JPH0238882A - Magnetic permeability measuring apparatus - Google Patents

Magnetic permeability measuring apparatus

Info

Publication number
JPH0238882A
JPH0238882A JP18915688A JP18915688A JPH0238882A JP H0238882 A JPH0238882 A JP H0238882A JP 18915688 A JP18915688 A JP 18915688A JP 18915688 A JP18915688 A JP 18915688A JP H0238882 A JPH0238882 A JP H0238882A
Authority
JP
Japan
Prior art keywords
output
detector
measured
coil
magnetic permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18915688A
Other languages
Japanese (ja)
Inventor
Seigo Ando
安藤 静吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP18915688A priority Critical patent/JPH0238882A/en
Publication of JPH0238882A publication Critical patent/JPH0238882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To achieve highly accurate measurement free from effect of a lift off with a simple circuitry by arranging a low frequency magnetization coil, two sets of light frequency magnetization coils with different polarities and a search coil therebetween to allow the outputting of a detection output through an amplifier with a gain thereof adjusted automatically as specified. CONSTITUTION:An object 13 to be measured is magnetized through a low frequency magnetization coil 6 of a U-shaped core 12 of a detection head. An output of the coil 6 is overlapped with a weak output from two sets of high frequency coils 7 and 8 which generate magnetic fields with different polarities and a high frequency component with the magnetization of the object to be measured is detected with a search coil 11 disposed between the coils 7 and 8. Then, a signal corresponding to the maximum magnetic permeability of the object to be measured is outputted through a peak detector 17 and AGC amplifier 20. In this case, a gain of the amplifier 20 is controlled automatically by an output according to a lift off via a phase inverter 18 and a peak detector 19 thereby enabling highly accurate magnetic permeability measurement with a simple circuitry eliminating the preparation a B-4 curve or the like and free from effect of the lift off.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鋼板等物体の材質の機械的特性を検査するの
に使用される透磁率al定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic permeability al determination device used for testing the mechanical properties of the material of an object such as a steel plate.

[従来の技術] 従来はこのような鋼板の磁気特性を/lll[定する方
法としては、例えばU字型コアに励磁コイルと検出コイ
ルを巻装した検出ヘッドを設け、この検出ヘッドを被測
定物に接触させて閉じた磁気回路を形成し、励磁コイル
によりU字型コア及び被測定物を磁化し、検出コイルに
より磁束を険出し、磁化型tTt(起磁力)と磁束の関
係を示したB−Hカーブを作成し、これに基づいて最大
透磁率や保磁力を求める方法が実施されている。
[Prior Art] Conventionally, a method for determining the magnetic properties of such a steel plate is to provide a detection head with an excitation coil and a detection coil wound around a U-shaped core, and place this detection head on the object to be measured. A closed magnetic circuit is formed by contacting an object, the U-shaped core and the object to be measured are magnetized by an excitation coil, and a magnetic flux is exposed by a detection coil, and the relationship between magnetization type tTt (magnetomotive force) and magnetic flux is shown. A method has been implemented in which a B-H curve is created and the maximum magnetic permeability and coercive force are determined based on this curve.

[発明が解決しようとする課題] 前記のような方法で最大透磁率を求める場合には、B−
Hカーブを作成しそれに基づいて最大透磁率を求めなけ
ればならず、グラフの読取りに時間がかかり、又は高価
な計算機等を必要とするという問題があった。また前記
の方法においては、検出ヘッドを彼、91定物に密着さ
せて測定する必要があり、このため被測定物の搬送ライ
ンにおいて彼11p1定物を停止させて′A−1定する
必要があった。
[Problem to be solved by the invention] When determining the maximum magnetic permeability using the method described above, B-
It is necessary to create an H curve and determine the maximum permeability based on it, which poses a problem in that it takes time to read the graph or requires an expensive computer. In addition, in the above method, it is necessary to place the detection head in close contact with the fixed object 91 for measurement, and therefore it is necessary to stop the fixed object 11p1 on the conveyance line of the object to be measured. there were.

本発明は、前記問題点を解決するために為されたもので
、簡単な回路構成により最大透磁率をAPI定する装置
を提供j7、さらに、被al定物に接触しなくても精度
のよい4−j定を行うことのできる装置を提1共するこ
とを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and provides a device that determines the maximum magnetic permeability using an API using a simple circuit configuration. The purpose of this invention is to present a device that can perform 4-j determination.

