JPH0238077B2 - YOSETSUYOFURATSUKUSUIRIWAIYANOSEIZOHOHO - Google Patents

YOSETSUYOFURATSUKUSUIRIWAIYANOSEIZOHOHO

Info

Publication number
JPH0238077B2
JPH0238077B2 JP16538985A JP16538985A JPH0238077B2 JP H0238077 B2 JPH0238077 B2 JP H0238077B2 JP 16538985 A JP16538985 A JP 16538985A JP 16538985 A JP16538985 A JP 16538985A JP H0238077 B2 JPH0238077 B2 JP H0238077B2
Authority
JP
Japan
Prior art keywords
flux
wire
sheath material
filling
mild steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16538985A
Other languages
Japanese (ja)
Other versions
JPS6224891A (en
Inventor
Yosha Sakai
Tsugio Ooe
Koichi Oonishi
Masayoshi Michihashi
Masami Tano
Masashi Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16538985A priority Critical patent/JPH0238077B2/en
Publication of JPS6224891A publication Critical patent/JPS6224891A/en
Publication of JPH0238077B2 publication Critical patent/JPH0238077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、軟鋼製鞘材内に粉粒状フラツクスを
充填した後伸線加工を施して溶接用フラツクス入
りワイヤを製造する方法の改良に関するものであ
り、特に伸線加工時の総減面率を90%以上に高め
た場合でも、伸線作業性等をいささかも低下させ
ることなく、安定した品質の溶接用フラツクス入
りワイヤを製造することのできる方法を提供しよ
うとするものである。 [従来の技術] 溶接用フラツクス入りワイヤとは、金属製鞘材
内に粉粒状フラツクスを充填した後所定の断面寸
法まで伸線加工してなるものであり、シールド用
ガス発生剤やスラグ形成剤、合金成分等を溶加金
属と共に溶接部へ連続的に供給して行くことがで
きる為、自動若しくは反自動溶接において広く実
用化されている。 ところで溶接用フラツクス入りワイヤの製造方
法としては、直径10mm前後の電縫管又は押出管
の内部に粉粒状フラツクスを充填した後、所定の
断面寸法まで伸線加工する方法、帯鋼を管状に
湾曲成形しながら内部へ粉粒状フラツクスを充填
し、引続いて所定の断面寸法まで伸線加工する方
法、前記の方法において、管状に湾曲成形し
た帯鋼の両側縁突合せ部を抵抗溶接やTIG溶接等
によつてシーム溶接し突合せ部の隙間を塞ぐ方
法、が実施されており、鞘材としては軟鋼が殆ん
どを占めている。 [発明が解決しようとする問題点] 上記〜に示した何れの方法にしても、フラ
ツクスの充填作業性や充填率の均一性を高める為
には、フラツクス充填段階での鞘材径を大きくし
ておく方が有利である。特に前記の方法では比
較的短尺の電縫管等にフラツクスをバツチ的に充
填した後個々に伸線加工することになるから、生
産性を高めようとすればその前提としてフラツク
スの充填作業性を高めなければならず、結果的に
鞘材を大径にすることが要求され、大径鞘材を使
用するとなれば当然ながら減面率を高めなければ
所望の線径まで下げることができない。ところが
伸線工程での減面率が90%程度以上の高い場合、
次の様な問題が生じてくる。 (1) 軟鋼製鞘材の加工硬化が著しくなり、伸線加
工時に折線や断線等の事故が発生し易くなる
他、製品ワイヤの品質も悪くなる。 (2) 加工硬化の進んだワイヤは溶接時に送給不良
を起こし易く、健全な溶接部が得られ難い。 (3) 上記(1)、(2)の問題を回避する為、特に総減面
率を95%程度以上とする場合は、伸線工程で1
〜2回の中間焼鈍を施して軟質化することが行
なわれている。ところがこの焼鈍作業は製造コ
ストの上昇をまねく他、充填フラツクスを熱変
質させるという問題を生じる。 この様な状況であるから、現在実施されている
フラツクス入りワイヤの製造法では、製品ワイヤ
の断面寸法から逆算して減面率を90%程度未満に
抑え得る様に軟鋼鞘材の寸法を採用している。し
かしこの様な制約のもとでは軟鋼鞘材の寸法を十
分に大きくすることができず、フラツクスの充填
作業性及び充填率の均一性をそれほど改善するこ
とができない。しかも総減面率を90%以上に高め
ることができないので、伸線効率自体も満足のい
く程度まで高めることができない。 [問題点を解決する為の手段] 本発明は上記の様な問題、殊に伸線加工時の減
面率を高めた場合に生ずる加工硬化の問題を軽減
し、良好な作業性及び生産性のもとで品質の安定
した溶接用フラツクス入りワイヤを製造すること
のできる技術を提供しようとするものであり、こ
の様な目的を達成した本発明の構成は、軟鋼製鞘
材内に粉粒状フラツクスを充填した後、総減面率
が90%以上の伸線加工を施して溶接用フラツクス
