JPH0238944A - Nuclear power plant - Google Patents

Nuclear power plant

Info

Publication number
JPH0238944A
JPH0238944A JP63190404A JP19040488A JPH0238944A JP H0238944 A JPH0238944 A JP H0238944A JP 63190404 A JP63190404 A JP 63190404A JP 19040488 A JP19040488 A JP 19040488A JP H0238944 A JPH0238944 A JP H0238944A
Authority
JP
Japan
Prior art keywords
piping
sampling
sampling probe
clad
nuclear power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63190404A
Other languages
Japanese (ja)
Inventor
Yutaka Uruma
裕 閏間
Junichi Takagi
純一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP63190404A priority Critical patent/JPH0238944A/en
Publication of JPH0238944A publication Critical patent/JPH0238944A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To measure accurate clad density by providing a turbulence generating mechanism which generates turbulence in fluid running in piping on the upstream side of a sampling probe and uniforming the density distribution of the clad. CONSTITUTION:The piping 1 provided in the nuclear power plant is provided with the sampling probe 2 for sampling the liquid running in the piping 1. On the upstream side of the sampling probe 2 in the piping 1, the turbulence generating mechanism 3 which is formed by fitting an obstacle plate 13 spirally in the piping 1 is provided to uniform the density distribution of the clad. Then the water sampled by the sampling probe 2 is put in a sampler 4 and the clad is sampled here to perform determination. Consequently, the clad density can be uniformed, so the accurate clad density is measured.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、原子力プラントに関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to nuclear power plants.

(従来の技術) 原子力プラントにおいて各系統の腐蝕生成物(クラッド
)濃度を測定することは、燃料保証に関する水質を管理
、保持するという意味で重要なばかりでなく、近年では
、炉内へのクラッド持込み低減効果の確認、ニッケルー
鉄比コントロール運転の採用などにより、クラッド濃度
測定の重要性が増し、加えて、高い信頼性が要求される
に至っている。
(Prior art) Measuring the concentration of corrosion products (crud) in each system in a nuclear power plant is not only important in terms of managing and maintaining water quality related to fuel guarantee, but also in recent years, measuring the concentration of corrosion products (crud) in each system is important. The importance of crud concentration measurement has increased due to the confirmation of the effect of reducing carry-over and the adoption of nickel-iron ratio control operation, and in addition, high reliability is now required.

従来、クラッド濃度のn1定は以下のとおりに行われて
いる。
Conventionally, the n1 constant of cladding concentration is performed as follows.

まず、配管°に、サンプリングプローブを取付け、この
サンプリングプローブ先端に設けられたサンプリング孔
から流体を取出し、必要に応じて冷却減圧を行う。そし
てこのように取出されたサンプリング水を、ビーカーな
どに受けるグラブサンプリング、もしくは、メンブレン
フィルタに通水してろ過するフィルタサンプリングによ
って採取する。
First, a sampling probe is attached to the piping, and the fluid is taken out from the sampling hole provided at the tip of the sampling probe, and if necessary, the fluid is cooled and depressurized. Then, the sampled water taken out in this manner is collected by grab sampling in which the water is placed in a beaker or the like, or by filter sampling in which the water is passed through a membrane filter and filtered.

グラブサンプリング試料は、必要に応じて濃縮され、原
子吸光光度計や、プラズマ発光光度計によってクラッド
が定量される。
The grab sampling sample is concentrated if necessary, and the cladding is quantified using an atomic absorption spectrophotometer or a plasma luminescence photometer.

一部フィルタサンプリング試料は、ケイ光X線分析や、
溶解後原子吸光光度計などで定量される。
Some filter sampling samples are subjected to fluorescent X-ray analysis,
After dissolution, it is quantified using an atomic absorption spectrophotometer.

(発明が解決しようとする課8) 従来の原子力プラントにおけるクラッド濃度測定方法は
上述したとおりであり、クラッド濃度が配管内で均一に
分布していれば、サンプリングブa−ブから実際にサン
プリング水が系外に取出される位置におけるクラッドの
付着の問題を除いては、従来の方法で充分である。
(Issue 8 to be solved by the invention) The conventional crud concentration measurement method in a nuclear power plant is as described above, and if the crud concentration is uniformly distributed in the piping, sampling water is Conventional methods are sufficient except for the problem of crud build-up at the location where the material is removed from the system.