U問題点を、解決するための手段] 本発明は、コアに落袋された低周波磁化コイルをaす−
る検出ヘッドで彼11p1定物を磁化させ、その被測定
物の磁気特性を191定する透磁率測定装置におい′C
1検出ヘッドは、低周波磁化コイルを落袋したUT状の
コアと、このコアの先端部に互いに逆極性となるように
落袋された1対の高周波磁化コイルと、この1対の高周
波磁化コイル間に設けられ磁化された被測定物の磁気特
性を非接触検出する磁束検出器を有するものである。
Means for Solving Problem U] The present invention provides a solution to a low frequency magnetization coil dropped into a core.
In a magnetic permeability measurement device that magnetizes a constant object with a detection head and determines the magnetic properties of the object to be measured,
1 detection head consists of a UT-shaped core into which a low-frequency magnetization coil is dropped, a pair of high-frequency magnetization coils dropped into the tip of this core so that they have opposite polarities, and this pair of high-frequency magnetization coils. A magnetic flux detector is provided between the coils and detects the magnetic properties of a magnetized object under test in a non-contact manner.

また請求項(1)において、さらに磁束検出器からの検
出信号を振幅検波する振幅検波器と、この振幅検波器の
ピーク値を検出する第1のピーク検波器と、振幅検波器
からの信号の位相反転を行なう位相反転器と、この位相
反転器出力のピーク値を検出する第2のピーク検波器と
、この第2のピーク検波器出力に応じて利得を自動制御
(7、第1のピーク検波器出力を増幅する自動利得制御
機能付き増幅器を設けたものである。
Furthermore, in claim (1), there is further provided an amplitude detector for amplitude detecting the detection signal from the magnetic flux detector, a first peak detector for detecting the peak value of the amplitude detector, and a first peak detector for detecting the peak value of the amplitude detector; A phase inverter that performs phase inversion, a second peak detector that detects the peak value of the output of this phase inverter, and automatic gain control (7, first peak detector) according to the output of this second peak detector. It is equipped with an amplifier with an automatic gain control function that amplifies the detector output.

[作用] rFJ記第1項に示された構成をとる口上により、被測
定物は低周波磁化コイルにより低周波で飽和磁化近くま
で周期的に磁化される。そして、高周波磁化コイルによ
る微少な高周波磁化がその上に重畳される。磁束検出器
はU字型コアの中間(こ設けられるので、低周波磁化コ
イルによる磁束(漏洩磁束)の合計はゼロである。高周
波磁化コイルはU字型コアの先端部に互いに逆特性とな
るように設けられているので、これらの高問波コイルに
、よS磁束(漏洩磁束)は1司じ方向で磁束検出器と鎖
交する。そして、磁束検出器を通る磁束は、被;IFI
定物を通過する磁束及び検出ヘッド先端と被測定物の距
離(リフトオフ)と関係を有する。
[Function] With the top having the configuration shown in item 1 of rFJ, the object to be measured is periodically magnetized by the low frequency magnetization coil to near saturation magnetization at low frequency. Then, a minute amount of high-frequency magnetization by a high-frequency magnetization coil is superimposed thereon. The magnetic flux detector is installed in the middle of the U-shaped core, so the total magnetic flux (leakage flux) due to the low-frequency magnetization coil is zero.The high-frequency magnetization coil is located at the tip of the U-shaped core with opposite characteristics. Therefore, the magnetic flux (leakage flux) of these high frequency coils interlinks with the magnetic flux detector in one direction.Then, the magnetic flux passing through the magnetic flux detector is
It has a relationship with the magnetic flux passing through the object and the distance between the tip of the detection head and the object to be measured (lift-off).

被測定物を通過する高周波磁束は、被AP1定物の微分
透磁率と関係を在する。即ち、低周波磁化コイルの電流
が小さいときは被測定物の微分透IJIi率が5(きい
ため磁束検出器を通過する磁束の変化が大きいが、低周
波コイルの電流が大きくなると被測定物は磁気飽和に近
づき微分通磁率が小さくなるので磁束検出器を通過する
磁束の変化は小さくなる。
The high frequency magnetic flux passing through the object to be measured has a relationship with the differential magnetic permeability of the constant object AP1. In other words, when the current in the low-frequency magnetizing coil is small, the differential permeability IJIi of the object to be measured is 5 (because of this, the change in magnetic flux passing through the magnetic flux detector is large, but when the current in the low-frequency coil is large, the object to be measured is As the magnetic saturation approaches and the differential magnetic permeability becomes small, the change in the magnetic flux passing through the magnetic flux detector becomes small.