入ワイヤを製造するに当たり、鞘材として、 () 0.001〜0.006重量%のNと0.05重量%以下の
Alを含み、且つ(Al含有率/N含有率)が4
以上である軟鋼、又は () 0.001〜0.006重量%のNと0.1重量%以下の
Tiを含み、且つ(Ti含有率/N含有率)が10
以上である軟鋼 を使用するところに要旨を有するものである。 [作用] フラツクスの充填作業を80m/分以上の高速度
で均一且つ安定して行なう為には、フラツクス充
填用開口の大きさ(電縫管等の場合はパイプの内
径、帯鋼を管状に湾曲加工していく過程でフラツ
クスを充填する場合は、U字状帯鋼の上部開口
幅)は大きい方がよく、前者の場合は内径を7mm
以上に、又後者の場合は開口幅を8mm以上にする
ことが望まれる。尚元来フラツクスの充填率はフ
ラツクスの種類等によつて定められる面が大きい
が、逆にフラツクスの充填率は鞘材の肉厚によつ
て左右される。この様なところから製品銘柄に応
じて色々な鞘材が用いられるが、一般的には電縫
管等の場合で1.5mm前後、帯鋼の場合で0.6mm前後
であるとされている。 ところが、例えば内径7mm、肉厚1.5mmの電縫
管等を用いた場合、これを1.2mmφ以下にまで伸
線加工を行なうとすれば総減面率は98%を超える
ことになり、鞘材の加工硬化によつて前述の様な
問題が生じる。一方この様な問題を回避する為に
は、電縫管の内径及び肉厚をかなり小さくしてお
かなければならず、前述の様にフラツクスの充填
作業性及び充填率の均一性が低下すると共に伸線
効率も高めることができなくなる。 この様な問題を生ずる要因が「鞘材の加工硬
化」にあることは明白であるので、本発明者等は
この加工硬化を抑えて伸びを良くすべく研究を進
めた。そして種々の基礎実験を重ねるうち、軟鋼
鞘材中に含まれるN、Al及びTiの量により加工
時の伸びが著しく変わり、適量のNとAl或はN
とTiを含む軟鋼を鞘材として使用すれば、伸線
時の加工硬化が抑制されて伸びが著しく高められ
ることを知つた。ところでTiは、各種鋼材にお
ける結晶粒微細化元素として微量添加することは
あるが、軟鋼に関する限りTiをこの様な目的で
添加することは殆んどなく、またN及びAlにつ
いては、むしろ不純介在物であると認識されてお
りその量は極力少ない方が好ましいと考えられて
いる。しかしながら本発明者等が色々の実験で確
認したところによると、軟鋼中に少量のNとAl、
又はNとTiを積極的に含有させてやれば、鞘材
の加工硬化が抑制されて大きな伸びが得られると
いう事実がある。そしてこうした効果を有効に発
揮させる為には、[]NとAlを含有させる場合
はN量を0.001〜0.006重量%、Al量を0.05重量%
以下とし、且つ(Al含有率/N含有率:以下単
にAl/Nと記す)を4以上とすればよく、また
[]NとTiを含有させる場合はN量を0.001〜
0.006重量%、Ti量を0.10重量%以下とし、且つ
(Ti含有率/N含有率:以下単にTi/Nと記す)
を10以上とすればよい、という事実をつきとめ
た。ちなみに第1図は、後記実施例の帯鋼A〜E
を含めてAl/N及びTi/Nの異なる種々の軟鋼
製帯鋼(幅8mm、厚さ0.mm)とチタニア系フラツ
クス(充填率15%)を使用し、横軸にAl/N及
びTi/N、縦軸(左側)に中間焼鈍なしで安定
して得ることのできるワイヤ径をとつて両者の関
係を調べた結果を示したグラフである。尚第1図
には右側の縦軸として総減面率を示している。ま
た測定値を結んで得られる曲線の右下側領域(A)は
伸線加工を安定して行なうことのできる領域を示
し、左上側領域(B)は伸線工程で加工硬化による断
線等の問題が生ずる領域を示す。 第1図からも明らかな様に、Al/N及びTi/
Nが大きくなるにつれて伸線加工性は改善される
が、溶接用フラツクス入りワイヤの小径品の代表
的品種である1.2mmφのワイヤを基準にして、安
定に伸線加工を行なうことのできるAl/N及び
Ti/Nは、前者で4以上、後者で10以上となる。
即ちN量に対して4倍量以上のAl又は10倍量以
上のTiを含有させると、伸線加工時に断線等の
事故を生ずることなく高レベルで安定した品質の
フラツクス入りワイヤを高い生産性のもとで円滑
に製造することができる。尚第1図では[Nと
Al]の2者及び[NとTi]の2者を夫々独立し
て含有させた場合の傾向を示しているが、上記条
件を同時に満足する様に含有させることによつて
一段と優れた効果が得られることは後述する実施
例からも明らかである。 この様に顕著な傾向を示す理由は必ずしも明確
にされた訳ではないが、軟鋼中のNがAl又はTi
と適量の窒化物(AlN又はTiN)を形成し、こ
れが伸線加工時の加工硬化を抑制しているものと
推測される。ちなみに軟鋼中のN量が0.001重量
%未満であり、或はAl/Nが4未満又はTi/N
が10未満であると上記の効果が十分に発揮され
ず、総減面率を85%以上に高めたときの加工硬化
が著しい為伸線速度を十分に高めることができな
い。但し軟鋼中のN量が0.006重量%を超えるも
のでは、軟鋼自体の衝撃特性が悪くなつて成形性
が低下する他、溶接金属中のN量が多くなつて耐
衝撃特性が低下するという重大な欠陥の原因とな
るので好ましくなく、またAl量が0.05重量%を超
え或はTi量が0.1重量%を超えると、溶接金属の
引張り強度が過大になつて衝撃値が低下するの
で、夫々設定値以下に抑えなければならない。 この様に本発明では、軟鋼鞘材中にNとAl或
はNとTiを特定量含有させたところに特徴があ
り、それによつて伸線加工時の加工硬化を抑制す
ることができるが、それでも総減面率が98%を超
える高減面率になると、加工硬化が進んで断線事
