention is applied to grasp the progress of fracture of a carbon fiber reinforced composite material. The test method according to the invention is shown in FIG. In Fig. 2, 1 is a strand specimen (length 250 mm) of carbon-reinforced fiber composite material, and specimen 1 has shaped tabs (length 70 mm,
It was attached to a tensile testing machine (not shown) via a wire (length and width: 30 mm) 2.2, and a tensile load was applied in the fiber arrangement direction (that is, the axial direction of the fibers). In addition, both ends of the test piece 1 were ground into a conical shape and a conductive paint 3 was applied to the test piece 1, and the electrical resistance value in the fiber arrangement direction was measured through the conductive paint 3 using an electrical resistance measuring device (not shown). did. For the fiber-reinforced composite material strand test piece 1, a PAN-based fiber-reinforced composite material in which the carbon fibers are PAN-based was used. The specifications of the strand test piece are shown in Table 1, the physical properties such as strand strength are shown in Table 2, and the cutting stress test results are shown in Table 3.
The relationship between the strain of the test piece, the amount of increase in electrical resistance value, and the tensile load shown in the table is shown in FIG. 3, taking the case of No. 3 in Table 3 as the PAN-based strand test piece table. The test results shown in Table 1, Table 2, Table 3 and above are summarized as follows. (1) As is clear from Table 1, the initial electrical resistance value (electrical resistance value under no load) of the PAN-based strand test piece was approximately 23Ω. (2) The amount of increase in electrical resistance value increases slightly in the initial stage as the tensile load increases, and the amount of increase in electrical resistance value increases slightly at the initial stage as the tensile load increases.
It is rapidly increasing from around Kg. Monofilament strength (2
70Kg/mrn'), the resistance increase is about 1Ω, whereas the strand strength (cutting strength) (350Kg/mrn')
rn') is approximately 2.6Ω. A consideration of the test results is as follows. (1) The rate of increase in electrical resistance in the low-load section is the amount of increase in electrical resistance due to an increase in fiber length and a decrease in cross-sectional area when the fiber elongation is small, for example, when the tensile strain is 1%. By comparing the amount of increase in , it can be seen that this is based on the effect of increasing fiber length and decreasing cross-sectional area due to fiber elongation. (2) The rapid increase in the electrical resistance value at the high-load portion is considered to be due to the microscopic cutting of the fibers occurring before the strand breaks, also from the results of (1) above. Generally, brittle materials such as carbon fibers are said to have a distribution of strength, and show a distribution close to a normal distribution centered around the average monofilament strength, that is, the average monofilament strength is 270 K g/mrn.
' (equivalent to a load of 62 kg) Weak fibers have been broken since the stage before. It is thought that this caused the current-carrying area in the strand to decrease, and as a result, the electrical resistance value began to increase rapidly. As mentioned above, while applying a tensile load to a strand test piece of fiber reinforced composite material, its electrical resistance value was measured.