従って磁束検出器を通過する磁束によって誘起される電
流を整流してその最大値をとれば、その値が微分透磁率
の最大値、即ち最大透磁率に対応する。
Therefore, if the current induced by the magnetic flux passing through the magnetic flux detector is rectified and its maximum value is taken, that value corresponds to the maximum value of the differential magnetic permeability, that is, the maximum magnetic permeability.

しかしながら、前記第1項に示された構成では、リフト
オフつく一定のときは精度良く最大透磁率が測定できる
ものの、11フトオフが変化すると大さな誤差をIE 
Uる。これに対して、前記第2項に示r構成では、磁束
検出器からの検出信号を振幅検波後位相反転器を通して
からピーク検波を行うことにより、彼xp+定物が磁気
飽和近くに磁化されたときの微分透磁率を求め、この値
からりフトオフを算出し、この算出されたリフトオフに
応じて出力のii i尋を制御して、出力がリフトオフ
によらないようにすることができる。
However, with the configuration shown in item 1 above, although the maximum permeability can be measured with high accuracy when the liftoff is constant, a large error occurs when the liftoff changes.
Uru. On the other hand, in the configuration shown in Section 2 above, the detection signal from the magnetic flux detector is amplitude-detected, passed through a phase inverter, and then peak-detected, so that the constant object is magnetized near magnetic saturation. It is possible to calculate the differential magnetic permeability at the time, calculate the lift-off from this value, and control the output according to the calculated lift-off so that the output does not depend on the lift-off.

[実施例] 以下、本発明の一実施例を図面を?照して説明する。[Example] The following is a drawing showing an embodiment of the present invention. I will refer to and explain.

1は商用交流電源で、この電源1には電圧、凋整のため
のスライダック2が接続されている。そして前記スライ
ダック2の出力端子に抵抗3及びコニ/ダンサ4を直列
に介して検出へラド5内の低周波磁化コイル6が接続さ
れている。
Reference numeral 1 denotes a commercial AC power supply, and a slider 2 for adjusting the voltage and temperature is connected to this power supply 1. A low frequency magnetization coil 6 in a detection radar 5 is connected to the output terminal of the slider 2 through a resistor 3 and a coil/dancer 4 in series.

前記検出ヘッド5内にはまた互いに逆極性となっている
1対の高周波磁化コイル7.8が直列接続されて設けら
れ、その直列回路に高周波発振器9から電力増幅器10
を介して高周波電流が供給されるようになっている。
A pair of high-frequency magnetization coils 7.8 having opposite polarities are also connected in series within the detection head 5, and a high-frequency oscillator 9 to a power amplifier 10 are connected to the series circuit.
A high frequency current is supplied through the

さらに前記検出ヘッド5には磁束検出器としてのサーチ
コイル11が設けられている。
Further, the detection head 5 is provided with a search coil 11 as a magnetic flux detector.

前記検出ヘッド5は第2図に示すようにU字状のコア1
2の中央部に前記低周波磁化コイル6を巻装し、またそ
のコア12の各先端部12a。
The detection head 5 has a U-shaped core 1 as shown in FIG.
The low frequency magnetizing coil 6 is wound around the center of the core 2, and each tip 12a of the core 12.

1、2 bにそれぞれ前記高周波磁化コイル7.8を巻
装している。そして前記各高周波磁化コイル7゜8の中
間に位置するようにして前記サーチコイル11を配置し
ている。
1 and 2b are each wound with the high frequency magnetization coil 7.8. The search coil 11 is arranged so as to be located between the high frequency magnetization coils 7.8.

前記コア12の各先端部12a、12b及びサーチコイ
ル11は被測定物13から離間されて磁気特性の測定が
行われるようになっている。
The respective tips 12a and 12b of the core 12 and the search coil 11 are spaced apart from the object to be measured 13 so that magnetic properties can be measured.