故等を生ずる恐れがある。従つてこの様な高減面
加工を行なう場合は中間焼鈍を行なうのがよく、
このときの好ましい中間焼鈍温度は、充填フラツ
クスの熱変質を防止する為500〜700℃程度とする
ことが望まれる。尚従来例で総減面率を98%程度
以上にしようとした場合、少なくとも1〜2回の
中間焼鈍を行なわなければならなかつたという実
情を考えれば、この様な高減面加工を中間焼鈍な
し或は大抵の場合1回の中間焼鈍によつて行なう
ことができる様になつたことの技術的意義(生産
性及び充填フラツクスの熱変質抑制)は極めて大
きいものと言える。 [実施例] 第1表に示す軟鋼製鞘材とチタニア系の充填フ
ラツクスを第2表に示す様に組合せ、常法に従つ
てフラツクスの充填及び伸線加工を行ない、伸線
時の断線発生率[断線回数/出来高(10トン)]
を比較した。結果を第2表に一括して示す。
[Industrial Application Field] The present invention relates to an improvement in a method of manufacturing a flux-cored wire for welding by filling a powdery flux into a mild steel sheath material and then subjecting it to wire drawing. An object of the present invention is to provide a method capable of manufacturing flux-cored wire for welding with stable quality without any deterioration in wire drawing workability, etc., even when the total area reduction rate is increased to 90% or more. It is something. [Prior Art] Flux-cored wire for welding is made by filling a metal sheath with powdery flux and then drawing it to a predetermined cross-sectional dimension. This method is widely used in automatic or counter-automatic welding because alloy components, etc. can be continuously supplied to the welding area together with the filler metal. By the way, methods for manufacturing flux-cored wire for welding include filling powdered flux into the inside of an ERW tube or extruded tube with a diameter of about 10 mm, and then drawing the wire to a predetermined cross-sectional dimension, and curving a steel strip into a tubular shape. A method in which powder flux is filled into the interior while forming, and then wire is drawn to a predetermined cross-sectional dimension.In the above method, the butt portions of both side edges of the steel strip curved into a tubular shape are welded by resistance welding, TIG welding, etc. A method of seam welding to close the gap at the abutting portion has been practiced, and the sheath material is mostly made of mild steel. [Problems to be Solved by the Invention] In any of the above-mentioned methods, in order to improve the flux filling workability and the uniformity of the filling rate, it is necessary to increase the diameter of the sheath material at the flux filling stage. It is more advantageous to keep it. In particular, in the above method, relatively short lengths of electric resistance welded tubes, etc., are filled with flux in batches and then drawn individually, so if productivity is to be increased, the