JPH023779B2 - - Google Patents

Info

Publication number
JPH023779B2
JPH023779B2 JP59001739A JP173984A JPH023779B2 JP H023779 B2 JPH023779 B2 JP H023779B2 JP 59001739 A JP59001739 A JP 59001739A JP 173984 A JP173984 A JP 173984A JP H023779 B2 JPH023779 B2 JP H023779B2
Authority
JP
Japan
Prior art keywords
polyisocyanate
solvent
porous material
hereinafter referred
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59001739A
Other languages
Japanese (ja)
Other versions
JPS60146858A (en
Inventor
Fumio Ryuzoji
Shigeo Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP173984A priority Critical patent/JPS60146858A/en
Publication of JPS60146858A publication Critical patent/JPS60146858A/en
Publication of JPH023779B2 publication Critical patent/JPH023779B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 ポリイソシアネートは湿気や水に遭遇すると化
学的に重合反応して二酸化炭素を生成すると共
に、強力な接着力を伴いながら硬化する性質を有
している。この反応は、アルカリの存在下におい
てはさらに強力に促進される。セメントに水を加
えると強アルカリ性を呈するが、ポリイソシアネ
ートが湿気や水と反応して重合する際アルカリの
共存はその反応を促進するから、ポリイソシアネ
ート、セメント、水の三成分の併用はポリイソシ
アネートの重合硬化物を短時間で得ることが出来
る最適な方法となる。ポリイソシアネートと水分
の反応は極めて複雑で、一つの反応が起こると
次々に他の反応が連鎖的に進行し、最終の化合物
に到達する。それらの反応の一例をあげれば次の
様なものである。 そもそもセメントは最終的には剛性の高い硬化
物を得られるが、硬化が遅く接着力も低い。しか
しポリイソシアネートと組み合わせることによつ
て短時間で高強度が得られるから待ち時間を短縮
出来るし、その後はセメントの硬化による剛性に
より実用的な使用が出来る。一方、ポリイソシア
ネートは水とは直ぐ反応して硬化し、接着力は強
いが剛性は低く発泡を伴うから緻密な硬化物は得
られない。ポリイソシアネート、セメント、水の
三者の混合併用によつてのみ良質の硬化物が短時
間で得られる。 更に述べるならば、ポリイソシアネートと水と
の反応によつて生成する二酸化炭素は水の存在下
において、セメント中のアルカリ土類金属の酸化
物と反応して、炭酸塩を形成するため、現象とし
ての発泡は起こらない。 このようにして出来た硬化物の利用は、その範
囲が広く、工期の短縮や作業環境の改善及び材料
の節減など多くの社会的利益を与える。その利用
の有効な一例は、従来の材料の欠点であつた接着
面での水分の存在が問題とならなくなることで、
コンクリートの施工現場に於ける作業条件を大幅
に改善出来る。その他湿潤面へのコンクリートの
打ち継ぎ、モルタルの吹き付け、緊急工事の際の
硬化促進等多岐に渡つてそのメリツトは大きい。
しかしながら、ポリイソシアネートは一般の場
合、高粘度の液状体が多く、その添加及び分散は
反応が早いだけに極めて困難で殆ど不可能に近
い。ポリイソシアネートの添加量はセメントに対
し3%〜15%で、モルタルとした時の全体量に対
しては1%〜5%であるから高粘度の液体である
ポリイソシアネートを可使時間内に均一に分散す
ることは出来ない。もしポリイソシアネートを粉
末化することが出来れば、これらの問題は全て解
決出来る。本発明はこの様な必要に応えるための
方法に関するものである。 しかも粉末化したポリイソシアネートは湿気を
遮断して貯蔵すれば、その効力は長期間に渡り保
持される。絶乾状態の多孔質にポリイソシアネー
トを吸着、含浸及び被覆するためには、多孔質の
性質によつて吸着量が異なるので実験によつて大
体の吸着量を知り、これに合致する粘度になる様
に溶剤の量を加減したポリイソシアネートの溶液
を混ぜ充分に撹拌し、しかる後に溶剤を揮散させ
ることによつて得られる。実施例として非晶質シ
リカの粒子径0.05μmのもの1000gを、ポリイソ
シアネート1000gにトルエン600gを加え低粘度
とした溶液に混合撹拌し、出来上がつたトルエン
リツチの湿体を撹拌しながら加熱したトルエンを
揮散させると、ポリイソシアネートの粉体が得ら
れ、収得量は理論的にほぼ100%であつた。本粉
体は完全なる乾燥状態でその取扱いは極めて容易
である。本発明による粉末ポリイソシアネートを
対セメント比3%添加した1:2モルタルの材令
別硬化後の曲げ強さ、並びに圧縮の強さは、表−
1の様でありプレーンコンクリートに比してその
性能を向上させている。 この様に粉末ポリイソシアネートはセメントに
微量添加する場合も担体を考慮することなく容易
に添加出来るばかりでなく、同じ粉体なので均一
分散が可能で、硬化時間の短縮は工期の短縮とな
り又緊急工事にも役立ち、総体的にコストを引き
下げる等、社会的に利益をもたらす発明である。 【表】
DETAILED DESCRIPTION OF THE INVENTION When polyisocyanate encounters moisture or water, it undergoes a chemical polymerization reaction to produce carbon dioxide and has the property of curing with strong adhesive strength. This reaction is even more strongly promoted in the presence of an alkali. When water is added to cement, it becomes strongly alkaline, but when polyisocyanate reacts with moisture and water and polymerizes, the coexistence of alkali accelerates the reaction, so the combination of the three components of polyisocyanate, cement, and water is called polyisocyanate. This is the optimal method for obtaining a polymerized cured product in a short time. The reaction between polyisocyanate and water is extremely complex, and when one reaction occurs, other reactions proceed one after another in a chain fashion to reach the final compound. An example of such a reaction is as follows. In the first place, cement can ultimately be used as a cured product with high rigidity, but it cures slowly and has low adhesive strength. However, by combining it with polyisocyanate, high strength can be obtained in a short period of time, so the waiting time can be shortened, and after that, the rigidity due to hardening of the cement allows for practical use. On the other hand, polyisocyanate immediately reacts with water and cures, and although it has strong adhesive strength, it has low rigidity and foams, so that a dense cured product cannot be obtained. A high-quality cured product can be obtained in a short time only by mixing polyisocyanate, cement, and water together. To explain further, carbon dioxide produced by the reaction between polyisocyanate and water reacts with alkaline earth metal oxides in cement in the presence of water to form carbonates, which is a phenomenon. No foaming occurs. The use of the cured product produced in this way has a wide range of applications, and provides many social benefits such as shortening the construction period, improving the working environment, and saving materials. One effective example of its use is that the presence of moisture on the adhesive surface, which was a drawback of conventional materials, no longer becomes a problem.