前記サーチコイル11からの出力を信号増幅器14を介
して増幅しさらに振幅検波器15に供給して振幅検波し
、例えば正の波形の振幅変化のみを取出すようにしてい
る。
The output from the search coil 11 is amplified via a signal amplifier 14 and further supplied to an amplitude detector 15 for amplitude detection, so that, for example, only amplitude changes in a positive waveform are extracted.

前記振幅検波器15からの出力を低周波増幅器16を介
して増幅し第1のピーク検波器17に供給するとともに
、位相反転器18に供給して位相反転した後第2のピー
ク検波器19に供給している。
The output from the amplitude detector 15 is amplified via a low frequency amplifier 16 and supplied to a first peak detector 17, and is also supplied to a phase inverter 18 for phase inversion and then to a second peak detector 19. supplying.

前記第1のピーク検波器17は増幅器16を介して人力
される波形のピーク値を検出するもので、前記振幅検波
器15からの出力のピーク値を検出することになる。ま
た前記第2のピーク検波器19は位相反転器18を介し
て入力される波形のピーク値を検出するもので、前記振
幅検波器15からの出力を反転したピーク値、すなわち
振幅検波器15からの出力の最小値を検出することにな
る。
The first peak detector 17 detects the peak value of the waveform input manually via the amplifier 16, and detects the peak value of the output from the amplitude detector 15. The second peak detector 19 detects the peak value of the waveform input via the phase inverter 18, and detects the peak value obtained by inverting the output from the amplitude detector 15. The minimum value of the output of is detected.

前記第1のピーク検波器17の出力を自動利得制御(A
GC)機能付き増幅器20の入力端子に人力するととも
に前記第2のピーク検波器]9の出力を利得制御端子に
入力している。
The output of the first peak detector 17 is controlled by automatic gain control (A
GC) is input to the input terminal of the amplifier 20, and the output of the second peak detector]9 is input to the gain control terminal.

前記増幅器20は前記第2のピーク検波器19からの入
力レベルに基づいて利得を自動制御し、前記第1のピー
ク検波器17からの人力を制御された利得に基づいて増
幅するようにしている。
The amplifier 20 automatically controls the gain based on the input level from the second peak detector 19, and amplifies the manual power from the first peak detector 17 based on the controlled gain. .

前記自動利得制御機能付き増幅器20からの出力を直流
増幅器21で増幅し、その増幅器21から最大透磁率出
力を磁気特性測定出力として送出するようにしている。
The output from the automatic gain control amplifier 20 is amplified by a DC amplifier 21, and the maximum permeability output is sent out from the amplifier 21 as a magnetic characteristic measurement output.

このような構成の本実施例においては、検出ヘッド5を
被検査物体13に近接させて低周波磁化コイル6に商用
交流電流を供給するとともに1対の高周波磁化コイル7
.8に高周波電流を供給すると、低周波磁化コイル6に
よって第2図に点線で示す磁気回路が形成されて低周波
磁束が流れるとともに、1対の高周波磁化コイル7.8
によって第2図に1点鎖線で示す磁気回路が形成されて
高周波磁束が流れる。
In this embodiment with such a configuration, the detection head 5 is brought close to the object to be inspected 13, and commercial alternating current is supplied to the low frequency magnetization coil 6, and a pair of high frequency magnetization coils 7 are supplied.
.. When a high frequency current is supplied to the low frequency magnetized coil 6, a magnetic circuit shown by the dotted line in FIG.
As a result, a magnetic circuit shown by a dashed line in FIG. 2 is formed, and a high frequency magnetic flux flows.

彼Δp1定物13には、これらの高周波電流、低周波電
流が重畳した電流によって誘起される磁束が流れるが、
低周波電流の方が大きいため被測定物】3の磁化は低周
波電流で支配される。従って、被測定物13を通過する
高周波磁束は、ある時点での低周波電流によって磁化さ
れた被測定物〕3の微分透磁率に対応した値となる。前
記サーチコイル11には前述したように高周波磁束のみ
が検出される。第3図は、(b)に示す低周波゛電流に
対して観flj+されるサーチコイルに誘起される電圧
を(a)として表わしたものである。
The magnetic flux induced by the superimposed currents of these high-frequency currents and low-frequency currents flows through the Δp1 constant 13,
Since the low frequency current is larger, the magnetization of the object to be measured [3] is dominated by the low frequency current. Therefore, the high frequency magnetic flux passing through the object to be measured 13 has a value corresponding to the differential magnetic permeability of the object to be measured 3 magnetized by the low frequency current at a certain point in time. As described above, only high frequency magnetic flux is detected in the search coil 11. In FIG. 3, the voltage induced in the search coil (flj+) is expressed as (a) with respect to the low frequency current shown in (b).