しかしながら、たとえばクラッド濃度が異なる2もしく
はそれ以上の流体が合流する点の近傍等では、当然クラ
ッドの濃度が不均一となり、サンプリング孔が配管内の
どの位置にあるかでクラッド濃度の測定値に差が出ると
いった問題が生じる。
However, for example, near a point where two or more fluids with different crud concentrations converge, the crud concentration naturally becomes non-uniform, and the measured crud concentration varies depending on where the sampling hole is located in the pipe. A problem arises in which

そのためにサンプリングプローブの取付は位置は重要な
問題であり、クラッド濃度が不均一化しない位置に取付
けることが好ましい。
For this reason, the mounting position of the sampling probe is an important issue, and it is preferable to mount the sampling probe at a location where the cladding concentration does not become non-uniform.

ところが、原子力プラント等では、配管の引回し、スペ
ース等のレイアウト上の制約、さらにアクセスの容易性
等から、クラッド濃度の不均一化が予測されるような位
置にサンプリングプローブが取付けられる例が多い。こ
のためにクラッド濃度の測定値はばらつきが大きく、測
定値として得られる値には問題点が多いことが指摘され
ている。
However, in nuclear power plants, etc., sampling probes are often installed in locations where non-uniform crud concentration is expected due to layout constraints such as piping routing and space, as well as ease of access. . For this reason, it has been pointed out that the measured values of the cladding concentration vary widely, and the values obtained as measured values have many problems.

本発明は、上述した従来の事情を考慮してなされたもの
で、従来よりも正確なりラッド濃度の潴J定を行うこと
ができる原子力プラントを提供することを目的とする。
The present invention has been made in consideration of the above-mentioned conventional circumstances, and an object of the present invention is to provide a nuclear power plant capable of determining the rad concentration more accurately than before.

[発明の構成] (課題を解決するための手段) すなわち本発明の原子力プラントは、配管に、この配管
内を流通する流体の一部を採取するだめのサンプリング
プローブが設置Jられた原子力プラントにおいて、前記
サンプリングプローブの上流に、前記流体に乱流を発生
させる乱流発生機構を配設したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) That is, the nuclear power plant of the present invention is a nuclear power plant in which a sampling probe for sampling a part of the fluid flowing through the piping is installed in the piping. , characterized in that a turbulence generation mechanism for generating turbulence in the fluid is disposed upstream of the sampling probe.

(作 用) 本発明の原子力プラントは、乱流発生機構によって配管
内を流通する流体に乱流を発生させ、クラ・lドのa変
分布を均一にすることができる。
(Function) The nuclear power plant of the present invention can generate turbulence in the fluid flowing through the pipes using the turbulence generating mechanism, and can make the a-variant distribution of Cla and Ido uniform.

この1こめ、クラッド濃度測定値のばらつきを防ぐとと
もに、サンプリングプローブの取付は位置にかかわらず
、正確なりラッド濃度を測定することができる。
This first feature prevents variations in the measured values of the cladding concentration, and allows accurate measurement of the cladding concentration regardless of the mounting position of the sampling probe.

(実施例) 以下、図面を参照しながら本発明の原子力プラントの一
実施例を説明する。
(Example) Hereinafter, an example of the nuclear power plant of the present invention will be described with reference to the drawings.

第1図はこの実施例の原子力プラントの要部を示す構成
図である。
FIG. 1 is a block diagram showing the main parts of the nuclear power plant of this embodiment.

原子力プラント内に設けられた配管1には、この配管内
を流通する流体の一部を採取するためのサンプリングプ
ローブ2が設けられており、この配管1内のサンプリン
グプローブ2の上流側には乱流発生機構3が設けられて
いる。
A piping 1 installed in a nuclear power plant is provided with a sampling probe 2 for sampling a part of the fluid flowing through the piping. A flow generating mechanism 3 is provided.

なお、サンプリングプローブ2は、3つのサンプリング
孔を有し、その孔径と位置が蒸気を対象としたJIS規
格に準拠して設けられたものであるが、サンプリングプ
ローブ2は、サンプリング対象によって、適宜選択する
The sampling probe 2 has three sampling holes, and the diameter and position of the holes are provided in accordance with the JIS standard for steam, but the sampling probe 2 can be selected as appropriate depending on the sampling target. do.

このようなサンプリングプローブ2でサンプリングされ
たサンプル水は、ユニット式のサンプラー4に導入され
、バイパスライン5とサンプリングライン6とに分岐さ
れる。バイパスライン5には、上流側から流量調整用の
ニードル弁7と流量計8とが配置されており、一方、サ
ンプリングライン6には、上流側から流量調整用のニー
ドル弁9、メンブレンフィルタを装荷された高圧ホルダ
10、流量計11、積算流量計12が配置されている。
The sample water sampled by such a sampling probe 2 is introduced into a unit type sampler 4 and branched into a bypass line 5 and a sampling line 6. The bypass line 5 is equipped with a needle valve 7 for adjusting the flow rate and a flow meter 8 from the upstream side, while the sampling line 6 is loaded with a needle valve 9 for adjusting the flow rate and a membrane filter from the upstream side. A high-pressure holder 10, a flow meter 11, and an integrated flow meter 12 are arranged.

