JPH0238400A - Semi-insulating gaas single crystal and production thereof - Google Patents
Semi-insulating gaas single crystal and production thereofInfo
- Publication number
- JPH0238400A JPH0238400A JP18688588A JP18688588A JPH0238400A JP H0238400 A JPH0238400 A JP H0238400A JP 18688588 A JP18688588 A JP 18688588A JP 18688588 A JP18688588 A JP 18688588A JP H0238400 A JPH0238400 A JP H0238400A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- wafer
- carbon
- boron
- gaas single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 24
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000012535 impurity Substances 0.000 claims abstract description 16
- 229910052796 boron Inorganic materials 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000011261 inert gas Substances 0.000 claims abstract description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 238000005468 ion implantation Methods 0.000 abstract description 4
- 235000012431 wafers Nutrition 0.000 description 32
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910052785 arsenic Inorganic materials 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000565 sealant Substances 0.000 description 4
- 238000000516 activation analysis Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はGaAsウェハにイオン注入を行う際の熱処理
工程において該ウニ八表面の抵抗率が熱処理しても安定
である半絶縁性caAs*結品3よびその製造方法に関
する。Detailed Description of the Invention [Industrial Application Field] The present invention is a semi-insulating caAs* crystal whose resistivity on the surface remains stable even after the heat treatment during ion implantation into a GaAs wafer. Product 3 and its manufacturing method.
[従来技&]
抵抗率が106ΩC■以上の半絶縁性GaAs単結晶は
電界効果トランジスタ等の半導体装置の素子として有用
である。通常半絶縁性GaAs単結晶をウェハに加工し
、このウェハ上にイオン注入を行い素子を製造する。こ
のように、イオン注入したウェハの表面は結晶性に乱れ
を生じているので、それを修正するために約800°C
て10〜30分程度の熱処理を行っている。しかしなが
ら、上記熱処理によって、ウェハ表面からAsが蒸発す
るので、ウェハ表面のAs5度が減少し、これに伴って
深いドナー型欠陥の数も減少する。従ってアクセプタ型
不純物を補償できなくなり、単結晶作成時に半絶縁性を
有していたとしても、それを失い、ウェハ表面の抵抗率
が低下し、素子として使用するのに不具合を生ずる。こ
のアクセプタ型不純物としては、従来は主として炭素が
知られており、他の亜鉛、マンガン等の濃度は無視でき
る程度なので、炭素濃度を一定値以下に制御する方法か
専らとられていた。例えば特開昭62−3070C1号
公報ては結晶中に含有する炭素濃度か1.5 XIO”
原子数/C13以下である化合物半導体単結晶を開示し
、また特開昭62−70300号公報では直接合成LE
C法によって製造されるアンドープGaAs単結晶であ
って、結晶中に浅いアクセプターおよびドナーレベルを
形成する主要な残留不純物である炭素およびシリコンの
濃度がそれぞれ5 X Is”am−’および2 x
10”cs−3以下てあり、かつ室温での比抵抗か約3
×10’〜l X 10’Ωc1の範囲内の抵抗率を有
する半絶縁性GaAs単結晶を開示している。しかしな
がら、上記の公報に示されるような低い炭素濃度に制御
されたGaAs単結品ウェハであっても、イオン注入後
の熱処理によってクエへの表面抵抗率(R,)か1 x
10’Ω/口以下になることか多く、熱的に安定なG
aAs単結晶か望まれていた。[Prior Art &] A semi-insulating GaAs single crystal having a resistivity of 106 ΩC or more is useful as an element of a semiconductor device such as a field effect transistor. Normally, a semi-insulating GaAs single crystal is processed into a wafer, and ions are implanted onto the wafer to manufacture devices. In this way, the surface of the ion-implanted wafer has disordered crystallinity, so in order to correct it
Heat treatment is performed for about 10 to 30 minutes. However, as As is evaporated from the wafer surface by the heat treatment, the As5 degree on the wafer surface is reduced, and the number of deep donor-type defects is also reduced accordingly. Therefore, it becomes impossible to compensate for acceptor-type impurities, and even if the single crystal had semi-insulating properties at the time of fabrication, it is lost, the resistivity of the wafer surface decreases, and it becomes difficult to use it as a device. Conventionally, carbon has been mainly known as this acceptor type impurity, and since the concentrations of other zinc, manganese, etc. are negligible, a method of controlling the carbon concentration below a certain value has been used exclusively. For example, in JP-A No. 62-3070C1, the carbon concentration in the crystal is 1.5
A compound semiconductor single crystal with the number of atoms/C13 or less is disclosed, and JP-A-62-70300 discloses a direct synthesis LE.