出力電圧の振幅は低周波磁化電流か小さい時に最も大き
くなり(0部)、低周波電流が大きく被測定物13が磁
気飽和しているときは小さく略−定の値となる(0部)
The amplitude of the output voltage is largest when the low frequency magnetizing current is small (0 section), and becomes small and approximately constant when the low frequency current is large and the object to be measured 13 is magnetically saturated (0 section).
.

このサーチコイル11の出力は信号増幅器14で増幅さ
れた後振幅検波器15で振幅検波され正の波形の振幅が
検出される。この振幅検波された信号はさらに低周波増
幅器16で増幅されてから第1のピーク検波器17並び
に位相反転器18を介して第2のピーク検波器19に供
給される。
The output of the search coil 11 is amplified by a signal amplifier 14 and then amplitude detected by an amplitude detector 15 to detect the amplitude of a positive waveform. This amplitude-detected signal is further amplified by a low frequency amplifier 16 and then supplied to a second peak detector 19 via a first peak detector 17 and a phase inverter 18.

第1のピーク検波器17は第3図の(a)に示す波形の
正の部分のピーク値、すなわち図中■のレベルを検波す
る。この部分が、最大透磁率に対応する部分である。
The first peak detector 17 detects the peak value of the positive portion of the waveform shown in FIG. 3(a), that is, the level indicated by ■ in the figure. This part is the part corresponding to the maximum magnetic permeability.

また第2のピーク検波器19は第3図の(a)の波形の
正の部分が位相反転器]8で位相反転されたときのピー
ク値、すなわち図中■のレベルを検波する。これはサー
チコイル11からの出力の最小レベルを検出することに
なる。この部分は、被測定物13が磁気飽和近くまで磁
化された点での微分透磁率に対応する部分である。この
点での微分透磁率は、被測定物13の種類が同一であれ
ば材質によらず略一定の値となる。従って、この値はリ
フトオフの変化のみによって変化するものとみなすこと
ができる。前記0部の値はりフトオフによって変化する
が、リフトオフを検出すればこれにより補正することが
できる。
Further, the second peak detector 19 detects the peak value when the positive part of the waveform shown in FIG. This will detect the minimum level of the output from the search coil 11. This portion corresponds to the differential magnetic permeability at the point where the object to be measured 13 is magnetized to near magnetic saturation. The differential magnetic permeability at this point is a substantially constant value regardless of the material if the type of the object to be measured 13 is the same. Therefore, this value can be considered to change only due to changes in liftoff. The value of the 0 part changes due to lift-off, but if lift-off is detected, it can be corrected accordingly.

自動1+1得制御機能付き増幅器20は第2のピーク検
波器19からのピーク検出出力に基づいて利得を自動制
御し第1のピーク検波器17からのピーク検出出力を増
幅する。そして増幅した信号を直流増幅器21で増幅し
た後最大透磁率出力として送出する。
The amplifier 20 with automatic 1+1 gain control function automatically controls the gain based on the peak detection output from the second peak detector 19 and amplifies the peak detection output from the first peak detector 17. Then, the amplified signal is amplified by a DC amplifier 21 and then sent out as a maximum permeability output.

こうして得られる最大透磁率出力、すなわち磁気特性測
定出力によって被測定物13の機械的特性を検査できる
ことになる。
The mechanical properties of the object to be measured 13 can be inspected based on the maximum magnetic permeability output obtained in this way, that is, the magnetic property measurement output.

このようにサーチコイル11を使用することによって彼
M1定物13の磁気特性を非接触で測定できるので、オ
ンラインでの測定が可能となり測定作業能率を向上でき
る。
By using the search coil 11 in this way, the magnetic properties of the M1 constant object 13 can be measured without contact, making it possible to perform online measurements and improve the efficiency of measurement work.

