JPH0237725B2 - KAHENGENSUIKI - Google Patents

KAHENGENSUIKI

Info

Publication number
JPH0237725B2
JPH0237725B2 JP18694581A JP18694581A JPH0237725B2 JP H0237725 B2 JPH0237725 B2 JP H0237725B2 JP 18694581 A JP18694581 A JP 18694581A JP 18694581 A JP18694581 A JP 18694581A JP H0237725 B2 JPH0237725 B2 JP H0237725B2
Authority
JP
Japan
Prior art keywords
circuit
transmission line
diode
impedance
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18694581A
Other languages
Japanese (ja)
Other versions
JPS5888911A (en
Inventor
Shintaro Gomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP18694581A priority Critical patent/JPH0237725B2/en
Publication of JPS5888911A publication Critical patent/JPS5888911A/en
Publication of JPH0237725B2 publication Critical patent/JPH0237725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/24Frequency- independent attenuators
    • H03H7/25Frequency- independent attenuators comprising an element controlled by an electric or magnetic variable
    • H03H7/253Frequency- independent attenuators comprising an element controlled by an electric or magnetic variable the element being a diode

Description

【発明の詳細な説明】 本発明は、ダイオードを使用した可変減衰器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable attenuator using diodes.

斯かる減衰器は、受信機のAGC回路にその使
用例をみることができる。ところで、受信機は、
遠く離れた放送局の数μVの微弱信号から、近い
放送局の1V以上に達する大信号まで、歪なく受
信することが要求されるが、過大信号が入ると局
部発振周波数に悪影響を及ぼし出力に歪を生じ
る。このため混合段には、なるべく一定の大きさ
の信号を供給する必要があり、強い電波を受信す
るとその強さに応じて、自動的に高周波増幅段の
利得を下げて混合回路への入力を一定に保つよう
なAGC回路が必要になる。AGC回路は一般に、
中間周波数段の出力を整流する検出回路と、それ
により利得を制御される被制御回路より構成され
る。AGCかけ方には、バイアス電流を増加させ
て利得制御を行うホワードAGCと、バイアス電
流を減少させて利得制御を行うリバースAGCと
がある。
An example of the use of such an attenuator can be found in the AGC circuit of a receiver. By the way, the receiver is
It is required to receive signals without distortion, from weak signals of a few microvolts from distant broadcasting stations to large signals of 1V or more from nearby broadcasting stations, but if an excessive signal enters, it will adversely affect the local oscillation frequency and reduce the output. Causes distortion. For this reason, it is necessary to supply a signal of a constant size to the mixing stage, and when a strong radio wave is received, the gain of the high-frequency amplification stage is automatically lowered depending on the strength, and the input to the mixing circuit is reduced. An AGC circuit is required to keep it constant. AGC circuits are generally
It consists of a detection circuit that rectifies the output of the intermediate frequency stage, and a controlled circuit whose gain is controlled by the detection circuit. There are two ways to apply AGC: forward AGC, which performs gain control by increasing bias current, and reverse AGC, which performs gain control by decreasing bias current.

上記ホワードAGCを行うため、従来、第1図
aに示すように信号路とアース間に挿入したダイ
オード1に電流を流すようにしたものがある。こ
のAGCは、トランジスタ等の他のAGC素子を使
用したものに比べ、相互変調等、強入力特性が良
いことは周知である。ところが、この場合、信号
路のインピーダンスが低くなるため、後続する
BPFの特性が変わる等の欠点がある。
In order to perform the above-mentioned forward AGC, there has conventionally been a system in which a current is caused to flow through a diode 1 inserted between the signal path and the ground, as shown in FIG. 1a. It is well known that this AGC has better strong input characteristics such as intermodulation than those using other AGC elements such as transistors. However, in this case, the impedance of the signal path is low, so the following
There are drawbacks such as changes in BPF characteristics.

また、第1図bに示すように信号路に直列にダ
イオード1を挿入してリバースAGCを行うよう
にしたものであるが、この場合、強入力において
相互変調等混信の原因になることも周知である。
In addition, as shown in Figure 1b, diode 1 is inserted in series in the signal path to perform reverse AGC, but it is well known that in this case, strong input can cause interference such as intermodulation. It is.