また、配管l内に設けられた乱流発生機構3は、第2図
に示すように、配管1内にじゃま板13をらせん状に取
付けたもので、このじゃま板13によってらせん流を発
生させ、クラッドの濃度分布を均一にしようとするもの
である。
In addition, the turbulence generating mechanism 3 installed in the pipe 1 has a baffle plate 13 spirally attached inside the pipe 1, as shown in Fig. 2, and the baffle plate 13 generates a spiral flow. , which attempts to make the concentration distribution of the cladding uniform.

上記構成のこの実施例の原子力プラントでは、次のよう
にしてクラッド濃度の測定を行う。
In the nuclear power plant of this embodiment having the above configuration, the crud concentration is measured as follows.

すなわち、まず、バイパスライン5を流通するサンプリ
ング水の流量を、流量調整用のニードル弁7によりたと
えば1〜3λ/winに、一方サンプリングライン6の
流量を高圧ホルダ10に装荷されたメンブレンフィルタ
により、例えば0.05〜0.2f /glnとなるよ
うに設定し、所定時間高圧ホルダ10に通水を行う。
That is, first, the flow rate of the sampling water flowing through the bypass line 5 is adjusted to, for example, 1 to 3λ/win by the needle valve 7 for adjusting the flow rate, while the flow rate of the sampling line 6 is controlled by the membrane filter loaded in the high pressure holder 10. For example, the pressure is set to 0.05 to 0.2 f/gln, and water is passed through the high-pressure holder 10 for a predetermined period of time.

そして、高圧ホルダ10に装荷されたメンブレンフィル
タでクラッドを採取し、ケイ光X線分析または原子吸光
光度計等で定量する。
Then, the cladding is sampled using a membrane filter loaded in the high-pressure holder 10, and quantified using fluorescent X-ray analysis, an atomic absorption photometer, or the like.

すなわち、この実施例では、サンプリングプローブ2が
設けられた配管1のサンプリングプローブ2上流側に乱
流発生機溝3が設けられているので、サンプリングプロ
ーブ2の部位における配管1内のクラッド濃度の分布を
均一化することができ、正確にクラッド濃度の測定を行
うことができる。
That is, in this embodiment, since the turbulence generator groove 3 is provided on the upstream side of the sampling probe 2 of the piping 1 in which the sampling probe 2 is provided, the distribution of crud concentration in the piping 1 at the sampling probe 2 location is can be made uniform, and the cladding concentration can be measured accurately.

なお、上記実施例では、乱流発生機構3としてらせん状
のじゃま板13を用いた例について説明したが、本発明
はかかる実施例に限定されるものではなく、たとえば、
第3図に示すじゃま板13aを交互に設けた乱流発生機
構3aなど、どのよう乱流発生機構を用いてもよいこと
はもちろんである。
In addition, in the above embodiment, an example in which a spiral baffle plate 13 was used as the turbulence generating mechanism 3 was explained, but the present invention is not limited to such an embodiment, and for example,
Of course, any turbulence generation mechanism may be used, such as the turbulence generation mechanism 3a shown in FIG. 3 in which baffle plates 13a are alternately provided.

[発明の効果] 以上述べたように、本発明の原子力プラントでは、配管
内に設けられたサンプリングプローブの上流側に乱流発
生機構が配設されているので、サンプリングプローブ部
位における配管内のクラブト濃度を均一化することがで
き、正確なりラッド濃度の測定を行うことができる。
[Effects of the Invention] As described above, in the nuclear power plant of the present invention, since the turbulence generating mechanism is provided upstream of the sampling probe provided in the piping, the turbulence generation mechanism in the piping at the sampling probe portion is The concentration can be made uniform, and the rad concentration can be measured accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の原子力プラントの要部を示
す構成図、第2図および第3図は乱流発生機構を示す斜
視図である。 1・・・・・・・・・配管 2・・・・・・・・・サンプリングプローブ3・・・・
・・・・・乱流発生機構 4・・・・・・・・・サンプラー 5・・・・・・・・・バイパスライン 6・・・・・・・・・サンプリングライン7・・・・・
・・・・ニードル弁 8・・・・・・・・・流量計 9・・・・・・・・・ニードル弁 10・・・・・・高圧ホルダ 11・・・・・・流量計 12・・・・・・積算流量計 13・・・・・・じゃま板 1胎 第1図 第3図
FIG. 1 is a configuration diagram showing the main parts of a nuclear power plant according to an embodiment of the present invention, and FIGS. 2 and 3 are perspective views showing a turbulence generation mechanism. 1...Piping 2...Sampling probe 3...
...Turbulence generation mechanism 4...Sampler 5...Bypass line 6...Sampling line 7...
..... Needle valve 8 ..... Flow meter 9 ..... Needle valve 10 ..... High pressure holder 11 ..... Flow meter 12. ...Accumulating flow meter 13...Baffle plate 1 Fig. 1 Fig. 3

