JPH0238657B2 - - Google Patents

Info

Publication number
JPH0238657B2
JPH0238657B2 JP54072990A JP7299079A JPH0238657B2 JP H0238657 B2 JPH0238657 B2 JP H0238657B2 JP 54072990 A JP54072990 A JP 54072990A JP 7299079 A JP7299079 A JP 7299079A JP H0238657 B2 JPH0238657 B2 JP H0238657B2
Authority
JP
Japan
Prior art keywords
magnetic field
alloy
isothermal
field treatment
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54072990A
Other languages
Japanese (ja)
Other versions
JPS56254A (en
Inventor
Hiroshi Nakazato
Takashi Endo
Masuhito Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP7299079A priority Critical patent/JPS56254A/en
Publication of JPS56254A publication Critical patent/JPS56254A/en
Publication of JPH0238657B2 publication Critical patent/JPH0238657B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスピノーダル分解型磁石合金に関する
もので、特に磁場中時効時間および連続冷却時効
(あるいは多段時効)処理時間が短縮されるこの
種磁石合金に関する。 従来スピノーダル分解型磁石合金としてはFe
−Cr−Co磁石合金が知られており、この合金は、
合金鋳造後、800〜1200℃の温度で溶体化処理を
行なつた後、560〜700℃の温度で磁場中時効(あ
るいは単に等温時効)を行い、その後、580〜400
℃の温度迄冷却する連続冷却時効(あるいは多段
時効)処理を施して永久磁石特性を付与している
が、低Co含有(3〜10wt%Co)合金系になると
磁場中時効時間(あるいは等温時効時間)、およ
びそれにつづく連続冷却時効(あるいは多段時
効)処理時間が長くなる欠点がある。 本発明は、この欠点を除去して上述した熱処理
時間が短かくてすむこの種磁石合金を提供するこ
とを目的とするものである。 本発明は、Fe−Cr−Mo−Co鋳造永久磁石合
金であつて、重量比で15〜35%Cr、15%以下
Mo、1〜6%Co残部実質的にFeとすることによ
つて、等温磁場処理時間を、磁気特性を維持しつ
つ短縮できるようにしたことを特徴とするスピノ
ーダル分解型Fe−Cr−Mo−Co永久磁石合金で
ある。 なお、ここで“残部実質的にFeよりなる”と
の表現は、原料中に不可否的に混入する不純物
(例えばSiやC等)を含んでも良いことを意味す
る。例えば、Feの一部とCr原料としてフエクロ
ームを用いることができ、この場合、Siが0.01〜
0.5%含まれ、Cが0.01〜0.2含まれる。 また、この合金は、副成分として0.1〜0.9%
Ti、0.01〜0.1%Al、0.02〜2.%希土類ミツシユメ
タル、1〜2%V、0.5〜2%Siおよび0.05〜2%
Zrの少なくとも一種を添加含有させても良い。 本発明の合金によれば、磁場中時効(あるいは
等温時効)時間が2時間以内で良く、また連続冷
却時効(あるいは多段時効)処理における平均冷
却速度を3℃/時間〜40℃/時間とすることがで
き、熱処理時間を大巾に短縮できる利点がある。 以下に、本発明を実施例について説明する。 実施例 1 26wt%Cr、6wt%Mo、4wt%Co、残実質的に
Fe(以下A合金と呼ぶ)と、26wt%Cr、4wt%
Co、残実質的にFe(以下B合金と呼ぶ)とを、そ
れぞれ真空溶解して、シエル鋳型で5mmφ×40mm
Lの合金試料を鋳造し、その後、これらの試料を
1000℃で1時間の溶体化処理を行なつた後、等温
磁場処理を、A合金の場合590℃、B合金の場合
は600℃の温度で0.5時間、1時間および2時間に
わたつて施し、その後、570℃から、冷却速度1
℃/時間、3℃/時間、5℃/時間をもつて、
400℃迄連続冷却時効を行なつて磁気特性を測定
した。その結果を、A合金については第1図に、
B合金については第2図に示す。 両図から明かなように、本発明によるA合金で
は、従来のB合金に比して、等温磁場処理時間が
2時間以内で時効処理の冷却速が3℃/時間で
も、充分な残留磁束密度(Br)と高い保磁力
(Hc)や最大エネルギー積((BH)max)を示
す。即ち、B合金のように、等温磁場処理時間が
2時間以上、時効冷却速度を1℃/時間のような
ゆつくりした冷却速度とする必要がない。 実施例 2 xwt%Cr、6wt%Mo、4wt%Co、残実質的に
Feよりなる合金試料を、xが10、15、20、35、
40として、実施例1と同様に真空溶解して5mmφ
×40mmLにシエル鋳型で鋳造し、これらの合金試
料を1000℃で1時間溶体化処理を行なつた後、
570〜630℃の温度で1時間の等温磁場処理をし、
その後、570℃から400℃迄3℃/時間の冷却速度
で連続冷却時効を行いその磁気特性を測定した。
x=10では、等温磁場処理温度625℃で、Br=
3KG、 Hc=50Oe、(BH)max=0.05MGOeであり、
x=15では、等温磁場処理温度625℃で、Br=
16KG、 Hc=300Oe、(BH)max=2MGOe、であり、
x=20では、等温磁場処理温度600℃で、Br=
14KG、 Hc=600Oe(BH)max=5.5MGOe、x=35で
は、等温磁場処理温度575℃で、Br=8KG、 Hc=800Oe、(BH)max=3MGOeであつた。
しかし、x=40では、等温磁場処理温度570℃と
したが、Brが1KG以下という不満足な磁気特性
を得られたにすぎなかつた。従つて、xは15〜35
が安定な磁気特性を示す範囲であることがわか
る。 実施例 3 26wt%Cr、ywt%Mo、4wt%Co残実質的にFe
よりなる合金試料を、yが0.001、2、4、6、
8、10、14、18、20として、実施例1と同様に、
真空溶解し、5mmφ×40mmにLにシエル鋳型で鋳
造し、これらの合金試料を1000℃で1時間の溶体
化処理を施し、570゜〜600℃の温度で1時間の等
温磁場処理を行ない、その後、570℃から400℃ま
で、冷却速度3℃/時間で、冷却して、磁気特性
を測定した。y=0.001では、等温磁場処理温度
600℃で、Br=13.5KG、Hc=500Oe、(BH)
max=4MGOe、y=2では、等温磁場処理温度
600℃で、Br=13KG、 Hc=570Oe、(BH)max=4MGOe、y=4で
は、等温磁場処理温度595℃で、Br=12.8KG、
Hc=630Oe、(BH)max=5.5MGOe、y=6で
は、等温磁場処理温度590℃で、Br=12.5KG、 Hc=700Oe(BH)max=6.5MGOe、y=8で
は、等温磁場処理温度585℃で、Br=12.0KG、 Hc=720Oe、(BH)max=6MGOe、y=10で