Undoped GaAs single crystal produced by the C method, with concentrations of carbon and silicon, which are the main residual impurities forming shallow acceptor and donor levels in the crystal, of 5 x Is"am-' and 2 x
10"cs-3 or less, and the specific resistance at room temperature is about 3
A semi-insulating GaAs single crystal is disclosed having a resistivity in the range of x 10' to l x 10' Ωc1. However, even in a single GaAs wafer whose carbon concentration is controlled to be low as shown in the above-mentioned publication, the surface resistivity (R,) or 1 x
Often less than 10'Ω/mouth, thermally stable G
AAs single crystal was desired.
[発明か解決しようとする課題]
本発明の目的は上記問題点を解消し、ウェハにイオン注
入を行う際の熱処理工程において該ウェハの表面抵抗率
(Rヨ)か安定である半絶縁性GaAs単結晶およびそ
の製造方法を提供することである。[Problems to be Solved by the Invention] An object of the present invention is to solve the above-mentioned problems, and to provide a semi-insulating GaAs whose surface resistivity (Ryo) of the wafer is stable during the heat treatment process when ion implantation is performed on the wafer. An object of the present invention is to provide a single crystal and a method for producing the same.
[課題を解決するための手段]
」二足目的を達成するために第1に本発明は液体封止引
上法により製造されるGaAs単結晶であって、上記単
結晶中にホウ素(B)および/または炭素(C)を含有
し、該B量の2.5%以下と該C全量との和が2 X
10”cm−3以下であり、かつアクセプタ型不純物で
ある点に特徴がある。[Means for Solving the Problems] In order to achieve the two objectives, the present invention firstly provides a GaAs single crystal produced by a liquid-sealed pulling method, in which boron (B) is added to the single crystal. and/or carbon (C), and the sum of 2.5% or less of the amount of B and the total amount of C is 2
It is characterized in that it is less than 10"cm-3 and is an acceptor type impurity.
第2に本発明は、液体封止引上法てGaAs単結晶を製
造するに際して、前記単結晶からウェハを加工し該ウェ
ハを850℃で30分間不活性ガスおよび/または水素
雰囲気中で熱処理した後、該ウェハ中のBとCとを分析
し該BとCの濃度が(T)式に従うように前記単結胃内
に含有するBおよびCの濃度を制御する点に特徴がある
。Second, in the present invention, when producing a GaAs single crystal using a liquid-sealed pulling method, a wafer is processed from the single crystal, and the wafer is heat-treated at 850° C. for 30 minutes in an inert gas and/or hydrogen atmosphere. Afterwards, B and C in the wafer are analyzed and the concentrations of B and C contained in the monolumen are controlled so that the concentrations of B and C follow equation (T).
