JPH0238849B2 - - Google Patents

Info

Publication number
JPH0238849B2
JPH0238849B2 JP59180776A JP18077684A JPH0238849B2 JP H0238849 B2 JPH0238849 B2 JP H0238849B2 JP 59180776 A JP59180776 A JP 59180776A JP 18077684 A JP18077684 A JP 18077684A JP H0238849 B2 JPH0238849 B2 JP H0238849B2
Authority
JP
Japan
Prior art keywords
combustion
gas
mol
nitrogen oxides
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59180776A
Other languages
Japanese (ja)
Other versions
JPS6159107A (en
Inventor
Yutaka Kunisato
Nagayasu Yuhara
Sadao Kawakami
Masanobu Kusano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP18077684A priority Critical patent/JPS6159107A/en
Publication of JPS6159107A publication Critical patent/JPS6159107A/en
Publication of JPH0238849B2 publication Critical patent/JPH0238849B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、燃焼排ガス中の窒素酸化物低減方法
に関する。より詳しくは、本発明は燃料ガスを燃
焼装置、例えば金属熱処理炉、赤火式拡散炎燃焼
方式加熱炉などの工業用加熱炉において燃焼させ
る場合の燃焼排ガス中の窒素酸化物(NOX)低
減方法に関する。 従来の技術 従来、燃料ガスを燃焼装置において燃焼させる
場合の燃焼排ガス中の窒素酸化物低減方法とし
て、二段燃焼法、排ガス再循環燃焼法、濃炎燃焼
法、蒸気噴射燃焼法などの燃焼方法を適用する方
法、ならびに混合促進バーナー、分散火炎型バー
ナー、自己再循環型バーナー、二段燃焼型バーナ
ーなど特殊のバーナーを用いる方法が知られてい
る。 発明が解決しようとする問題点 しかしながら、前記した従来の燃焼排ガス中の
窒素酸化物低減方法では前記燃焼排ガス中の窒素
酸化物を所望の通り低減させるにあたり、燃焼設
備改造の必要性、燃費の上昇、燃焼負荷の低下等
の問題があつた。 問題点を解決するための手段 本発明は、従来の燃焼排ガス中の窒素酸化物低
減方法における問題点を解決するためになされた
ものであり、燃焼設備の改造、燃費の上昇、燃焼
負荷の低下等を伴うことなく燃焼排ガス中の窒素
酸化物を低減させることのできる燃焼排ガス中の
窒素酸化物低減方法を提供することを目的とする
ものである。 すなわち、本発明は、都市ガス、石炭ガスおよ
び高炉ガスよりなる群から選ばれる燃料ガスを工
業用加熱炉において燃焼させるにあたり、該燃料
ガス中に、芳香族環状化合物の1種もしくは2種
以上の混合物を微量添加することを特徴とする燃
焼排ガス中の窒素酸化物低減方法を提供するもの
である。 本発明において用いられる燃料ガスとしては、
例えば都市ガス、あるいは石炭ガス、高炉ガスな
どの工業プロセスガスがあげられる。 本発明方法の適用される燃焼装置の例として、
金属熱処理炉、赤火式拡散炎燃焼方式加熱炉など
の工業加熱炉があげられる。 本発明において用いられる芳香族環状化合物の
例としてベンゼン、トルエン、キシレン、ナフタ
リンなどをあげることができる。 前記燃料ガス中に添加される芳香族環状化合物
の添加量は、添加される芳香族環状化合物の種類
によつても多少変動するが、例えばベンゼン、ト
ルエンまたはキシレン、あるいはこれらの混合物
(以下BTXということがある)の場合、通常5〜
30g/m3の範囲にあり、好ましくは15〜20g/m3
の範囲にある。この添加量が5g/m3以下では窒
素酸化物低減効果が不充分で好ましくなく、30
g/m3以上にしてもさらに顕著な窒素酸化物低減
効果は認められず、凝縮して装置配管の閉塞を招
来するおそれがあつて好ましくない。またナフタ
リンの場合、通常0.1〜0.5g/m3の範囲であり、
好ましくは0.1〜0.3の範囲である。この添加量が
0.1g/m3以下では窒素酸化物低減効果が不充分
で好ましくなく、0.5g/m3以上にしてもさらに
顕著な窒素酸化物低減効果は認められず、また凝
縮して装置配管を閉塞するおそれがあつて好まし
くない。 前記芳香族環状化合物は、燃焼に先立ち燃料ガ
ス中への滴下、噴霧、蒸発等の方法により、燃料
ガス中に添加される。この際、前記芳香族環状化
合物を前記燃料ガスと充分混合させるのが好まし
い。 実施例 以下実施例により本発明をさらに詳細に説明す
る。 実施例 1−7 石炭ガス(5000kcal/m3)にベンゼン70モル
%、トルエン20モル%およびキシレン10モル%よ
りなる混合物を前記石炭ガス1Nm3当りそれぞれ
4.6g(実施例1)、5.2g(実施例2)、6.1g(実
施例3)、13.4g(実施例4)、22.5g(実施例
5)、23.2g(実施例6)および37.7g(実施例
7)添加後、赤火式拡散炎燃焼方式加熱炉で燃焼
させ、その燃焼排ガス中のNOXを測定したとこ
ろ、それぞれ、252ppm(実施例1)、260ppm(実
施例2)、253ppm(実施例3)、236ppm(実施例
4)、199ppm(実施例5)、211ppm(実施例6)お
よび210ppm(実施例7)であつた。 実施例 8−10 ベンゼン60モル%、トルエン30モル%およびキ
シレン10モル%の混合物を、それぞれ7.6g(実
施例8)、13.6g(実施例9)および34.2g(実
施例10)添加した以外、実施例1−7と同様の実
験を行なつた。得られた結果を第1表および第1
図に示す。 実施例 11−13 ベンゼン50モル%、トルエン30モル%およびキ
シレン20モル%の混合物を、それぞれ9.3g(実
施例11)、24.3g(実施例12)および30.8g(実
施例13)添加した以外実施例1−7と同様の実験
を行なつた。得られた結果を第1表および第1図
に示す。 実施例 14 ナフタリン0.2g/m3を添加した以外実施例1
−7と同様の実験を行なつた。燃焼排ガス中の
NOXは221ppmであつた。 比較例 1 ベンゼン、トルエンおよびキシレンの混合物を
添加しなかつた以外、実施例1−7と同様の実験
を行なつた。得られた結果は第1表に示す通りで
ある。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for reducing nitrogen oxides in combustion exhaust gas. More specifically, the present invention aims to reduce nitrogen oxides (NO x ) in combustion exhaust gas when fuel gas is combusted in a combustion apparatus, for example, an industrial heating furnace such as a metal heat treatment furnace or a red-flame diffusion combustion type heating furnace. Regarding the method. Conventional technology Conventionally, combustion methods such as the two-stage combustion method, exhaust gas recirculation combustion method, rich flame combustion method, and steam injection combustion method have been used to reduce nitrogen oxides in the flue gas when fuel gas is combusted in a combustion device. Methods using special burners such as mixing-enhancing burners, distributed flame burners, self-recirculating burners, and two-stage combustion burners are known. Problems to be Solved by the Invention However, in the above-described conventional method for reducing nitrogen oxides in combustion exhaust gas, in order to reduce nitrogen oxides in combustion exhaust gas as desired, it is necessary to modify the combustion equipment and increase fuel efficiency. , there were problems such as a decrease in combustion load. Means for Solving the Problems