workability of flux filling is a prerequisite. As a result, the sheath material is required to have a large diameter, and if a large diameter sheath material is used, the wire diameter cannot be reduced to the desired wire diameter unless the area reduction rate is increased. However, when the area reduction rate in the wire drawing process is high, about 90% or more,
The following problems arise. (1) Work hardening of the mild steel sheath material becomes significant, making it more likely that accidents such as wire breakage or wire breakage will occur during wire drawing, and the quality of the product wire will also deteriorate. (2) Work-hardened wires tend to cause feeding defects during welding, making it difficult to obtain a sound weld. (3) In order to avoid the problems (1) and (2) above, especially when the total area reduction rate is about 95% or more, it is necessary to
Intermediate annealing is performed twice to soften the material. However, this annealing operation not only increases manufacturing costs but also causes the problem of thermally altering the filling flux. Because of this situation, in the current manufacturing method for flux-cored wire, the dimensions of the mild steel sheath material are calculated backward from the cross-sectional dimensions of the product wire, and the dimensions of the mild steel sheath material are calculated in such a way that the reduction in area can be kept to less than 90%. are doing. However, under such restrictions, the dimensions of the mild steel sheath material cannot be made sufficiently large, and the flux filling workability and the uniformity of the filling rate cannot be significantly improved. Moreover, since the total area reduction rate cannot be increased to 90% or more, the wire drawing efficiency itself cannot be increased to a satisfactory level. [Means for Solving the Problems] The present invention alleviates the above-mentioned problems, especially the problem of work hardening that occurs when the area reduction rate during wire drawing is increased, and improves workability and productivity. The purpose of the present invention is to provide a technology that can manufacture flux-cored wire for welding with stable quality under the After filling with flux, when manufacturing flux-cored wire for welding by drawing with a total area reduction of 90% or more, () 0.001 to 0.006% by weight of N and 0.05% by weight or less are used as the sheath material.