logRs=ylog([C]+ −[B]) +Z
([)但し
R1・・・表面抵抗率[Ω/口]
[C]・・・ウェハ中に含有される炭素濃度[原子数/
c+w’1
[B]・・・ウェハ中に含有されるホウ素濃度[原子数
/CCココ
X・・・係数、1.0≦X≦2.5
y・・・係数、−3≦y≦−1
Z・・・係数、35≦2≦50
[作用]
本願発明者らの研究によれば、液体封止引上法により製
造されるGaAsm結晶において熱処理によりて作用す
るアクセプタ型不純物は、Cたけてなく大量に結晶中に
残留しているBのうちの一定割合以下のBもまたアクセ
プタ型不純物として作用することを見い出しく第34回
応用物理学関係連合講演会予稿集28p−Z−9)だか
、以後詳細な調査検討を行い本発明に到った。logRs=ylog([C]+ −[B]) +Z
([) However, R1...Surface resistivity [Ω/mouth] [C]...Concentration of carbon contained in the wafer [number of atoms/
c+w'1 [B]...Boron concentration contained in the wafer [number of atoms/CC here 1 Z... Coefficient, 35≦2≦50 [Function] According to the research conducted by the inventors of the present application, acceptor type impurities that act upon heat treatment in GaAsm crystals produced by the liquid-sealed pulling method are We discovered that a certain proportion of B, which remains in large amounts in crystals, also acts as an acceptor-type impurity. Proceedings of the 34th Applied Physics Association Lecture 28p-Z-9) However, after detailed research and study, we arrived at the present invention.
本究明の゛衿絶縁性GaAs単結晶は液体刃1F引上法
により得られるものであって、アンドープ品やインジウ
ムなどの中性不純物やクロム等の深いアクセプタ準位を
生成するドーピング品でも区別なく用いることかてきる
。The insulating GaAs single crystal of this study is obtained by the liquid blade 1F pulling method, and there is no difference between undoped products, neutral impurities such as indium, and doped products that generate deep acceptor levels such as chromium. You can use it.
ガリウム(Ga)およびヒ素(As)は半導体用に精製
した99.9’l’1重量%以上の純度を有するものが
好しく、これらをGaとAsのモル比(As/Ga)か
1.00〜1.05、即ち若干As過剰の条件で仕込む
と好適な半絶縁性のGaAs単結晶を得ることかできる
。該GaAs単結晶はBおよび/またはCを含有し、該
Bqの2.5%以下と該C全量との和が2 X 10”
cm−3以下てありかつアクセプタ型不純物であること
が必要である。即ち、該GaAs単結晶中に該BとCと
を共に含有する場合には該B濃度の大小に関係なく、そ
の2.5%以下のBlと該C全量との和が、アクセプタ
型不純物として機能する。従って、該和が2 x 10
”cm−’を越えると、該GaAsウェハの表面抵抗率
か低下し半絶縁性か損なわれる。該GaAsQi結晶中
にBを含有しない場合には、C量単独で2 X 10”
cs−”以下とする必要かあり、一方Cを含有しない場
合には、Biの2.5%以下に当る量を2 x 10”
c〔コ以下でありかつアクセプタ型不純物とする必要が
ある。Gallium (Ga) and arsenic (As) are preferably purified for semiconductors and have a purity of 99.9'l'1% by weight or more, and are mixed at a molar ratio of Ga to As (As/Ga) of 1. 00 to 1.05, ie, with a slight excess of As, a suitable semi-insulating GaAs single crystal can be obtained. The GaAs single crystal contains B and/or C, and the sum of 2.5% or less of the Bq and the total amount of C is 2 x 10"
It is necessary that the impurity be less than cm-3 and be an acceptor type impurity. That is, when the GaAs single crystal contains both B and C, the sum of 2.5% or less of Bl and the total amount of C is considered as an acceptor type impurity, regardless of the magnitude of the B concentration. Function. Therefore, the sum is 2 x 10
If it exceeds "cm", the surface resistivity of the GaAs wafer decreases and the semi-insulating property is lost.If the GaAsQi crystal does not contain B, the amount of C alone is 2 x 10"
cs-" or less; on the other hand, if it does not contain C, the amount corresponding to 2.5% or less of Bi should be 2 x 10"
It is necessary that the impurity be less than c [c] and be an acceptor type impurity.
木出願の第2の発明において、該GaAs単結晶から加
工するウェハは通常の大きさ、形状のものでよく、例え
ば直径が2インチ、または3インチで厚さか1−一程度
のものか用いられる。In the second invention of the patent application, the wafer processed from the GaAs single crystal may be of a normal size and shape, for example, a diameter of 2 inches or 3 inches and a thickness of about 1 to 1 inch. .