The present invention has been made to solve the problems in conventional methods for reducing nitrogen oxides in combustion exhaust gas, and includes modifications to combustion equipment, increase in fuel efficiency, and reduction in combustion load. It is an object of the present invention to provide a method for reducing nitrogen oxides in combustion exhaust gas, which can reduce nitrogen oxides in combustion exhaust gas without causing such problems. That is, in the present invention, when burning a fuel gas selected from the group consisting of city gas, coal gas, and blast furnace gas in an industrial heating furnace, one or more aromatic cyclic compounds are added to the fuel gas. The present invention provides a method for reducing nitrogen oxides in combustion exhaust gas, which is characterized by adding a small amount of a mixture. The fuel gas used in the present invention includes:
Examples include city gas, coal gas, and industrial process gas such as blast furnace gas. As an example of a combustion apparatus to which the method of the present invention is applied,
Examples include industrial heating furnaces such as metal heat treatment furnaces and red-fire diffusion flame combustion heating furnaces. Examples of aromatic cyclic compounds used in the present invention include benzene, toluene, xylene, and naphthalene. The amount of the aromatic cyclic compound added to the fuel gas varies somewhat depending on the type of aromatic cyclic compound added, but for example, benzene, toluene, xylene, or a mixture thereof (hereinafter referred to as BTX) is added. ), usually 5~
in the range of 30g/ m3 , preferably 15-20g/ m3
within the range of If the amount added is less than 5g/ m3 , the nitrogen oxide reduction effect will be insufficient and undesirable.
Even if it exceeds g/m 3 , a more significant nitrogen oxide reduction effect is not observed, and there is a risk of condensation leading to clogging of the equipment piping, which is not preferable. In the case of naphthalene, it is usually in the range of 0.1 to 0.5 g/ m3 ,
Preferably it is in the range of 0.1 to 0.3. This amount added
If it is less than 0.1 g/m 3 , the nitrogen oxide reduction effect is insufficient and undesirable, and even if it is 0.5 g/m 3 or more, no more significant nitrogen oxide reduction effect is observed, and it may condense and block the equipment piping. There is a risk that this is not desirable. The aromatic cyclic compound is added to the fuel gas by dropping into the fuel gas, spraying, evaporating, or the like prior to combustion. At this time, it is preferable to thoroughly mix the aromatic cyclic compound with the fuel gas. EXAMPLES The present invention will be explained in more detail with reference to Examples below. Example 1-7 A mixture of 70 mol% benzene, 20 mol% toluene, and 10 mol% xylene was added to coal gas (5000 kcal/m 3 ) per 1Nm 3 of the coal gas.
4.6g (Example 1), 5.2g (Example 2), 6.1g (Example 3), 13.4g (Example 4), 22.5g (Example 5), 23.2g (Example 6) and 37.7g (Example 7) After addition, it was burned in a red-flame diffusion flame combustion heating furnace, and the NOx in the combustion exhaust gas was measured, and the results were 252 ppm (Example 1), 260 ppm (Example 2), and 253 ppm, respectively (Example 3), 236 ppm (Example 4), 199 ppm (Example 5), 211 ppm (Example 6) and 210 ppm (Example 7). Example 8-10 Except for adding 7.6 g (Example 8), 13.6 g (Example 9) and 34.2 g (Example 10) of a mixture of 60 mol% benzene, 30 mol% toluene and 10 mol% xylene, respectively. , an experiment similar to Example 1-7 was conducted. The obtained results are shown in Table 1 and
As shown in the figure. Examples 11-13 Except that 9.3 g (Example 11), 24.3 g (Example 12) and 30.8 g (Example 13) of a mixture of 50 mol% benzene, 30 mol% toluene and 20 mol% xylene were added, respectively. An experiment similar to Example 1-7 was conducted. The results obtained are shown in Table 1 and FIG. Example 14 Example 1 except that 0.2 g/ m3 of naphthalene was added
An experiment similar to that of -7 was conducted. in combustion exhaust gas
NOx was 221ppm. Comparative Example 1 An experiment similar to Examples 1-7 was conducted except that the mixture of benzene, toluene and xylene was not added. The results obtained are shown in Table 1.