Work conditions at concrete construction sites can be significantly improved. It has many other benefits, such as pouring concrete onto wet surfaces, spraying mortar, and accelerating hardening during emergency construction.
However, polyisocyanates are generally highly viscous liquids, and their addition and dispersion are extremely difficult and almost impossible due to their rapid reaction. The amount of polyisocyanate added is 3% to 15% to the cement, and 1% to 5% to the total amount when made into mortar, so polyisocyanate, which is a highly viscous liquid, can be uniformly added within the pot life. cannot be dispersed into If polyisocyanates could be made into powder, all of these problems could be solved. The present invention is directed to a method to meet these needs. Moreover, if the powdered polyisocyanate is stored in a moisture-proof manner, its effectiveness will be maintained for a long period of time. In order to adsorb, impregnate, and coat polyisocyanate on porous material in an extremely dry state, the amount of adsorption varies depending on the nature of the porous material, so find out the approximate amount of adsorption through experiments and adjust the viscosity to match that amount. It can be obtained by mixing polyisocyanate solutions with varying amounts of solvent in the same manner, stirring thoroughly, and then volatilizing the solvent. As an example, 1000 g of amorphous silica with a particle size of 0.05 μm was mixed and stirred into a solution made by adding 600 g of toluene to 1000 g of polyisocyanate to make it low in viscosity, and the resulting toluene-rich wet body was heated while stirring. When toluene was volatilized, polyisocyanate powder was obtained, and the yield was approximately 100% of the theoretical yield. This powder is completely dry and is extremely easy to handle. The bending strength and compressive strength after hardening of 1:2 mortar containing powdered polyisocyanate according to the present invention at a ratio of 3% to cement are shown in Table-
1, and its performance is improved compared to plain concrete. In this way, even when powdered polyisocyanate is added to cement in small amounts, it can be easily added without considering the carrier, and since it is the same powder, it can be uniformly dispersed, and shortening the curing time can shorten the construction period and can also be used for emergency construction. It is an invention that brings social benefits, such as helping to reduce overall costs. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ウレタンのプレポリマー(以下ポリイソシア
ネートと言う)をトルエン、キシレンなどの芳香
族系又は酢酸エチル、酢酸ブチル等の直鎖系並び
にフロン系の溶剤又はこれらの混合溶剤に加えて
溶解分散させた溶液に軽石の様に天然の鉱物が噴
火などの強熱により内部の揮発分や結合水が飛散
し、その跡が空隙として残つたもの、或いは天然
の鉱石を高温で焼成した後、化学処理を施し化合
物としたもののうち非晶質の物質又は粒子間吸着
を大きくするため乾燥し微粉化したもの(以下、
多孔物質と言う)を加えて混合撹拌しポリイソシ
アネートを多孔物質に吸着、含浸、被覆させたの
ち、溶剤を加熱して取り除くことによつて得られ
る粉末状ポリイソシアネートの製造法。
1. A solution in which a urethane prepolymer (hereinafter referred to as polyisocyanate) is dissolved and dispersed in an aromatic solvent such as toluene or xylene, a linear solvent such as ethyl acetate or butyl acetate, a fluorocarbon solvent, or a mixed solvent thereof. In natural minerals such as pumice, the volatile matter and bound water inside are scattered due to intense heat such as eruptions, leaving behind voids, or natural ores are fired at high temperatures and then chemically treated. Among compounds, amorphous substances or those that have been dried and pulverized to increase interparticle adsorption (hereinafter referred to as
A method for producing powdered polyisocyanate obtained by adding a porous material (called a porous material), mixing and stirring to adsorb, impregnate, and coat the polyisocyanate onto the porous material, and then removing the solvent by heating.
JP173984A 1984-01-09 1984-01-09 Powdering of liquid isocyanate Granted JPS60146858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP173984A JPS60146858A (en) 1984-01-09 1984-01-09 Powdering of liquid isocyanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP173984A JPS60146858A (en) 1984-01-09 1984-01-09 Powdering of liquid isocyanate