第4図の(a)は本実施例での検出ヘッド5のリフトオ
フ変化に対する出力電圧変化を示すグラフで、このグラ
フからも各種被測定物に対する測定の出力電圧の変動が
ほとんどないことが分る。
FIG. 4(a) is a graph showing the output voltage change with respect to the lift-off change of the detection head 5 in this example, and it can be seen from this graph that there is almost no variation in the output voltage when measuring various objects to be measured. .

これに対して第4図の(b)は自動利得制御機能付き増
幅器20を使用しない場合にリフトオフ変化に対する出
力電圧の変化を示すグラフで、この場合にはリフトオフ
変化が大きくなると出力電圧が低下する変動を示すこと
が分る。
On the other hand, FIG. 4(b) is a graph showing changes in output voltage with respect to lift-off changes when the amplifier 20 with automatic gain control function is not used; in this case, as the lift-off changes increase, the output voltage decreases. It can be seen that there are fluctuations.

なお、第4図(a)の各グラフ■、■、■と(b)の各
グラフ■、■、■とはそれぞれ同一の試験片を対象にし
ている。
Note that the graphs ■, ■, ■ in FIG. 4(a) and the graphs ■, ■, ■ in FIG. 4(b) are for the same test piece, respectively.

[発明の効果] 以上詳述したように本発明によれば、検出ヘッドを鋼板
等の被測定物に対して非接触で磁化させてその透磁率を
検出でき、従ってオンラインでの測定が可能となり測定
作業能率を向上できる透磁率Apj定装置を提供できる
ものである。
[Effects of the Invention] As detailed above, according to the present invention, the magnetic permeability of the object to be measured, such as a steel plate, can be detected by magnetizing the object to be measured, such as a steel plate, without contact, and therefore online measurement is possible. It is possible to provide a magnetic permeability Apj determination device that can improve measurement work efficiency.

またリフトオフ変化が発生してもその変化による測定出
力変化を自動的に補償でき、従って非接触測定を行なっ
ても正確な透磁率のU+定ができる透磁率alll装定
を提供できるものである。
Further, even if a lift-off change occurs, it is possible to automatically compensate for the measurement output change due to the change, and therefore it is possible to provide a magnetic permeability all setting that can accurately determine the U+ constant of magnetic permeability even when non-contact measurement is performed.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示すもので、第1図は回路ブロッ
ク図、第2図は検出ヘッドの構成を示す図、第3図はサ
ーチコイル検出出力と低周波磁化電流との関係を示す波
形図、第4図4 (a )は本実施例における検出ヘッ
ドのりフトオフ変化に対する出力電圧変化を示すグラフ
、第4図磨(b)は自動利得制御機能付き増幅器を使用
しないときの検出ヘッドのりフトオフ変化に対する出力
電圧変化を示すグラフである。 5・・・検出ヘッド、6・・・低周波磁化コイル、7゜
8・・高周波磁化コイル、11・・・サーチコイル、1
7・・第1のピーク検波器、18・・・位相反転器、1
9・・・第2のピーク検波器、20・・・自動利得制御
機能付き増幅器。 第2図 第3図 −5A侵讃賊 一′+1ぺ禰d
The figures show an embodiment of the present invention; Fig. 1 is a circuit block diagram, Fig. 2 is a diagram showing the configuration of the detection head, and Fig. 3 is a diagram showing the relationship between search coil detection output and low frequency magnetizing current. Waveform diagrams, Figure 4 (a) is a graph showing output voltage changes with respect to detection head lift-off changes in this example, and Figure 4 (b) is a graph showing the detection head slope when an amplifier with automatic gain control function is not used. 5 is a graph showing changes in output voltage with respect to changes in foot-off. 5...Detection head, 6...Low frequency magnetization coil, 7゜8...High frequency magnetization coil, 11...Search coil, 1
7...First peak detector, 18...Phase inverter, 1
9...Second peak detector, 20...Amplifier with automatic gain control function. Figure 2 Figure 3 - 5A Invader 1' + 1 Pene d

Claims (2)