液体封止引上法により高純度のGaとAsを原料としB
20:Iを封止剤に用い、それぞれ異ったGaAs融液
温度、単結晶用」二時間等の条件で製造したGaAs単
結晶をウェハに加工し、熱処理した後に、これらのウェ
ハ中のBとCの定量分析値とウェハの表面抵抗率(R,
)との関係を求めると第1図のような相関が認められる
。この第1図の相関は(I)式て表わされるものであり
、該([)式中でXは1〜2.5の範囲で選ばれ百分率
を示す項てあって特にx=2が中央値を示す、またyは
−3〜−1の範囲、2は35〜50の範囲で選ばれ、特
にy = −2,7,Z = 49が中央値を示すもの
である。Using high-purity Ga and As as raw materials using the liquid-sealed pulling method, B
GaAs single crystals manufactured using 20:I as a sealant, different GaAs melt temperatures, two hours for single crystals, etc. are processed into wafers, and after heat treatment, the B in these wafers is Quantitative analysis values of and C and wafer surface resistivity (R,
), we find a correlation as shown in Figure 1. The correlation shown in Figure 1 is expressed by the formula (I), in which X is selected in the range of 1 to 2.5 and is a term indicating a percentage, especially when x = 2 is in the center. In addition, y is selected in the range of -3 to -1, 2 is selected in the range of 35 to 50, and in particular, y = -2,7, Z = 49 represents the median value.
(1)式によれば、該GaAsウェハ中のBとCの濃度
を制御することにより、所望のR,を有するウェハを製
造することか回部てあり、特にR,か107Ω/ロ以上
のものとするために有効であり、該GaAg単結晶引上
に際して条件を加えればよい。According to Equation (1), it is possible to manufacture a wafer with a desired R by controlling the concentrations of B and C in the GaAs wafer, and in particular, it is possible to manufacture a wafer with a desired R of 107Ω/R or more. It is effective to achieve this by adding conditions when pulling the GaAg single crystal.
例えば、Be1度の低減のためには液体封止剤R,0□
かGaAs融液中へ混入するのを抑制するように、通常
知られているようなり20.層の温度を下げたり、結品
引上に要する時間を短縮したり、酸化ガリウムのような
りと反応して安定な化合物を生成する化合物を添加する
方法や、水分率の低いB20:lを用いる方法等が挙げ
られる。一方C濃度の低減のためには、本出願人が特願
昭63−68065号公報で開示したような引上機チャ
ンバー内に発生した不純物ガスを精製装置で除去する方
法を挙げることかできるか、他の方法でも特に制限され
るものではない。該熱処理は845〜8558Cで29
〜31分が好適であり用いる加熱装置は電気炉、高周波
炉、赤外線加熱炉等が望ましい。該不活性ガスとしては
、アルゴン、窒素、ヘリウム等を挙げることがてき、こ
れらガスを単独で用いても混合して用いても差支えない
。該不活性ガスを水素と混合すれば酸化を防止できてよ
り効果的であり、水素単独ても差支えない。該ウェハ中
のBおよびCの分析方法は特に限定されないが、Bにつ
いては誘導結合プラズマ発光分光分析法(ICP) 、
二次イオン質量分析法(SIMS)を挙げることかてき
、特にSIMSか好ましい。またCについては放射化分
析法、赤外分光分析法を挙げることがてき、特に放射化
分析法が好ましい。該表面抵抗率(R1)の測定方法と
しては、特に限定されず、通常の高抵抗測定器、例えば
DIGITAL IIIGII MEGOIIM ME
TER(タケダ理研製TR8611八)を用いればよい
。For example, to reduce Be by 1 degree, liquid sealant R,0□
20. In order to suppress the mixture into the GaAs melt, as is generally known, 20. Methods include lowering the temperature of the layer, shortening the time required for pulling the crystals, adding a compound that reacts with gallium oxide to produce a stable compound, and using B20:L with a low moisture content. Examples include methods. On the other hand, in order to reduce the C concentration, it is possible to use a method of removing impurity gas generated in the pulling machine chamber using a purification device, as disclosed by the present applicant in Japanese Patent Application No. 63-68065. , other methods are also not particularly limited. The heat treatment was performed at 845-8558C at 29
The heating time is preferably 31 minutes, and the heating device used is preferably an electric furnace, high-frequency furnace, infrared heating furnace, or the like. Examples of the inert gas include argon, nitrogen, helium, etc., and these gases may be used alone or in combination. It is more effective to prevent oxidation by mixing the inert gas with hydrogen, but hydrogen alone may also be used. The analysis method for B and C in the wafer is not particularly limited, but for B, inductively coupled plasma optical emission spectroscopy (ICP),
Secondary ion mass spectrometry (SIMS) may be mentioned, and SIMS is particularly preferred. Regarding C, activation analysis method and infrared spectroscopy can be mentioned, and activation analysis method is particularly preferred. The method for measuring the surface resistivity (R1) is not particularly limited, and a conventional high resistance measuring instrument such as DIGITAL III MEGOIIM ME can be used.