Publications (2)

Publication Number Publication Date
JPS60146858A JPS60146858A (en) 1985-08-02
JPH023779B2 true JPH023779B2 (en) 1990-01-24

Family

ID=11509929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP173984A Granted JPS60146858A (en) 1984-01-09 1984-01-09 Powdering of liquid isocyanate

Country Status (1)

Country Link
JP (1) JPS60146858A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123320A (en) * 1976-03-15 1977-10-17 Aitsuikobuitsuchi Tsuro Borisu Cold hardening type mixture for pouring metal mold and core mold molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123320A (en) * 1976-03-15 1977-10-17 Aitsuikobuitsuchi Tsuro Borisu Cold hardening type mixture for pouring metal mold and core mold molding

Also Published As

Publication number Publication date
JPS60146858A (en) 1985-08-02

Similar Documents

Publication Publication Date Title
CA2081214C (en) Hazardous waste disposal method and composition
JPS62297347A (en) Heat resistant molding material comprising carbon forming binder and filler
JPH023779B2 (en)
EP0201199B1 (en) Method for treating activated silicon powder
JPH09328347A (en) Hardenable mortar material
US3197323A (en) Admixture for cementitious grouts and method of making same
JP2648255B2 (en) Dimension stabilization method for ceramic products
CN106987832A (en) A kind of colourless nanometer silane film agent and preparation method thereof
JP2002137976A (en) Asbestos-modifying and hardening agent and method of treating asbestos using it
US4724122A (en) Method for treating activated silicon powder
JPH06241575A (en) Method for manufacturing chemical pocket heater
CN1046923A (en) Dry grouting agent and preparation method thereof
JPH0212996B2 (en)
US2650173A (en) Method for decreasing the porosity of calcareous and siliceous materials
KR100521102B1 (en) Penetrating Organic and inorganic waterproofing agents of silica acid series by perlite, waterproofing layer structure using thereof and its construction method
JP2573497B2 (en) Crushing agent
JPS5992986A (en) Soil enrichment method with organic waste-derived granules
JPH09194249A (en) Production of water-repellent ceramic building material
JPS6178884A (en) Anticorrosive adhesive
JPS62230687A (en) Surface coating agent for carbon base refractory brick
JPS6069483A (en) Method of executing mortar
RU2105738C1 (en) Composition for fabricating structural elements
JPS6215501B2 (en)
JPS61205645A (en) Highly refractory composition
JPS6141874B2 (en)