【特許請求の範囲】[Claims] (1)コアに巻装された低周波磁化コイルを有する検出
ヘッドで被測定物を磁化させ、その被測定物の磁気特性
を測定する透磁率測定装置において、前記検出ヘッドは
、低周波磁化コイルを巻装したU字状のコアと、このコ
アの先端部に互いに逆極性となるように巻装された1対
の高周波磁化コイルと、この1対の高周波磁化コイル間
に設けられ磁化された被測定物の磁気特性を非接触検出
する磁束検出器を有することを特徴とする透磁率測定装
置。
(1) In a magnetic permeability measurement device that magnetizes an object to be measured with a detection head having a low-frequency magnetization coil wound around a core and measures the magnetic properties of the object, the detection head includes a low-frequency magnetization coil. A U-shaped core wrapped with A magnetic permeability measurement device characterized by having a magnetic flux detector that non-contact detects magnetic properties of an object to be measured.
(2)請求項(1)記載の透磁率測定装置において、さ
らに磁束検出器からの検出信号を振幅検波する振幅検波
器と、この振幅検波器のピーク値を検出する第1のピー
ク検波器と、前記振幅検波器からの信号の位相反転を行
なう位相反転器と、この位相反転器出力のピーク値を検
出する第2のピーク検波器と、この第2のピーク検波器
出力に応じて利得を自動制御し、前記第1のピーク検波
器出力を増幅する自動利得制御機能付き増幅器を設けた
ことを特徴とする透磁率測定装置。
(2) The magnetic permeability measuring device according to claim (1), further comprising: an amplitude detector that amplitude-detects the detection signal from the magnetic flux detector; and a first peak detector that detects the peak value of the amplitude detector. , a phase inverter that inverts the phase of the signal from the amplitude detector, a second peak detector that detects the peak value of the output of the phase inverter, and a gain that is adjusted according to the output of the second peak detector. A magnetic permeability measurement device comprising an amplifier with an automatic gain control function that automatically controls and amplifies the output of the first peak detector.
JP18915688A 1988-07-28 1988-07-28 Magnetic permeability measuring apparatus Pending JPH0238882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18915688A JPH0238882A (en) 1988-07-28 1988-07-28 Magnetic permeability measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18915688A JPH0238882A (en) 1988-07-28 1988-07-28 Magnetic permeability measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0238882A true JPH0238882A (en) 1990-02-08

Family

ID=16236381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18915688A Pending JPH0238882A (en) 1988-07-28 1988-07-28 Magnetic permeability measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0238882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030087327A (en) * 2002-05-08 2003-11-14 삼성전기주식회사 Detection system of magnetic permeability for ferrite core by induction formula of magnetic field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030087327A (en) * 2002-05-08 2003-11-14 삼성전기주식회사 Detection system of magnetic permeability for ferrite core by induction formula of magnetic field

Similar Documents

Publication Publication Date Title
US5537038A (en) Magnetic flux measuring method and apparatus for detecting high frequency components of magnetic flux with high speed orientation
CN109655771B (en) AC magnetic susceptibility measuring device and measuring method thereof
JPH03218475A (en) Method and device for measuring current
US3260932A (en) Magnet-field measuring device with a galvanomagnetic resistance probe
US3742357A (en) Noncontact electric apparatus for magnetically measuring strains
Palmer A small sensitive magnetometer
JPS6352345B2 (en)
US2444726A (en) Method and apparatus for determining the magnitude of a condition
US2755434A (en) Magnetic measuring system
JPH0238882A (en) Magnetic permeability measuring apparatus
JP2617571B2 (en) Magnetic measuring device
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
EP0376095B1 (en) Magnetic flux measuring method and apparatus for embodying the same
JPH05281063A (en) Measuring device for tension of steel material
US5831424A (en) Isolated current sensor
JP2617570B2 (en) Magnetic measuring device
JP2606043Y2 (en) Eddy current flaw detector
GB1095562A (en)
JPH03135780A (en) Method and device for magnetism measurement
SU974240A1 (en) Device for checking ferromagnetic articles
JPS6439571A (en) Method and device for measuring magnetic permeability
JPH02311776A (en) Apparatus and method for measuring magnetic characteristics of steel material
SU901959A1 (en) Device for measuring ferromagnetic material static magnetic characteristics
SU855569A1 (en) Method of determining dynamic curves of ferromagnetic material reversal of magnetization
KR920002179B1 (en) Method and apparatus for detecting flaw with eddy current