以上の他に、第1図cに示すようにダイオード
1a〜1cをπ形に接続したものもあるが、定イ
ンピーダンスを保持しようとすると、信号路とア
ース間に挿入されているダイオードを完全に短給
できないため、上述の場合同様、良好な強入力特
性が得られないなどの欠点がある。
In addition to the above, there is also a device in which diodes 1a to 1c are connected in a π-shape as shown in Figure 1c, but in order to maintain a constant impedance, the diodes inserted between the signal path and the ground must be completely connected. Since short pay is not possible, there are drawbacks such as the inability to obtain good strong input characteristics, as in the case described above.

なお、第1図a〜cにおいて、2は信号源、3
は信号源インピーダンスである。
In addition, in FIGS. 1a to 1c, 2 is a signal source, and 3 is a signal source.
is the signal source impedance.

本発明は上述した点に鑑みてなされたもので、
その目的とするところは、出力端から見たインピ
ーダンスを一定に保ちつつ信号の減衰量を変える
ことのできる可変減衰器を提供することにある。
The present invention has been made in view of the above points, and
The purpose is to provide a variable attenuator that can change the amount of signal attenuation while keeping the impedance seen from the output end constant.

このために成された可変減衰器は、4分の1波
長の伝送線、又はそれと等価なLC回路の入力端
で信号路とアース間にダイオードを接続し、かつ
出力端で信号路とアース間にダイオードと前記伝
送線又はLC回路の特性インピーダンスと等価な
抵抗とを直列に接続し、前記ダイオードの両方に
流す電流を制御して信号の減衰量を変えるように
したことを特徴とする。
The variable attenuator created for this purpose connects a diode between the signal path and ground at the input end of a quarter-wavelength transmission line or an equivalent LC circuit, and connects a diode between the signal path and ground at the output end. A diode and a resistance equivalent to the characteristic impedance of the transmission line or LC circuit are connected in series, and the amount of signal attenuation is changed by controlling the current flowing through both of the diodes.

以下本発明を第2図以降に示す実施例について
詳述する。
The present invention will be described in detail below with reference to embodiments shown in FIG. 2 and subsequent figures.

第2図は本発明による可変減衰器の一実施例を
示す回路図であり、可変減衰器の入力端子4に
は、Z0なるインピーダンス3を有する信号源2が
接続され、信号源2からの信号は所定量減衰され
た後出力端子5から送出される。
FIG. 2 is a circuit diagram showing an embodiment of a variable attenuator according to the present invention. A signal source 2 having an impedance 3 of Z0 is connected to an input terminal 4 of the variable attenuator. The signal is sent out from the output terminal 5 after being attenuated by a predetermined amount.

減衰器は、Z0なる特性インピーダンスを有する
4分の1波長(λ/4)伝送線10を有する。こ
の伝送線10の入出力端はカツプリング兼直流阻
止用コンデンサC1及びC2をそれぞれ介して入出
力端子4及び5にそれぞれ接続されている。上記
伝送線10の入力端にはまた、信号路とアース間
にカツプリング兼直流阻止用コンデンサC3を介
してダイオードD1が接続されている。そして、
上記伝送線10の出力端にはまた、信号路とアー
ス間にダイオードD2と上記伝送線10の特性イ
ンピーダンスZ0と等価な抵抗R1とが直列に接続
されている。
The attenuator has a quarter wavelength (λ/4) transmission line 10 with a characteristic impedance of Z 0 . The input/output ends of the transmission line 10 are connected to the input/output terminals 4 and 5 via coupling/DC blocking capacitors C1 and C2 , respectively. A diode D1 is also connected to the input end of the transmission line 10 via a coupling and direct current blocking capacitor C3 between the signal path and ground. and,
At the output end of the transmission line 10, a diode D 2 and a resistor R 1 equivalent to the characteristic impedance Z 0 of the transmission line 10 are connected in series between the signal path and ground.

上記ダイオードD1のカソードとダイオードD2
のアノードとが信号路に接続されていて、かつダ
イオードD1のアノードとコンデンサC3の接続点
には高周波阻止用抵抗R2を介して制御電圧端子
6が接続されている。このため、端子6に電圧を
加えることによつてダイオードD1、伝送線10、
ダイオードD2及び抵抗R1を通じて電流が流れる
ようになる。そして端子6に加える電圧を変える
ことによつて、ダイオードD1及びD2に流れる電
流が制御される。
Cathode of diode D 1 above and diode D 2
The anode of the diode D1 is connected to the signal path, and the control voltage terminal 6 is connected to the connection point between the anode of the diode D1 and the capacitor C3 via a high frequency blocking resistor R2 . Therefore, by applying voltage to terminal 6, diode D 1 , transmission line 10,
Current will now flow through diode D2 and resistor R1 . By changing the voltage applied to terminal 6, the current flowing through diodes D1 and D2 is controlled.