By analyzing the results, we were able to understand the progress of fracture in the carbon H & fiber reinforced composite material. As explained above, in the inspection method of the present invention, a tensile load is applied to a fiber-reinforced composite material using conductive fibers such as carbon fibers in the fiber arrangement direction, and the fibers in the fiber arrangement direction are The electrical resistance value of the reinforced composite material is measured, and cutting defects in the fibers of the fiber reinforced composite material are detected from changes in the electrical resistance value, so defects such as damage caused by fiber cutting and its progression can be easily inspected. In addition, the inspection equipment is simple and easy to operate, and is not affected by external influences.Also, the increase in electrical resistance value corresponds to the number of cut fibers, so it is possible to quantitatively inspect defects caused by fiber cutting. It is also possible to make it possible. In addition, by testing the relationship between electrical resistance and tensile load at the same time or in advance on standard samples of the same material as the m#s reinforced composite material to be inspected, past loads on the fiber reinforced composite material to be inspected can be tested. Various uses such as obtaining history, evaluating and predicting safety etc.
There is an application method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の検査方法の一実施例おいて利用する
繊維強化複合材料の電気抵抗値増加率と引張荷重との間
の関係を示すグラフである。 第2図は、本発明の検査方法の他の実施例における繊維
強化複合材料のストランド試験を示す説明図である。 第3図は、第2図の検査方法での試験結果を示すグラフ
である。 1:ストランド試験片 2:形タブ 3:導電性塗料 第1図 荷重 −◆ 第2図 第3図 荷重 (K9) 一丁続7市−iE S モ成 1年 6月22[1 4¥訂1)−長官 、!718  文 毅 殿1 ・へ
件の表イ、  +1&1年特許願第118749号2、
発明の名称  ja#I強化複合材料の欠陥検査方法3
、補正をする名 ・h件との関係   特許出願人 名 称      東亜燃料工業株式会社4、代理人 〒105 住 所 東京都港区新橋6丁目13番ll吟西川ビル(
i!話459−8309) 5 補正の対象 (1)明細書の発明の詳細な説明の欄 (2)図面 (−)「発明の詳細な説明」を次のように補正する。 (1)明細書第11頁第14行の「炭素強化繊維」を「
炭素tata強化」に訂正する。 (ニ)「図面」を次のように補正する。 (1)先に添付した第1図〜第3図を別紙の通り差し替
える。 第1図 荷重 −ト 第2図
FIG. 1 is a graph showing the relationship between the electrical resistance increase rate and tensile load of a fiber-reinforced composite material used in one embodiment of the inspection method of the present invention. FIG. 2 is an explanatory diagram showing a strand test of a fiber-reinforced composite material in another embodiment of the testing method of the present invention. FIG. 3 is a graph showing the test results using the testing method shown in FIG. 1: Strand test piece 2: Shape tab 3: Conductive paint Figure 1 Load -◆ Figure 2 Figure 3 Load (K9) Iccho Tsuzuki 7 City - iE S Monari 1st year June 22 [1 4 yen revision 1)-Chief,! 718 Moon Yi 1 ・Table A of He, +1 & 1 Year Patent Application No. 118749 2,
Title of the invention ja#I Defect inspection method for reinforced composite material 3
Name to be amended/Relationship with h matter Patent applicant name Toa Fuel Industry Co., Ltd. 4, agent address 105 address Gin Nishikawa Building, 6-13 Shinbashi, Minato-ku, Tokyo (
i! Section 459-8309) 5 Subject of amendment (1) Detailed explanation of the invention column in the specification (2) Drawings (-) "Detailed explanation of the invention" should be amended as follows. (1) "Carbon reinforced fiber" on page 11, line 14 of the specification is replaced with "
Corrected to "carbon tata reinforcement". (d) “Drawings” shall be amended as follows. (1) Replace the previously attached Figures 1 to 3 as shown in the attached sheet. Figure 1 Load - Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)導電性繊維とマトリクス樹脂とからなる繊維強化複
合材料の前記繊維の配列方向に引張荷重を作用させなが
ら、前記繊維の配列方向における前記繊維強化複合材料
の電気抵抗値を測定し、前記電気抵抗値の変化から前記
繊維強化複合材料の繊維の切断による損傷およびその進
展を検出することを特徴とする繊維強化複合材料の欠陥
検査方法。
1) While applying a tensile load in the direction of arrangement of the fibers of a fiber-reinforced composite material made of conductive fibers and matrix resin, measure the electrical resistance value of the fiber-reinforced composite material in the direction of arrangement of the fibers; 1. A method for inspecting defects in fiber-reinforced composite materials, comprising detecting damage caused by cutting fibers of the fiber-reinforced composite material and its progress based on changes in resistance.
JP11874989A 1989-05-15 1989-05-15 Method for inspecting flaw of fiber reinforced composite material Pending JPH02298854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11874989A JPH02298854A (en) 1989-05-15 1989-05-15 Method for inspecting flaw of fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11874989A JPH02298854A (en) 1989-05-15 1989-05-15 Method for inspecting flaw of fiber reinforced composite material