【表】【table】

【表】 発明の効果 本発明によれば、従来の燃焼排ガス中の窒素酸
化物低減方法における燃焼設備の改造の必要性、
燃費の上昇、燃焼負荷の低下等の問題を生ずるこ
となく、原料燃料ガスに芳香族環状化合物を微量
添加するという極めて簡単な方法で燃焼装置、例
えば金属熱処理炉、赤火式拡散炎燃焼方式加燃炉
などの工業用加熱炉における燃焼排ガス中の窒素
酸化物を予想以上に大幅に低減させることが可能
である。
[Table] Effects of the Invention According to the present invention, there is no need to modify the combustion equipment in the conventional method for reducing nitrogen oxides in flue gas,
Combustion equipment, such as metal heat treatment furnaces, red-flame diffusion flame combustion methods, etc., can be developed using an extremely simple method of adding a small amount of aromatic cyclic compounds to raw material fuel gas without causing problems such as increased fuel consumption or decreased combustion load. It is possible to significantly reduce nitrogen oxides in combustion exhaust gas in industrial heating furnaces such as combustion furnaces more than expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ベンゼン(B)、トルエン(T)および
キシレン(X)の混合物の添加量と燃焼排ガス中
の窒素酸化物の濃度との関係を示すグラフであ
る。第1図において〇印はベンゼン70モル%、ト
ルエン20モル%およびキシレン10モル%の混合
物、△印はベンゼン60モル%、トルエン30モル%
およびキシレン10モル%の混合物、および□印は
ベンゼン50モル%、トルエン30モル%およびキシ
レン20モル%の混合物を表わす。
FIG. 1 is a graph showing the relationship between the amount of a mixture of benzene (B), toluene (T) and xylene (X) added and the concentration of nitrogen oxides in the combustion exhaust gas. In Figure 1, the ○ mark is a mixture of 70 mol% benzene, 20 mol% toluene and 10 mol% xylene, and the △ mark is a mixture of 60 mol% benzene and 30 mol% toluene.
and a mixture of 10 mol% of xylene, and the symbol □ represents a mixture of 50 mol% of benzene, 30 mol% of toluene, and 20 mol% of xylene.

Claims (1)

【特許請求の範囲】[Claims] 1 都市ガス、石炭ガスおよび高炉ガスよりなる
群から選ばれる燃料ガスを工業用加熱炉において
燃焼させるにあたり、該燃料ガス中に、芳香族環
状化合物の1種もしくは2種以上の混合物を微量
添加することを特徴とする燃焼排ガス中の窒素酸
化物低減方法。
1. When burning a fuel gas selected from the group consisting of city gas, coal gas, and blast furnace gas in an industrial heating furnace, a trace amount of one type or a mixture of two or more aromatic cyclic compounds is added to the fuel gas. A method for reducing nitrogen oxides in combustion exhaust gas.
JP18077684A 1984-08-31 1984-08-31 Method of decreasing nox in combustion exhaust gas Granted JPS6159107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18077684A JPS6159107A (en) 1984-08-31 1984-08-31 Method of decreasing nox in combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18077684A JPS6159107A (en) 1984-08-31 1984-08-31 Method of decreasing nox in combustion exhaust gas

Publications (2)

Publication Number Publication Date
JPS6159107A JPS6159107A (en) 1986-03-26
JPH0238849B2 true JPH0238849B2 (en) 1990-09-03

Family

ID=16089125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18077684A Granted JPS6159107A (en) 1984-08-31 1984-08-31 Method of decreasing nox in combustion exhaust gas

Country Status (1)

Country Link
JP (1) JPS6159107A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009449A (en) * 1988-07-27 1991-04-23 Mazda Motor Corporation Vehicle rear suspension system
JPH0775929B2 (en) * 1988-07-28 1995-08-16 マツダ株式会社 Vehicle suspension system
US5176398A (en) * 1988-07-28 1993-01-05 Mazda Motor Corp. Vehicle rear suspension system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524012A (en) * 1978-08-07 1980-02-20 Daiichi Shokai Kk Pinball machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524012A (en) * 1978-08-07 1980-02-20 Daiichi Shokai Kk Pinball machine

Also Published As

Publication number Publication date
JPS6159107A (en) 1986-03-26

Similar Documents

Publication Publication Date Title
JP2693101B2 (en) A method for reducing the amount of nitrogen oxides generated during combustion
JPH05504825A (en) Combustion method
FR2771306B1 (en) MANGANESE COMPOSITION AND USE AS A NOX TRAP FOR THE TREATMENT OF EXHAUST GASES
JPH0238849B2 (en)
JPH04504899A (en) How to reduce nitrogen oxide released when burning solid fuels
CN204328994U (en) Biomass boiler equipment for denitrifying flue gas
ES443965A1 (en) Method and furnace for combusting carbonaceous fuel
JPS6249521B2 (en)
US6939125B2 (en) Method for reducing nitrogen oxides in combustion gas from combustion furnace
US2610112A (en) Soot removal compositions
JP2010227728A (en) Method for removing n2o contained in exhaust gas from sewage sludge incinerator
CA2069218A1 (en) Process and an arrangement for reducing nox emissions
JPH0518003B2 (en)
JPS5330979A (en) Restraining method for nitrogen oxides exhaustion from boiler or heating furnace etc.
JPS546859A (en) Denitrating method for exhaust gas containing co
JPS5453667A (en) Decreasing method for nitrogen oxides with carbon
Teng Combustion modifications of batch annealing furnaces and ammonia combustion ovens for NOx abatement in steel plants
SU405417A1 (en) Method of processing cupric sulphide raw material
JPH04136602A (en) Method of reducing nox
JPS58128126A (en) Method for introducing reducing agent
JPH0128283B2 (en)
DE19853162C2 (en) Process for burning a nitrogenous fuel
JPS58187709A (en) Pulverized coal burning system utilizing nitrogen in coal
JPS6230804B2 (en)
Princiotta Stationary source NOx control technology overview