この電流制御によりダイオードD1及びD2はそ
の導通度が変えられてその高周波抵抗が制御され
るため、ダイオードD1及びD2を通じてアースに
落される信号路上の信号の大きさが変えられる。
すなわち、信号源2から伝送された信号の減衰量
を変えることのできる可変減衰器が得られる。
This current control changes the conductivity of the diodes D 1 and D 2 to control their high frequency resistance, thereby changing the magnitude of the signal on the signal path that is dropped to ground through the diodes D 1 and D 2 .
That is, a variable attenuator that can change the amount of attenuation of the signal transmitted from the signal source 2 is obtained.

図の例では、制御電圧を大きくすることによつ
て、ダイオードD1及びD2の高周波抵抗が小さく
なり、それ丈減衰器の減衰度が大きくなる。
In the illustrated example, by increasing the control voltage, the high frequency resistance of the diodes D 1 and D 2 becomes smaller, and the attenuation degree of the length attenuator becomes larger.

今、或る制御電圧を加えたときのダイオード
D1及びD2の高周波抵抗をRとすると、第2図の
可変減衰器は第3図に示すような等価回路で表せ
るようになる。第3図の等価回路において、特性
インピーダンスZ0を有するλ/4の伝送路を図中
A−A′から見たときのインピーダンスZxを分布
定数回路の定義に従つて算出すると、 Zx=Z0 2/RZ0=Z0/R・Z0/R+Z0 となる。従つて、出力端子5側から見たインピー
ダンスZputは、上記式のZoに(R+Z0)を並列接
続したものであるので、 Zput=Zx・(R+Z0)/Zx(R+Z0) =Z0 2/R・Z0/R+Z0(R+Z0)/Z0 2/R・Z0
/R+Z0+(R+Z0) =Z0 2(R+Z0)/Z0 2+R・Z0/R+Z0(R+Z0
) =Z0 2(R+Z0)/Z0 2+R・Z0 =Z0(R+Z0)/Z0+R =Z0 となり、常にZ0なる定インピーダンスとなる。
Now, when a certain control voltage is applied, the diode
Assuming that the high frequency resistances of D 1 and D 2 are R, the variable attenuator shown in FIG. 2 can be represented by an equivalent circuit as shown in FIG. 3. In the equivalent circuit of Fig. 3, when the impedance Z x of a λ/4 transmission line with characteristic impedance Z 0 viewed from A-A' in the figure is calculated according to the definition of a distributed constant circuit, Z x = Z 0 2 /RZ 0 =Z 0 /R・Z 0 /R+Z 0 . Therefore, the impedance Z put seen from the output terminal 5 side is the parallel connection of (R + Z 0 ) to Zo in the above equation, so Z put = Z x · (R + Z 0 ) / Z x (R + Z 0 ) =Z 0 2 /R・Z 0 /R+Z 0 (R+Z 0 ) /Z 0 2 /R・Z 0
/R+Z 0 +(R+Z 0 ) =Z 0 2 (R+Z 0 )/Z 0 2 +R・Z 0 /R+Z 0 (R+Z 0
)=Z 0 2 (R+Z 0 )/Z 0 2 +R・Z 0 =Z 0 (R+Z 0 )/Z 0 +R=Z 0 , and the impedance is always Z 0 , which is a constant impedance.

上述した実施例では、λ/4の伝送線10を用
いているが、この代わりに、特性インピーダンス
Z0で、かつ伝送線10と等価のLC回路を用いる
こともできる。その幾つかを周知の回路により例
示すると、第4図a及びbにそれぞれ示すように
π型及びT型にそれぞれ構成したLPF形のもの、
第4図c及びdにそれぞれ示すようにπ型及びT
型にそれぞれ構成したHPF形のもの、第4図e
乃至hにそれぞれ示すように構成したジヤイレー
タ形のもの(なお、+C及び−Cは正容量及び負
容量、+L及び−Lは正インダクタンス及び負イ
ンダクタンス)が挙げられる。
In the embodiment described above, the transmission line 10 of λ/4 is used, but instead of the transmission line 10 having a characteristic impedance of
An LC circuit with Z 0 and equivalent to the transmission line 10 can also be used. To illustrate some of them using well-known circuits, as shown in FIG.
π-type and T-type as shown in Figure 4c and d, respectively.
HPF type each configured in the mold, Figure 4 e
Examples include gyrator-type ones configured as shown in h to h (in addition, +C and -C are positive capacitance and negative capacitance, and +L and -L are positive inductance and negative inductance).