Contains Al and (Al content/N content) is 4
or () 0.001~0.006% by weight of N and 0.1% by weight or less
Contains Ti and (Ti content/N content) is 10
The gist lies in the use of the above-mentioned mild steel. [Function] In order to uniformly and stably perform the flux filling operation at a high speed of 80 m/min or more, the size of the flux filling opening (in the case of ERW pipes, the inner diameter of the pipe, etc., When filling flux in the process of bending, the upper opening width of the U-shaped steel strip should be larger; in the former case, the inner diameter should be 7 mm.
In addition to the above, in the latter case, it is desirable that the opening width be 8 mm or more. The filling rate of flux is originally determined largely by the type of flux, but conversely, the filling rate of flux is influenced by the thickness of the sheath material. For this reason, various sheath materials are used depending on the product brand, but generally the sheath material is around 1.5 mm for electric resistance welded pipes, and around 0.6 mm for steel strips. However, for example, when using an electric resistance welded pipe with an inner diameter of 7 mm and a wall thickness of 1.5 mm, if we draw it to a diameter of 1.2 mm or less, the total area reduction rate will exceed 98%, and the sheath material The above-mentioned problems arise due to work hardening. On the other hand, in order to avoid such problems, the inner diameter and wall thickness of the electric resistance welded tube must be kept considerably small, and as mentioned above, the workability of flux filling and the uniformity of the filling rate are reduced, and the It also becomes impossible to increase wire drawing efficiency. Since it is clear that the cause of such problems is "work hardening of the sheath material," the present inventors have conducted research to suppress this work hardening and improve elongation. After conducting various basic experiments, we found that the elongation during processing significantly changes depending on the amount of N, Al, and Ti contained in the mild steel sheath material.
We learned that if mild steel containing Ti and Ti is used as a sheath material, work hardening during wire drawing can be suppressed and elongation can be significantly increased. By the way, Ti is sometimes added in small amounts as a grain refining element in various steel materials, but as far as mild steel is concerned, Ti is almost never added for this purpose, and N and Al are rather added as impurity intervening elements. It is recognized that it is a substance, and it is thought that it is preferable to keep its amount as small as possible. However, the inventors have confirmed through various experiments that there are small amounts of N and Al in mild steel.
Alternatively, there is a fact that if N and Ti are actively contained, work hardening of the sheath material is suppressed and large elongation can be obtained. In order to effectively exhibit these effects, [] When containing N and Al, the amount of N should be 0.001 to 0.006% by weight, and the amount of Al should be 0.05% by weight.
and (Al content rate/N content rate: hereinafter simply referred to as Al/N) should be 4 or more, and [ ] When N and Ti are included, the N amount is 0.001 to 0.001.
0.006% by weight, the amount of Ti is 0.10% by weight or less, and (Ti content/N content: hereinafter simply referred to as Ti/N)
We found out that it is sufficient to set the value to 10 or more. By the way, Fig. 1 shows steel strips A to E of Examples described later.
We used various mild steel strips (width 8 mm, thickness 0.mm) with different Al/N and Ti/N, including titania flux (filling rate 15%), and the horizontal axis shows Al/N and Ti. /N, the vertical axis (left side) is a wire diameter that can be stably obtained without intermediate annealing, and is a graph showing the results of investigating the relationship between the two. In addition, in FIG. 1, the vertical axis on the right side shows the total area reduction rate. In addition, the lower right region (A) of the curve obtained by connecting the measured values indicates the region where wire drawing can be performed stably, and the upper left region (B) indicates the region where wire drawing can be performed stably. Indicates areas where problems occur. As is clear from Figure 1, Al/N and Ti/
As N increases, wire drawability improves, but based on 1.2 mmφ wire, which is a typical small-diameter flux-cored wire for welding, Al/ N and
Ti/N is 4 or more in the former case and 10 or more in the latter case.
In other words, by containing 4 times or more of Al or 10 times or more of Ti relative to the amount of N, it is possible to produce flux-cored wire of high and stable quality with high productivity without causing accidents such as wire breakage during wire drawing. It can be manufactured smoothly under the following conditions. In Figure 1, [N and
The graph shows the tendency when two elements [Al] and two elements [N and Ti] are contained independently, but even better effects can be obtained by containing them so that the above conditions are simultaneously satisfied. What can be obtained is also clear from the examples described later. Although the reason for this remarkable tendency is not necessarily clear, it is possible that N in mild steel is caused by Al or Ti.