Publications (1)

Publication Number Publication Date
JPH02298854A true JPH02298854A (en) 1990-12-11

Family

ID=14744102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11874989A Pending JPH02298854A (en) 1989-05-15 1989-05-15 Method for inspecting flaw of fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JPH02298854A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269874A (en) * 1991-12-16 1993-10-19 Tetsushi Nakamura Frp and non-destructive inspection device of frp
JPH06101399A (en) * 1992-06-15 1994-04-12 Hiroaki Yanagida Method and device for sensing water leakage
JP2013092373A (en) * 2011-10-24 2013-05-16 Seiko Epson Corp Sensor device
WO2013122200A1 (en) * 2012-02-17 2013-08-22 学校法人日本大学 High-strength fiber composite material cable damage evaluation method and damage detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114741A (en) * 1983-11-28 1985-06-21 Mazda Motor Corp Detection for fatigue fracture of frp member
JPS60162934A (en) * 1984-02-03 1985-08-24 Mazda Motor Corp Apparatus for detecting fatigue rupture of frp member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114741A (en) * 1983-11-28 1985-06-21 Mazda Motor Corp Detection for fatigue fracture of frp member
JPS60162934A (en) * 1984-02-03 1985-08-24 Mazda Motor Corp Apparatus for detecting fatigue rupture of frp member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269874A (en) * 1991-12-16 1993-10-19 Tetsushi Nakamura Frp and non-destructive inspection device of frp
JPH06101399A (en) * 1992-06-15 1994-04-12 Hiroaki Yanagida Method and device for sensing water leakage
JP2013092373A (en) * 2011-10-24 2013-05-16 Seiko Epson Corp Sensor device
WO2013122200A1 (en) * 2012-02-17 2013-08-22 学校法人日本大学 High-strength fiber composite material cable damage evaluation method and damage detection device
JP2013167602A (en) * 2012-02-17 2013-08-29 Nihon Univ Damage evaluation method and damage detector for high strength fiber composite material cable

Similar Documents

Publication Publication Date Title
US3910105A (en) Method for detection of flaws in composite fiberglass structures
Maillet et al. Waveform-based selection of acoustic emission events generated by damage in composite materials
Whitworth A stiffness degradation model for composite laminates under fatigue loading
Ranganathan et al. Fatigue crack initiation at a notch
Sam-Daliri et al. Condition monitoring of crack extension in the reinforced adhesive joint by carbon nanotubes
JPH095175A (en) Stress measuring sensor
JPH02298854A (en) Method for inspecting flaw of fiber reinforced composite material
Yamada et al. Crack closure under high load ratio and Kmax test conditions
US6935185B2 (en) Accelerated method to determine or predict failure time in polyethylenes
Xue et al. Monitoring the damage evolution of flexural fatigue in unidirectional carbon/carbon composites by electrical resistance change method
Tong et al. The significance of mean stress on the fatigue crack growth threshold for mixed mode I+ II loading
Liaw et al. Life extension technology for steam pipe systems—I. Development of material properties
US20160084789A1 (en) Method for inspecting composite material components
Baron et al. Integrity-sensing based on surface roughness of copper conductors for future use in natural fiber composites
Bang et al. Local corrosion monitoring of prestressed concrete strand via time-frequency domain reflectometry
Newton et al. Detecting High Temperature Inhomogeneous Strain and Damage Evolution in Notched SiCf/SiC Specimens under Fatigue and Stepped Loading Conditions
Broughton et al. Fatigue testing of composite laminates.
Bremer et al. NDT-based characteriazation of timber and vulcanized fiber for civil infrastructure
Huda et al. Stress analysis on cracking plate structure for reducing stress concentration
Weischedel Quantitative in-service inspection of wire ropes: applications and theory
RU2386961C1 (en) Method of magnetic diagnostics of turbomachine blade made from cobalt alloys
RU2649673C1 (en) Method of determination of stress relaxation at the crack tip or stress concentrator
Zaharia et al. RELIABILITY AND ENVIRONMENTAL DEGRADATION OF COMPOSITE MATERIALS USING ACCELERATED METHODS
Ardebili et al. Sensing Cyclic Load, Damage Extent and Location in Carbon Nanotube-Epoxy Composite via Electrical Conductivity
Karami et al. EXPERIMENTAL STUDY ON MODE-I DELAMINATION OF THERMOPLASTIC COMPOSITES USING DIGITAL IMAGE CORRELATION AND ACOUSTIC EMISSION