上述したものが代表的な回路例であるが、要す
るに、Fマトリツクスが で表わされる回路は全てインピーダンス反転作用
をもつており、第5図に示すように入力及び出力
にそれぞれRio、Rputを接続したとき、 RioRput=k2 で表わされる回路網であればよい。
The above is a typical circuit example, but in short, the F matrix is All the circuits represented by have an impedance inversion effect, and when R io and R put are connected to the input and output, respectively, as shown in Figure 5, the circuit network represented by R io R put = k 2 . Bye.

第6図は、受信機のアンテナ20とRFアンプ
21との間に上述した本発明による可変減衰器2
2を接続し、受信機のAGC制御信号によりダイ
オードに流す電流を制御して可変減衰器でAGC
回路を構成した一例を示す。このように、本発明
の可変減衰器でAGC回路を構成すると、出力イ
ンピーダンスが常に一定であるため、RFアンプ
21の入力BPF23の特性を損うことなく信号
を減衰させることができる。しかも、強入力に対
して全てのダイオードがフオワードAGC素子と
して働くので、強入力特性が良好である。このこ
とにより、強入力時の変調歪率が良く、かつ相互
変調が少なくなる他、RFアンプの入力BPFの周
波数ずれ、動作Qの変化がなく、防害波除去能力
が低下することがなくなる。従つて、強電界中を
走行する車載用受信機にこのAGC回路を使用す
れば、混信、音のひずみ等の障害を受けない好ま
しい受信機を得ることができる。
FIG. 6 shows the variable attenuator 2 according to the present invention between the receiver antenna 20 and the RF amplifier 21.
2 is connected, the current flowing through the diode is controlled by the receiver's AGC control signal, and the AGC is controlled by the variable attenuator.
An example of a circuit configuration is shown. In this way, when an AGC circuit is configured using the variable attenuator of the present invention, the output impedance is always constant, so the signal can be attenuated without impairing the characteristics of the input BPF 23 of the RF amplifier 21. Moreover, since all diodes work as forward AGC elements for strong input, the strong input characteristics are good. As a result, the modulation distortion factor at the time of strong input is good, intermodulation is reduced, and there is no frequency deviation of the input BPF of the RF amplifier, no change in the operation Q, and no deterioration in the prevention wave removal ability. Therefore, if this AGC circuit is used in a vehicle-mounted receiver that runs in a strong electric field, it is possible to obtain a preferable receiver that is free from interference such as interference and sound distortion.

本発明は上述したように、4分の1波長の伝送
線、又はそれと等価なLC回路の入力端で信号路
とアース間にダイオードを接続し、かつ出力端で
信号路とアース間にダイオードと上記伝送線又は
LC回路の特性インピーダンスと等価な抵抗とを
直列に接続し、上記ダイオードの両方に流す電流
を制御して信号の減衰量を変えるようにしている
ため、出力端側からみたインピーダンスは減衰量
の増減によつて変わることがなく常に一定に保持
することができるという実用上極めて有効な効果
が得られる。
As described above, the present invention connects a diode between the signal path and ground at the input end of a quarter wavelength transmission line or an equivalent LC circuit, and connects a diode between the signal path and ground at the output end. The above transmission line or
A resistor equivalent to the characteristic impedance of the LC circuit is connected in series, and the current flowing through both of the diodes is controlled to change the amount of signal attenuation, so the impedance seen from the output end changes depending on the amount of attenuation. This has the effect of being able to maintain a constant value without changing depending on the conditions, which is extremely effective in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a乃至cは従来の可変減衰器の例をそれ
ぞれ示す回路図、第2図は本発明による可変減衰
器の一実施例を示す回路図、第3図は第2図の可
変減衰器の等価回路を示す回路図、第4図は4分
の1波長伝送線と等価なLC回路を例示する回路
図、第5図は4分の1波長伝送線と等価な回路を
一般化して示す回路図、及び第6図は本発明によ
る可変減衰器の応用例を示す回路図である。 3……インピーダンス、10……伝送線、D1
D2……ダイオード、R1……抵抗。
1A to 1C are circuit diagrams showing examples of conventional variable attenuators, FIG. 2 is a circuit diagram showing an embodiment of the variable attenuator according to the present invention, and FIG. 3 is a circuit diagram showing the variable attenuator of FIG. 2. Figure 4 is a circuit diagram illustrating an LC circuit equivalent to a quarter wavelength transmission line, Figure 5 is a generalized circuit diagram equivalent to a quarter wavelength transmission line. The circuit diagram and FIG. 6 are circuit diagrams showing an application example of the variable attenuator according to the present invention. 3... Impedance, 10... Transmission line, D 1 ,
D 2 ... diode, R 1 ... resistance.