It is presumed that a suitable amount of nitride (AlN or TiN) is formed and this suppresses work hardening during wire drawing. By the way, if the amount of N in mild steel is less than 0.001% by weight, or if Al/N is less than 4 or Ti/N
If it is less than 10, the above effects will not be sufficiently exhibited, and when the total area reduction rate is increased to 85% or more, work hardening will be significant, making it impossible to sufficiently increase the wire drawing speed. However, if the amount of N in the mild steel exceeds 0.006% by weight, the impact properties of the mild steel itself will deteriorate and formability will deteriorate, and the amount of N in the weld metal will increase, resulting in a decrease in impact resistance. This is undesirable as it may cause defects, and if the Al content exceeds 0.05% by weight or the Ti content exceeds 0.1% by weight, the tensile strength of the weld metal will become excessive and the impact value will decrease, so the respective set values should be adjusted accordingly. Must be kept below. As described above, the present invention is characterized by containing specific amounts of N and Al or N and Ti in the mild steel sheath material, which can suppress work hardening during wire drawing. Even so, if the total area reduction rate exceeds 98%, work hardening may progress and lead to wire breakage accidents. Therefore, when performing such high surface reduction processing, it is best to perform intermediate annealing.
The preferable intermediate annealing temperature at this time is preferably about 500 to 700°C in order to prevent thermal deterioration of the filling flux. In addition, considering the fact that in the conventional case, if the total area reduction rate was to be about 98% or more, it was necessary to perform intermediate annealing at least once or twice, it is necessary to carry out such high area reduction processing by intermediate annealing. It can be said that the technical significance (productivity and suppression of thermal deterioration of the filling flux) of being able to perform intermediate annealing without or in most cases with one intermediate annealing is extremely large. [Example] The mild steel sheath material shown in Table 1 and the titania-based filling flux were combined as shown in Table 2, and the flux filling and wire drawing were performed according to the usual method, and wire breakage occurred during wire drawing. Rate [Number of disconnections/Volume (10 tons)]
compared. The results are summarized in Table 2.

【表】【table】

【表】 第1〜2表より次の様に考えることができる。 鞘材AはAl/N及びTi/Nの両方共本発明の
規定要件を外れる比較材であり、この鞘材Aを用
いた実験例(No.1及び8)では何れの場合も断線
発生率が高くなつている。殊に電縫管を出発素材
とした場合(No.8)は、中間焼鈍を2回行なつた
場合でも断線発生率が高い。又No.6、7、11につ
いてはAl/N、Ti/Nは本発明の規定範囲内に
あるが、Al、Ti量が本発明外であり溶接金属と
しての性能(特に衝撃特性)が他に比べ劣る。 これに対し鞘材B〜EはAl/N及びTi/Nの
一方或は双方が規定要件を満足するものであり、
これらの鞘材を用いた実験例(No.2〜5、9、
10)では何れの場合も断線発生率が激減してい
る。 一方、鞘材寸法を小さくしたNo.12については、
断線発生率、溶接金属の性能共に満足するもので
あるが、フラツクスを充填する作業性が他に比べ
著しく劣つており、トータル的に見た評価は悪
い。 [発明の効果] 本発明は以上の様に構成されるが、要は軟鋼製
鞘材中に特定量のNとAl及び/又はNとTiを含
有させることによつて伸線時の加工硬化を抑え伸
びを高めたので、以下に示す様な多くの利益を享
受することができる。 (1) 伸線時の加工硬化が少ないので伸線加工時の
断線事故等が激減し、それに伴つて安全性及び
生産性を高めることができる。 (2) 伸線時の減面率を大きくすることができるの
で、フラツクス充填時の管径(又はU字帯鋼の
開口幅)を大きくすることが可能となり、フラ
ツクスの充填作業性及び充填率の均一性が向上
すると共に、伸線効率も大幅に高めることがで
きる。 (3) 95%程度以下の減面率に設定する限り中間焼
鈍が全く不要であり、設備費の低減と生産管理
の簡素化が図れると共に、焼鈍による充填フラ