は、等温磁場処理温度580℃で、Br=11KG、Hc
=730Oe、(BH)max=4MGOe、y=14では、
等温磁場処理温度が575℃で、Br=10KG、 Hcw750Oe、(BH)max=3.5MGOe、y=18
では、等温磁場処理温度570℃で、Br=9KG、 Hc=800Oe、(BH)max=3MGOe、y=20で
は、等温磁場処理温度570℃で、Br=7KG、Hc
=820Oe、(BH)max=2MGOeを示した。しか
し、y=18以上では、鋳造段階で試料が割れるの
で、事実上製造困難である。従つて、yは、
0.001〜16の範囲であることがわかる。 実施例 4 26wt%Cr、6wt%Mo、zwt%Co、残実質的に
Feよりなる合金試料を、zが0、2、4、6、
8、10、12として、実施例1と同様に真空溶解
し、5mmφ×40mmにLにシエル鋳型で鋳造し、こ
れらの合金試料を1000℃で1時間の溶体化処理を
施し、570℃〜630℃の温度で1時間の等温磁場処
理を行ない、その後、570℃から400℃まで、冷却
速度3℃/時間で連続冷却を行なつて、磁気特性
を測定した。 z=0では、等温磁場処理温度570℃で、Br=
12.5KG、Hc=640Oe、(BH)max=4MGOe、 z=2では、等温磁場処理温度575℃で、Br=
12.5KG、He=660Oe、(BH)max=6MGOe、 z=4では、等温磁場処理温度580℃で、Br=
12.5KG、Hc=700Oe、(BH)max=6.5MGOe、 z=6では、等温磁場処理温度590℃で、Br=
12.7KG、Hc=710Oe、(BH)max=6.8MGOe、 z=8では、等温磁場処理温度600℃で、Br=
12.5KG、Hc=720Oe、(BH)max=5.5MGOe、 z=10では、等温磁場処理温度620℃で、Br=
13KG、Hc=730Oe、(BH)max=6MGOe、 z=12では、等温磁場処理温度630℃で、Br=
12.8KG、Hc=740.Oe、(BH)max=5.5MGOe
を示した。しかし、z=8以上では、冷間加工等
の磁石製品成形工程に於て、望ましくないσ相が
析出しやすくこのため加工上の問題が生じる。こ
の観点から磁気特性および加工性の両者を共に満
足させるためには、Coは、6wt%以下としなけれ
ばならない。 実施例 5 26wt%Cr、6wt%Mo、4wt%Co、残実質的に
Feよりなる主成分に(a)、0.5wt%Ti、(b)0.05wt%
Al、(c)0.1wt%希土類ミツシユメタル、(d)1.5wt
%V、(e)0.6wt%Si、(f)0.1wt%Zrをそれぞれ添加
して、大気溶解し、シエル鋳型で5mmφ×40mmL
に鋳造して合金試料を得、1000℃で1時間の溶体
化処理を施し、590℃の温度で1時間の等温磁場
処理を行なつた後、570℃から400℃まで、冷却速
度3℃/時間で、連続冷却を行なつて、その磁気
特性を測定したところ、実施例1の合金Aと同様
の特性を得た。その結果を第1表に示す。
The present invention relates to a spinodal decomposition type magnet alloy, and particularly to this type of magnet alloy in which the aging time in a magnetic field and the continuous cooling aging (or multistage aging) treatment time are shortened. The conventional spinodal decomposition type magnet alloy is Fe.
-Cr-Co magnet alloy is known, and this alloy is
After casting the alloy, it is subjected to solution treatment at a temperature of 800 to 1200°C, then aged in a magnetic field (or simply isothermal aging) at a temperature of 560 to 700°C, and then aged at a temperature of 580 to 400°C.
Permanent magnetic properties are imparted by continuous cooling aging (or multi-stage aging) that cools the alloy to a temperature of There is a disadvantage that the continuous cooling aging (or multi-stage aging) treatment time is long. The object of the present invention is to eliminate this drawback and provide a magnet alloy of this type which requires a short heat treatment time as described above. The present invention is a Fe-Cr-Mo-Co cast permanent magnet alloy, which has a weight ratio of 15 to 35% Cr and 15% or less.
A spinodal decomposition type Fe-Cr-Mo- characterized in that the isothermal magnetic field treatment time can be shortened while maintaining the magnetic properties by making Mo, 1 to 6% Co the balance substantially Fe. Co permanent magnet alloy. Note that the expression "the remainder substantially consists of Fe" herein means that impurities (for example, Si, C, etc.) that are inevitably mixed into the raw material may be included. For example, Fechrome can be used as a part of Fe and Cr raw material, and in this case, Si is 0.01~
Contains 0.5% and 0.01 to 0.2 C. This alloy also has 0.1-0.9% as a subcomponent.
Ti, 0.01-0.1% Al, 0.02-2.% rare earth metal, 1-2% V, 0.5-2% Si and 0.05-2%
At least one type of Zr may be added. According to the alloy of the present invention, the aging time in a magnetic field (or isothermal aging) may be within 2 hours, and the average cooling rate in continuous cooling aging (or multistage aging) treatment is 3°C/hour to 40°C/hour. This has the advantage of greatly shortening the heat treatment time. The present invention will be described below with reference to Examples. Example 1 26wt%Cr, 6wt%Mo, 4wt%Co, remaining substantially
Fe (hereinafter referred to as A alloy), 26wt%Cr, 4wt%
Co and the remaining substantially Fe (hereinafter referred to as B alloy) were melted in vacuum and molded into a shell mold of 5 mmφ x 40 mm.
L alloy samples were cast, and then these samples were
After solution treatment at 1000°C for 1 hour, isothermal magnetic field treatment was performed at a temperature of 590°C for A alloy and 600°C for B alloy for 0.5 hour, 1 hour and 2 hours, Then, from 570℃, cooling rate 1
℃/hour, 3℃/hour, 5℃/hour,
The magnetic properties were measured after continuous cooling aging to 400℃. The results are shown in Figure 1 for alloy A.
Alloy B is shown in Figure 2. As is clear from both figures, compared to the conventional B alloy, the A alloy according to the present invention has a sufficient residual magnetic flux density even when the isothermal magnetic field treatment time is within 2 hours and the aging treatment cooling rate is 3°C/hour. (Br), exhibits high coercive force (Hc) and maximum energy product ((BH)max). That is, unlike alloy B, it is not necessary to set the isothermal magnetic field treatment time to 2 hours or more and the aging cooling rate to a slow cooling rate such as 1° C./hour. Example 2 xwt%Cr, 6wt%Mo, 4wt%Co, remaining substantially
For alloy samples made of Fe, x is 10, 15, 20, 35,
40, vacuum melted as in Example 1 to obtain 5mmφ
x40mmL with a shell mold, and after solution treatment of these alloy samples at 1000℃ for 1 hour,
Isothermal magnetic field treatment at a temperature of 570-630℃ for 1 hour,
Thereafter, continuous cooling aging was performed from 570°C to 400°C at a cooling rate of 3°C/hour, and the magnetic properties were measured.
At x=10, at an isothermal magnetic field treatment temperature of 625℃, Br=
3KG, Hc=50Oe, (BH)max=0.05MGOe,
At x=15, at an isothermal magnetic field treatment temperature of 625℃, Br=
16KG, Hc=300Oe, (BH)max=2MGOe,
At x=20, at an isothermal magnetic field treatment temperature of 600℃, Br=
At 14KG, Hc = 600Oe, (BH)max = 5.5MGOe, and x = 35, Br = 8KG, Hc = 800Oe, (BH)max = 3MGOe at an isothermal magnetic field treatment temperature of 575°C.
However, when x=40, the isothermal magnetic field treatment temperature was set at 570°C, but only unsatisfactory magnetic properties such as Br of 1 KG or less were obtained. Therefore, x is 15 to 35
It can be seen that this is a range that exhibits stable magnetic properties. Example 3 26wt%Cr, ywt%Mo, 4wt%Co remaining substantially Fe
Alloy samples with y of 0.001, 2, 4, 6,
8, 10, 14, 18, 20, as in Example 1,
The alloy samples were melted in vacuum and cast in a shell mold to a size of 5 mmφ x 40 mm using a shell mold. These alloy samples were subjected to solution treatment at 1000°C for 1 hour, and then subjected to isothermal magnetic field treatment at a temperature of 570° to 600°C for 1 hour. Thereafter, it was cooled from 570°C to 400°C at a cooling rate of 3°C/hour, and its magnetic properties were measured. At y=0.001, the isothermal magnetic field treatment temperature
At 600℃, Br=13.5KG, Hc=500Oe, (BH)
At max=4MGOe, y=2, isothermal magnetic field treatment temperature
At 600℃, Br=13KG, Hc=570Oe, (BH)max=4MGOe, y=4, isothermal magnetic field treatment temperature 595℃, Br=12.8KG,
Hc=630Oe, (BH)max=5.5MGOe, y=6, isothermal magnetic field treatment temperature 590℃, Br=12.5KG, Hc=700Oe (BH)max=6.5MGOe, y=8, isothermal magnetic field treatment temperature At 585℃, Br=12.0KG, Hc=720Oe, (BH)max=6MGOe, y=10, at isothermal magnetic field treatment temperature 580℃, Br=11KG, Hc
=730Oe, (BH)max=4MGOe, y=14,
Isothermal magnetic field treatment temperature is 575℃, Br=10KG, Hcw750Oe, (BH)max=3.5MGOe, y=18
Then, at isothermal magnetic field treatment temperature 570℃, Br = 9KG, Hc = 800Oe, (BH)max = 3MGOe, y = 20, at isothermal magnetic field treatment temperature 570℃, Br = 7KG, Hc
= 820Oe, (BH)max = 2MGOe. However, if y=18 or more, the sample will crack during the casting stage, making it practically difficult to manufacture. Therefore, y is
It can be seen that the range is from 0.001 to 16. Example 4 26wt%Cr, 6wt%Mo, zwt%Co, remaining substantially
Alloy samples made of Fe were prepared with z of 0, 2, 4, 6,
Samples 8, 10, and 12 were vacuum melted in the same manner as in Example 1, and cast into a 5 mmφ x 40 mm L shape using a shell mold. An isothermal magnetic field treatment was carried out for 1 hour at a temperature of 570°C and then continuous cooling was performed from 570°C to 400°C at a cooling rate of 3°C/hour, and the magnetic properties were measured. At z=0, at an isothermal magnetic field treatment temperature of 570℃, Br=
12.5KG, Hc=640Oe, (BH)max=4MGOe, z=2, isothermal magnetic field treatment temperature 575℃, Br=
12.5KG, He=660Oe, (BH)max=6MGOe, z=4, isothermal magnetic field treatment temperature 580℃, Br=
12.5KG, Hc=700Oe, (BH)max=6.5MGOe, z=6, isothermal magnetic field treatment temperature 590℃, Br=
12.7KG, Hc=710Oe, (BH)max=6.8MGOe, z=8, isothermal magnetic field treatment temperature 600℃, Br=
12.5KG, Hc=720Oe, (BH)max=5.5MGOe, z=10, isothermal magnetic field treatment temperature 620℃, Br=
13KG, Hc=730Oe, (BH)max=6MGOe, z=12, isothermal magnetic field treatment temperature 630℃, Br=
12.8KG, Hc=740.Oe, (BH)max=5.5MGOe
showed that. However, when z=8 or more, undesirable σ phase tends to precipitate during magnetic product forming processes such as cold working, which causes processing problems. From this point of view, in order to satisfy both magnetic properties and workability, Co must be contained at 6 wt% or less. Example 5 26wt%Cr, 6wt%Mo, 4wt%Co, remaining substantially
The main component is Fe (a), 0.5wt% Ti, (b) 0.05wt%
Al, (c) 0.1wt% rare earth metal, (d) 1.5wt
%V, (e) 0.6wt%Si, and (f) 0.1wt%Zr were added, dissolved in the atmosphere, and molded into 5mmφ×40mmL in a shell mold.
An alloy sample was obtained by casting at 1,000°C, solution treatment was performed at 1000°C for 1 hour, and an isothermal magnetic field treatment was performed at a temperature of 590°C for 1 hour, followed by a cooling rate of 3°C/3°C from 570°C to 400°C. When the magnetic properties were measured after continuous cooling for several hours, the same properties as Alloy A of Example 1 were obtained. The results are shown in Table 1.

【表】 即ち、(a)〜(f)の添加物を加えることにより、大
気溶解で、磁石特性を劣化させることなく、磁石
合金を得ることができる。なお、各添加物の量
は、塑性加工性および磁気特性の点で重量比にし
て、0.1〜0.9%Ti、0.01〜0.1%Al、0.02〜2%希
土類ミツシユメタル、1〜2%V、0.5〜0.2%Si、
0.05〜2%Zrの範囲に限定される。即ち、Tiは1
%以上であると、そ性加工性が悪くなり、0.1%
以下では磁気特性が真空溶解時以下となる。Al、
希土類ミツシユメタル、V、Zrについては、上
述の値の範囲外では磁気特性が真空溶解による場
合よりも悪くなる。Siも上述の範囲内で、溶解時
の湯流れを向上させ、かつ磁気特性を向上させ
る。なお、Siは原料中に不可避的に混入するSiの
量とは無関係に上述の量だけ添加されるものとす
る。 以上、本発明を特定の実施例について説明した
が、本発明では、Fe−Cr−CoにMoを含有した
Fe−Cr−Mo−Co系スピノーダル分解型永久磁
石であり、磁場中時効の処理時間の短縮および連
続冷却時効あるいは多段冷却時効処理の冷却速度
を早めることを可能にし、この結果処理工程が短
縮し、コストも低減できるとともに省エネルギー
の要求にもかなうものである。
[Table] That is, by adding the additives (a) to (f), a magnetic alloy can be obtained by atmospheric melting without deteriorating the magnetic properties. In terms of plastic workability and magnetic properties, the amounts of each additive are 0.1-0.9% Ti, 0.01-0.1% Al, 0.02-2% rare earth metal, 1-2% V, and 0.5-0.5% by weight. 0.2%Si,
It is limited to a range of 0.05 to 2% Zr. That is, Ti is 1
If it is more than 0.1%, the processability will be poor.
Below, the magnetic properties will be lower than those of vacuum melting. Al,
For rare earth metals, V, and Zr, outside the above-mentioned value range, the magnetic properties become worse than those obtained by vacuum melting. Within the above-mentioned range, Si also improves melt flow during melting and improves magnetic properties. Note that Si is added in the above amount regardless of the amount of Si that is inevitably mixed into the raw material. The present invention has been described above with reference to specific examples, but in the present invention, Fe-Cr-Co contains Mo.
Fe-Cr-Mo-Co spinodal decomposition type permanent magnet, which makes it possible to shorten the processing time for aging in a magnetic field and accelerate the cooling rate for continuous cooling aging or multi-stage cooling aging, resulting in a shorter processing process. , it is possible to reduce costs and meet the requirements for energy conservation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、26wt%Cr−6wt%Mo−4wt%Co−
残Fe合金の等温磁場処理時間に対する時効冷却
速度別の磁気特性の変化を示したグラフであり、
第2図は、26wt%のCr−4wt%Co−残Fe合金の
第1図と同様のグラフである。
Figure 1 shows 26wt%Cr-6wt%Mo-4wt%Co-
It is a graph showing changes in magnetic properties according to aging cooling rate with respect to isothermal magnetic field treatment time of residual Fe alloy,
FIG. 2 is a graph similar to FIG. 1 for a 26 wt% Cr-4 wt% Co-remaining Fe alloy.

Claims (1)

【特許請求の範囲】 1 重量比で15〜35%Cr、0〜15%(0は含ま
ず)Mo、1〜6%Co、残部実質的にFeよりな
り、等温磁場処理時間を、磁気特性を維持しつつ
短縮できるようにしたことを特徴とするスピノー
ダル分解型Fe−Cr−Mo−Co永久磁石合金。 2 重量比で15〜35%Crと、0〜15%(0は含
まず)Moと、1〜6%Coと、0.1〜0.9%Ti、
0.01〜0.1%Al、0.02〜2%希土類ミツシユメタ
ル、1〜2%V、0.5〜2%Siおよび0.05〜2%
Zrの群より選ばれた少なくとも一種と、残部実
質的にFeとよりなり、等温磁場処理時間を、磁
気特性を維持しつつ短縮できるようにしたことを
特徴とするスピノーダル分解型Fe−Cr−Mo−
Co永久磁石合金。
[Claims] 1 Consisting of 15 to 35% Cr, 0 to 15% (not including 0) Mo, 1 to 6% Co, and the balance substantially Fe in terms of weight ratio, and the isothermal magnetic field treatment time is determined by the magnetic properties. A spinodal decomposition type Fe-Cr-Mo-Co permanent magnet alloy characterized by being able to shorten while maintaining. 2 Weight ratio: 15-35% Cr, 0-15% (not including 0) Mo, 1-6% Co, 0.1-0.9% Ti,
0.01-0.1% Al, 0.02-2% rare earth metal, 1-2% V, 0.5-2% Si and 0.05-2%
A spinodal decomposition type Fe-Cr-Mo characterized by consisting of at least one selected from the group of Zr and the remainder substantially Fe, making it possible to shorten the isothermal magnetic field treatment time while maintaining magnetic properties. −
Co permanent magnet alloy.
JP7299079A 1979-06-12 1979-06-12 Spinodal decomposition type fe-cr-mo-co permanent magnet alloy Granted JPS56254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7299079A JPS56254A (en) 1979-06-12 1979-06-12 Spinodal decomposition type fe-cr-mo-co permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7299079A JPS56254A (en) 1979-06-12 1979-06-12 Spinodal decomposition type fe-cr-mo-co permanent magnet alloy

Publications (2)

Publication Number Publication Date
JPS56254A JPS56254A (en) 1981-01-06
JPH0238657B2 true JPH0238657B2 (en) 1990-08-31

Family

ID=13505341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7299079A Granted JPS56254A (en) 1979-06-12 1979-06-12 Spinodal decomposition type fe-cr-mo-co permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS56254A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149456A (en) * 1981-03-10 1982-09-16 Sumitomo Special Metals Co Ltd Dendritic fe-cr-co magnet alloy
US4601876A (en) * 1981-08-31 1986-07-22 Sumitomo Special Metals Co., Ltd. Sintered Fe-Cr-Co type magnetic alloy and method for producing article made thereof
JP2616085B2 (en) * 1990-01-25 1997-06-04 日産自動車株式会社 Actuating pressure control actuator for fluid pressure actuation system
JPH03279062A (en) * 1990-03-28 1991-12-10 Nissan Motor Co Ltd Operating pressure control actuator for fluid pressure operating system
JP2534801B2 (en) * 1990-12-28 1996-09-18 凸版印刷株式会社 Liquid filling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920451A (en) * 1972-06-23 1974-02-22
JPS5118884A (en) * 1974-06-25 1976-02-14 Amp Inc Denkisetsutenno kairyo
JPS5273120A (en) * 1975-12-16 1977-06-18 Nippon Telegr & Teleph Corp <Ntt> Preparation of magnetic materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920451A (en) * 1972-06-23 1974-02-22
JPS5118884A (en) * 1974-06-25 1976-02-14 Amp Inc Denkisetsutenno kairyo
JPS5273120A (en) * 1975-12-16 1977-06-18 Nippon Telegr & Teleph Corp <Ntt> Preparation of magnetic materials

Also Published As

Publication number Publication date
JPS56254A (en) 1981-01-06

Similar Documents

Publication Publication Date Title
KR100375306B1 (en) Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate
US3982972A (en) Semihard magnetic alloy and a process for the production thereof
US4324597A (en) Magnetic alloy
US4059462A (en) Niobium-iron rectangular hysteresis magnetic alloy
US3989556A (en) Semihard magnetic alloy and a process for the production thereof
JPH0238657B2 (en)
JP2018188690A (en) Low thermal expansion alloy
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
US4082579A (en) Rectangular hysteresis magnetic alloy
US4496402A (en) Fe-Cr-Co Type magnet body of columnar structure and method for the preparation of same
US2983602A (en) Cobalt alloys
US5441578A (en) Method for producing soft magnetic alloys with very high permeability and alloys resulting therefrom
US3287110A (en) Non-ferrous alloy and method of manufacture thereof
JPS6326192B2 (en)
JPH04116141A (en) High-hardness and low-permeability nonmagnetic functional alloy and its production
SU1120031A1 (en) Magnetically hard alloy
JPH06184703A (en) Fe-ni alloy for electron gun parts
US2105653A (en) Steel for permanent magnets
US2227946A (en) Manufacture of permanent magnets
US2829970A (en) Beryllium containing nickel, manganese, copper alloys
JPH06322483A (en) Hot tool steel excellent in hardenability and creep property
JP2691713B2 (en) Method for producing Cr-Ni-based stainless steel having excellent hot workability
SU1737012A1 (en) Alloy with specified linear expansion coefficient
JPS60243251A (en) Semihard magnetic alloy
JP2003138336A (en) Low thermal expansion cast steel