Claims (1)

【特許請求の範囲】 1 特性インピーダンスが信号源インピーダンス
と等価な4分の1波長の伝送線、又は該伝送線と
等価なLC回路と、 該伝送線又はLC回路の入力端で信号路とアー
ス間に接続されたダイオードと、 前記伝送線又はLC回路の出力端で信号路とア
ース間に接続された、ダイオードと前記伝送線又
はLC回路の特性インピーダンスと等価な抵抗と
の直列回路とを備え、 前記ダイオードの両方に流す電流を制御して信
号の減衰量を変えるようにした、 ことを特徴とする可変減衰器。
[Claims] 1. A quarter-wavelength transmission line whose characteristic impedance is equivalent to the signal source impedance, or an LC circuit equivalent to the transmission line, and a signal path and ground at the input end of the transmission line or LC circuit. and a series circuit of the diode and a resistance equivalent to the characteristic impedance of the transmission line or LC circuit, connected between the signal path and ground at the output end of the transmission line or LC circuit. , A variable attenuator characterized in that the amount of signal attenuation is changed by controlling the current flowing through both of the diodes.
JP18694581A 1981-11-24 1981-11-24 KAHENGENSUIKI Expired - Lifetime JPH0237725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18694581A JPH0237725B2 (en) 1981-11-24 1981-11-24 KAHENGENSUIKI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18694581A JPH0237725B2 (en) 1981-11-24 1981-11-24 KAHENGENSUIKI

Publications (2)

Publication Number Publication Date
JPS5888911A JPS5888911A (en) 1983-05-27
JPH0237725B2 true JPH0237725B2 (en) 1990-08-27

Family

ID=16197467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18694581A Expired - Lifetime JPH0237725B2 (en) 1981-11-24 1981-11-24 KAHENGENSUIKI

Country Status (1)

Country Link
JP (1) JPH0237725B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810980A (en) * 1987-06-04 1989-03-07 Texas Instruments, Inc. Matched variable attenuation switched limiter
FI88564C (en) * 1991-01-14 1993-05-25 Nokia Mobile Phones Ltd Controllable high frequency damper
US6737933B2 (en) * 2002-01-15 2004-05-18 Nokia Corporation Circuit topology for attenuator and switch circuits
US8279019B2 (en) * 2010-05-10 2012-10-02 Mediatek Singapore Pte. Ltd. Millimeter-wave switches and attenuators

Also Published As

Publication number Publication date
JPS5888911A (en) 1983-05-27

Similar Documents

Publication Publication Date Title
US5523716A (en) Microwave predistortion linearizer
KR100642321B1 (en) Circuit topology for attenuator and switch circuits
US5912599A (en) Bandwidth compensated bridged-tee attenuator
JP2004166205A (en) Variable attenuator
EP1300827A1 (en) Image processing device for transmitting color with fidelity and image data providing method
JPH09284170A (en) Antenna switch and switch power amplifier integrated semiconductor device
JPS60260220A (en) Rf variable attenuation circuit
JP3442208B2 (en) High frequency electronic circuit
JPH0237725B2 (en) KAHENGENSUIKI
US4825177A (en) Microwave amplifier and other microwave components
JP2007312003A (en) Attenuator
US3944943A (en) Broadband amplifier
JPH1022754A (en) Agc circuit
US4590434A (en) High dynamic range amplifier with low noise and low distortion
JP2522432Y2 (en) FM receiver
JPH0563624A (en) Cellular receiver
KR100337081B1 (en) Wide band filter of digital tuner
JPH0145768B2 (en)
JP3336758B2 (en) Variable attenuation circuit
JP2519320Y2 (en) Tuner AGC circuit
JP2003078370A (en) Gain variable amplifier circuit and receiver and transmitter using the same
JPH051132Y2 (en)
JP3096210B2 (en) High frequency variable equalizer
JPH09232815A (en) Variable attenuator for high frequency
JPS58127419A (en) Fet amplifier