ツクスの熱変質もなくなつて高品質のフラツク
ス入りワイヤを得ることができる。 (4) 鞘材の加工硬化が激しい場合、製品ワイヤの
矯正が不十分になつて送給性の低下及びアーク
不安定を招き、健全な溶接部が得られなくなる
ことがあるが、本発明では鞘材の加工硬化を抑
制しているのでこの様な問題を生じることもな
い。
[Table] From Tables 1 and 2, the following can be considered. Sheath material A is a comparison material in which both Al/N and Ti/N are outside the specified requirements of the present invention, and in the experimental examples (Nos. 1 and 8) using this sheath material A, the occurrence of wire breakage was low in both cases. is getting higher. In particular, when an electric resistance welded tube is used as the starting material (No. 8), the incidence of wire breakage is high even when intermediate annealing is performed twice. Regarding Nos. 6, 7, and 11, Al/N and Ti/N are within the specified range of the present invention, but the amounts of Al and Ti are outside the scope of the present invention, and the performance (especially impact properties) as a weld metal is different from that of the present invention. inferior to. On the other hand, in the sheath materials B to E, one or both of Al/N and Ti/N satisfies the specified requirements,
Experimental examples using these sheath materials (No. 2 to 5, 9,
10), the incidence of wire breakage has been drastically reduced in all cases. On the other hand, regarding No. 12 with smaller sheath material dimensions,
Although the wire breakage rate and weld metal performance are both satisfactory, the flux filling workability is significantly inferior to the others, and the overall evaluation is poor. [Effects of the Invention] The present invention is configured as described above, but the point is that work hardening during wire drawing is achieved by incorporating specific amounts of N and Al and/or N and Ti into the mild steel sheath material. By suppressing this and increasing growth, we can enjoy many benefits as shown below. (1) Since there is little work hardening during wire drawing, accidents such as wire breakage during wire drawing are drastically reduced, and safety and productivity can be improved accordingly. (2) Since the area reduction rate during wire drawing can be increased, it is possible to increase the pipe diameter (or the opening width of the U-shaped steel strip) during flux filling, which improves flux filling workability and filling rate. In addition to improving the uniformity of wire drawing, the wire drawing efficiency can also be greatly increased. (3) As long as the area reduction rate is set to about 95% or less, intermediate annealing is not required at all, which reduces equipment costs and simplifies production management, and also eliminates thermal alteration of the filling flux due to annealing, resulting in high quality. flux-cored wire can be obtained. (4) If the work hardening of the sheath material is severe, the product wire may not be properly straightened, resulting in decreased feedability and arc instability, making it impossible to obtain a sound weld. However, in the present invention, Since work hardening of the sheath material is suppressed, such problems do not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、軟鋼鞘材中のAl/N及びTi/Nと
中間焼鈍なしで安定して得ることのできるワイヤ
径との関係を示す実験結果のグラフである。
FIG. 1 is a graph of experimental results showing the relationship between Al/N and Ti/N in the mild steel sheath material and the wire diameter that can be stably obtained without intermediate annealing.