TER (TR86118 manufactured by Takeda Riken) may be used.
[実施例−1]
99.9999重量%であるGaとAsを用いAs/G
aのモル比を1.05として封止剤としてB2O3を用
いて液体封止引上法によりアンドープの3種類のGaA
s1結晶を製造した。これらのGaAs単結晶からそれ
ぞれ直径2インチ厚さl■のウェハを切り出した。水素
雰囲気にした電気炉内に同種類のウェハを二枚重ね合せ
て設置しピーク温度850℃て保持時間30分処理した
。熱処理後、このウェハのBについては31MS法で、
Cについては放射化分析法で分析した。表面抵抗率(R
,)についてはDIGITAL旧GHMEGOll−閘
ETERTR8611A (タケダ理研製)を用いて
測定した。B量分新値の2%を計算し、全C量分析値と
の和を求めR1との関係を求めた。これらの結果を第1
表に示す。[Example-1] As/G using 99.9999% by weight of Ga and As
Three types of undoped GaA were prepared by a liquid sealing pulling method using B2O3 as a sealant with a molar ratio of 1.05.
A s1 crystal was produced. Wafers each having a diameter of 2 inches and a thickness of 1 cm were cut from each of these GaAs single crystals. Two wafers of the same type were stacked and placed in an electric furnace in a hydrogen atmosphere, and processed at a peak temperature of 850° C. for a holding time of 30 minutes. After heat treatment, B of this wafer was processed using the 31MS method.
C was analyzed by activation analysis. Surface resistivity (R
, ) were measured using DIGITAL old GHMEGOll-ETERTR8611A (manufactured by Takeda Riken). 2% of the new value for B amount was calculated, and the sum with the total C amount analysis value was determined to determine the relationship with R1. These results are the first
Shown in the table.
第1表
第1表から([C]+2%[B])の値が2×1015
以下であるサンプルNO,1のウェハのみR。Table 1 From Table 1, the value of ([C] + 2% [B]) is 2 x 1015
Only the wafer of sample No. 1 below is R.
か107Ω/ロ以上となり、半絶縁性を維持しているこ
とかわかる。It can be seen that it maintains semi-insulating properties because it is 107 Ω/Ω or more.
[実施例−2]
99.9999 ffli%のGaとAsを原料として
用いAs/Gaのモル比を1.0として水分量が200
1)P−以下の8203を封止剤として用い、添加剤と
してGaJxを80mg、:l口Qsg 、 1500
mgをそれぞれ添加してアルゴンを封入して20 kg
/ cta”とし1500℃に昇温し液体封止引上法に
よりアンドープのGaAs単結晶を製造した。引上機チ
ャンバ内の発生ガス、主として一酸化炭素と二酸化炭素
とを封入アルゴンと共に循環速度を11/分にしてマス
フローコントローラーを用いて循環しジルコニウム−ゼ
オライト系吸着剤充填カラムへ導入して、これら炭素含
有ガスを除去した。引き上げた単結晶から実施例−1と
同様にしてウェハを加工し、熱処理を行い、CおよびB
を定量し1表面抵抗率(R,)を測定した。第2表にG
a、O,の添加量とCおよびBの濃度そして表面抵抗率
(R1)との関係を示す。今(I)式を次の(1)′式
のように各係数を定め(I)′
定量したCとBの分析値を代入して計算したR1を実測
値と比較すると、良い一致を示すことか分る。[Example-2] Using 99.9999 ffli% of Ga and As as raw materials, the As/Ga molar ratio was set to 1.0, and the water content was 200%.
1) Using 8203 below P- as a sealant, 80 mg of GaJx as an additive: l mouth Qsg, 1500
20 kg by adding each mg and enclosing argon.
/cta'' and the temperature was raised to 1500°C, and an undoped GaAs single crystal was produced by the liquid-sealed pulling method.The gas generated in the pulling machine chamber, mainly carbon monoxide and carbon dioxide, was circulated at a circulating rate with enclosed argon. These carbon-containing gases were removed by circulating the mixture using a mass flow controller at a rate of 11/min and introducing it into a column packed with a zirconium-zeolite adsorbent.Wafers were processed from the pulled single crystal in the same manner as in Example-1. , heat treated, C and B
was quantified and the surface resistivity (R,) was measured. G in Table 2
The relationship between the amount of addition of a, O, the concentration of C and B, and the surface resistivity (R1) is shown. Now, define each coefficient for equation (I) as shown in equation (1)' below (I)'. Comparing R1 calculated by substituting the analyzed values of quantified C and B with the measured value shows good agreement. I understand.
[発明の効果]
本発明を実施することにより、第1としてウェハにイオ
ン注入を行う際の熱処理工程後においても該ウェハの表
面抵抗率(R5)か安定な半絶縁性GaAs単結晶を得
ることができる。また第2として、所望の表面抵抗率(
R5)を有するGaAs単結晶ウェハ、特にR3か確実
に10’Ω/口以上であるものを得ることができるのて
その効果は極めて高いものかある。[Effects of the Invention] By carrying out the present invention, firstly, it is possible to obtain a semi-insulating GaAs single crystal with a stable surface resistivity (R5) of the wafer even after the heat treatment process when ion implantation is performed on the wafer. Can be done. Second, the desired surface resistivity (
Since it is possible to obtain a GaAs single crystal wafer having R5), especially one in which R3 is reliably 10'Ω/or more, the effect is extremely high.
第1図は本発明によるウェハ中の([C] −2% [
B] )と表面抵抗率(R5)との関係を示すものであ
る。FIG. 1 shows ([C] −2% [
B]) and surface resistivity (R5).
Claims (2)
であって、上記単結晶中にホウ素および/または炭素を
含有し、該ホウ素の2.5%以下と該炭素全量との和が
2×10^1^5cm^−^3以下であり、かつアクセ
プタ型不純物であることを特徴とする半絶縁性GaAs
単結晶。(1) A GaAs single crystal produced by a liquid-sealed pulling method, wherein the single crystal contains boron and/or carbon, and the sum of 2.5% or less of the boron and the total amount of carbon is Semi-insulating GaAs characterized by having a thickness of 2×10^1^5 cm^-^3 or less and being an acceptor type impurity.
Single crystal.
して、前記単結晶からウェハを加工し該ウェハを850
℃で30分間不活性ガスおよび/または水素雰囲気中で
熱処理した後、該ウェハ中のホウ素と炭素とを分析し、
該ホウ素と炭素の濃度が( I )式に従うように前記単
結晶内に含有するホウ素および炭素の濃度を制御するこ
とを特徴とする半絶縁性GaAs単結晶の製造方法。 logR_s=ylog{[C]+(x/100)[B
]}+Z( I ) 但し R_s…表面抵抗率[Ω/口] [C]…ウェハ中に含有される炭素濃度[原子数/cm
^3] [B]…ウェハ中に含有されるホウ素濃度[原子数/c
m^3] x…係数、1.0≦x≦2.5 y…係数、−3≦y≦−1 z…係数、35≦z≦50(2) When manufacturing a GaAs single crystal using the liquid-sealed pulling method, a wafer is processed from the single crystal and the wafer is
After heat treatment in an inert gas and/or hydrogen atmosphere at °C for 30 minutes, analyzing boron and carbon in the wafer,
A method for producing a semi-insulating GaAs single crystal, characterized in that the concentrations of boron and carbon contained in the single crystal are controlled so that the concentrations of boron and carbon comply with formula (I). logR_s=ylog{[C]+(x/100)[B
]}+Z(I) However, R_s...Surface resistivity [Ω/mouth] [C]...Concentration of carbon contained in the wafer [number of atoms/cm
^3] [B]...Boron concentration contained in the wafer [number of atoms/c
m^3] x...Coefficient, 1.0≦x≦2.5 y...Coefficient, -3≦y≦-1 z...Coefficient, 35≦z≦50
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18688588A JPH0238400A (en) | 1988-07-28 | 1988-07-28 | Semi-insulating gaas single crystal and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18688588A JPH0238400A (en) | 1988-07-28 | 1988-07-28 | Semi-insulating gaas single crystal and production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0238400A true JPH0238400A (en) | 1990-02-07 |
JPH0527600B2 JPH0527600B2 (en) | 1993-04-21 |
Family
ID=16196389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18688588A Granted JPH0238400A (en) | 1988-07-28 | 1988-07-28 | Semi-insulating gaas single crystal and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0238400A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0990717A1 (en) * | 1998-09-28 | 2000-04-05 | Sumitomo Electric Industries, Ltd. | GaAs single crystal substrate and epitaxial wafer using the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62226894A (en) * | 1986-03-28 | 1987-10-05 | Hitachi Metals Ltd | Gaas single crystal substrate |
-
1988
- 1988-07-28 JP JP18688588A patent/JPH0238400A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62226894A (en) * | 1986-03-28 | 1987-10-05 | Hitachi Metals Ltd | Gaas single crystal substrate |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0990717A1 (en) * | 1998-09-28 | 2000-04-05 | Sumitomo Electric Industries, Ltd. | GaAs single crystal substrate and epitaxial wafer using the same |
US6180269B1 (en) | 1998-09-28 | 2001-01-30 | Sumitomo Electric Industries, Ltd. | GaAs single crystal substrate and epitaxial wafer using the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0527600B2 (en) | 1993-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0603358B1 (en) | Thermal treatment of a semiconductor wafer | |
KR940007587B1 (en) | Manufacturing method of semiconductor device | |
US4246296A (en) | Controlling the properties of native films using selective growth chemistry | |
JPH055800B2 (en) | ||
JPH0238400A (en) | Semi-insulating gaas single crystal and production thereof | |
JPH0523494B2 (en) | ||
US7199057B2 (en) | Method of eliminating boron contamination in annealed wafer | |
Pivac et al. | Comparative studies of EFG poly-Si grown by different procedures | |
Greenwald et al. | Mocvd Erbium Sourcesa | |
JPH02239199A (en) | Production of semiinsulating inp single crystal | |
JPH0632699A (en) | Production of semi-insulating inp single crystal | |
JP3106197B2 (en) | Method for manufacturing high resistance compound semiconductor | |
JPH0797567B2 (en) | Method of forming thin film | |
JPH0543679B2 (en) | ||
WO2024075430A1 (en) | Epitaxial wafer, and method for producing same | |
JP7103314B2 (en) | Carbon concentration evaluation method in silicon single crystal substrate | |
JPH0226031A (en) | Silicon wafer | |
JP3114259B2 (en) | GaAs crystal showing novel PL emission and method of manufacturing the same | |
JPS6355195A (en) | Method for growing inorganic compound single crystal | |
JPH0597596A (en) | Gaas crystal and gaas device using the same | |
JPH0143454B2 (en) | ||
JPS5850408B2 (en) | How to use hand-held equipment | |
JPH01215799A (en) | Semi-insulating gaas compound semiconductor single crystal and production thereof | |
JP2593148B2 (en) | Method for growing single crystal of compound semiconductor | |
JP3617128B2 (en) | Heat treatment method of compound semiconductor single crystal |