Claims (1)

【特許請求の範囲】[Claims] (1)配管に、この配管内を流通する流体の一部を採取
するためのサンプリングプローブが設けられた原子力プ
ラントにおいて、前記サンプリングプローブの上流に、
前記流体に乱流を発生させる乱流発生機構を配設したこ
とを特徴とする原子力プラント。
(1) In a nuclear power plant where piping is provided with a sampling probe for sampling a part of the fluid flowing through the piping, upstream of the sampling probe,
A nuclear power plant, characterized in that a turbulence generating mechanism for generating turbulence in the fluid is provided.
JP63190404A 1988-07-29 1988-07-29 Nuclear power plant Pending JPH0238944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63190404A JPH0238944A (en) 1988-07-29 1988-07-29 Nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63190404A JPH0238944A (en) 1988-07-29 1988-07-29 Nuclear power plant

Publications (1)

Publication Number Publication Date
JPH0238944A true JPH0238944A (en) 1990-02-08

Family

ID=16257582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63190404A Pending JPH0238944A (en) 1988-07-29 1988-07-29 Nuclear power plant

Country Status (1)

Country Link
JP (1) JPH0238944A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169987A (en) * 2013-03-05 2014-09-18 Tlv Co Ltd Dryness measuring device
JP2014169986A (en) * 2013-03-05 2014-09-18 Tlv Co Ltd Dryness measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169987A (en) * 2013-03-05 2014-09-18 Tlv Co Ltd Dryness measuring device
JP2014169986A (en) * 2013-03-05 2014-09-18 Tlv Co Ltd Dryness measuring device

Similar Documents

Publication Publication Date Title
EP0496333B1 (en) Nuclear plant diagnosis apparatus and method
JPS59206707A (en) Method and device for measuring interfacial area in two phase mixture containing gaseous phase fluidized under stateof bubble
WO2000057138A1 (en) Method and apparatus for measuring the mass flow rate of a fluid
Batchelor et al. The mean velocity of discrete particles in turbulent flow in a pipe
JPH0238944A (en) Nuclear power plant
JPS6225983B2 (en)
Tagawa et al. Simultaneous measurement of velocity and temperature in high-temperature turbulent flows: a combination of LDV and a three-wire temperature probe
US4009614A (en) Apparatus for monitoring two-phase flow
JP3761688B2 (en) Device for measuring the concentration of a specific element in a fluid
Delhaye et al. Hot-film anemometry in air-water flow
Bryan et al. Raman based process monitor for continuous real-time analysis of high level radioactive waste components
d’Agostino et al. Comparison of a cavitation susceptibility meter and holography for nuclei detection in liquids
Berman The Effect of Sample Probe Size on Sublayer Period in Turbulent Boundary Layers
Gribok et al. Flow-Assisted Corrosion in Nuclear Power Plants
Fitzgerald et al. Jet injections for optimum mixing in pipe flow
Delhaye et al. Summary on experimental methods for statistical transient analysis of two-phase gas-liquid flow
Duncombe et al. Some analytical and process instruments for measurements in sodium
Kassab Turbulence structure in axisymmetric wall-bounded shear flow
Jallouk et al. Advanced two-phase instrumentation program. Quarterly progress report, October--December 1977
Gindroz Qualification of a centerbody cavitation nuclei counter using optical techniques
Stenger et al. Deposition in sampling tubes
Delhaye et al. Summary on experimental methods for statistical transient analysis of two-phase gas-liquid flow.[BWR, PWR, and LMFBR]
HEWITT THE ROLE OF EXPERIMENTS IN TWO-PHASE SYSTEMS WITH PARTICULAR REFERENCE TO
Chao Discussion of “At-Stream-Velocity Pumping Sediment Sampling System”
Era et al. Simultaneous measurement of concentration and velocity by applying hot-wire techniques. Part 2