Claims (1)

【特許請求の範囲】 1 軟鋼製鞘材内に粉粒状フラツクスを充填した
後、総減面率が90%以上の伸線加工を施して溶接
用フラツクス入りワイヤを製造するに当たり、鞘
材として0.001〜0.006重量%のNと0.05重量%以
下のAlを含み、且つ(Al含有率/N含有率)が
4以上である軟鋼を使用することを特徴とする溶
接用フラツクス入りワイヤの製造方法。 2 軟鋼製鞘材内に粉粒状フラツクスを充填した
後、総減面率が90%以上の伸線加工を施して溶接
用フラツクス入りワイヤを製造するに当たり、鞘
材として、0.001〜0.006重量%のNと0.1重量%以
下のTiを含み、且つ(Ti含有率/N含有率)が
10以上である軟鋼を使用することを特徴とする溶
接用フラツクス入りワイヤの製造方法。
[Scope of Claims] 1. In manufacturing a flux-cored wire for welding by filling a powdery flux into a mild steel sheath material and then subjecting it to a wire drawing process with a total area reduction of 90% or more, the sheath material contains 0.001 A method for producing a flux-cored wire for welding, characterized in that a mild steel containing up to 0.006% by weight of N and 0.05% by weight or less of Al, and having a ratio of (Al content/N content) of 4 or more, is used. 2. When manufacturing a flux-cored wire for welding by filling a powdery flux into a mild steel sheath material and then drawing the wire with a total area reduction of 90% or more, the sheath material contains 0.001 to 0.006% by weight. Contains N and 0.1% by weight or less of Ti, and (Ti content / N content)
1. A method for producing a flux-cored wire for welding, characterized by using mild steel having a grade of 10 or more.
JP16538985A 1985-07-25 1985-07-25 YOSETSUYOFURATSUKUSUIRIWAIYANOSEIZOHOHO Expired - Lifetime JPH0238077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16538985A JPH0238077B2 (en) 1985-07-25 1985-07-25 YOSETSUYOFURATSUKUSUIRIWAIYANOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16538985A JPH0238077B2 (en) 1985-07-25 1985-07-25 YOSETSUYOFURATSUKUSUIRIWAIYANOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS6224891A JPS6224891A (en) 1987-02-02
JPH0238077B2 true JPH0238077B2 (en) 1990-08-28

Family

ID=15811466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16538985A Expired - Lifetime JPH0238077B2 (en) 1985-07-25 1985-07-25 YOSETSUYOFURATSUKUSUIRIWAIYANOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0238077B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176697A (en) * 1986-01-30 1987-08-03 Sumikin Yosetsu Kogyo Kk Composite wire for welding

Also Published As

Publication number Publication date
JPS6224891A (en) 1987-02-02

Similar Documents

Publication Publication Date Title
US6787736B1 (en) Low carbon high speed metal core wire
JP2009255168A (en) Flux-cored wire for welding high-strength steel, and its manufacturing method
JP2006110629A (en) Weld wire electrode
JP2012519598A (en) Flux-cored wire electrode
WO2020217963A1 (en) Ni-BASED ALLOY FLUX-CORED WIRE
KR20150039686A (en) Vertical-up type gas shielded arc welding method
JPH0238077B2 (en) YOSETSUYOFURATSUKUSUIRIWAIYANOSEIZOHOHO
JP4260127B2 (en) Composite wire for submerged arc welding
JP7092571B2 (en) Manufacturing method of metal-based flux-cored wire and metal-based flux-cored wire
JPS6125470B2 (en)
JP6619473B2 (en) Aluminum alloy filler manufacturing method
JPH0645075B2 (en) Wire with flux for welding
JP4657186B2 (en) Solid wire for gas shielded arc welding
JPS6216747B2 (en)
JP2920431B2 (en) Manufacturing method of flux cored wire for welding
JPS6167594A (en) Carbon dioxide gas arc welding wire which is excellent in arc stability, and its manufacture
JP4467139B2 (en) Metal flux cored wire for arc welding
JPH0451274B2 (en)
JPH05293687A (en) Flux cored wire for gas shield arc welding
JP3247236B2 (en) Manufacturing method of flux cored wire for arc welding
JPH01154895A (en) Seamless flux cored wire for arc welding and its manufacture
JPH0777674B2 (en) Method for manufacturing composite wire for arc welding with excellent arc welding characteristics
JPS5913316B2 (en) Manufacturing method of small diameter flux-cored wire
JP4504115B2 (en) Welding wire for gas shielded arc welding
JPH03281092A (en) Production of metallic powder flux cored wire

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees