JPH0237624A - Manufacture of flake-shaped oxide superconductor - Google Patents

Manufacture of flake-shaped oxide superconductor

Info

Publication number
JPH0237624A
JPH0237624A JP63187555A JP18755588A JPH0237624A JP H0237624 A JPH0237624 A JP H0237624A JP 63187555 A JP63187555 A JP 63187555A JP 18755588 A JP18755588 A JP 18755588A JP H0237624 A JPH0237624 A JP H0237624A
Authority
JP
Japan
Prior art keywords
oxide superconductor
raw material
melted state
boat
flake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63187555A
Other languages
Japanese (ja)
Other versions
JP2583288B2 (en
Inventor
Sukeyuki Kikuchi
菊地 祐行
Naoki Uno
直樹 宇野
Yasuzo Tanaka
田中 靖三
Shoji Shiga
志賀 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63187555A priority Critical patent/JP2583288B2/en
Priority to KR1019880011929A priority patent/KR910007385B1/en
Priority to AU22387/88A priority patent/AU594889B2/en
Priority to EP88115471A priority patent/EP0308892B1/en
Priority to CN88106780A priority patent/CN1033897A/en
Priority to DE3853658T priority patent/DE3853658D1/en
Publication of JPH0237624A publication Critical patent/JPH0237624A/en
Application granted granted Critical
Publication of JP2583288B2 publication Critical patent/JP2583288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To control the orientation of the crystal by once heating and melting a material containing the component element of an oxide superconductor with the desired composition, coagulating and cooling it in one direction from one end side of the length direction of the half-melted state or the melted state, then crushing it. CONSTITUTION:A raw material 2 containing the component element of an oxide superconductor with the desired composition is filled in a boat 1, it is heated and melted in an electric furnace 3, a cord 4 is wound on a drum 5 to move the boat 2 when the half-melted state or the melted state is attained. The raw material 2 in the melted state starts to be coagulated and cooled in one direction from the pulling side due to this shift, the raw material 2 is formed into a slender crystal structure in the length direction when it is continuously cooled to the other end. It is heat-treated at a relatively low temperature in the oxygen containing atmosphere, it is then crushed to obtain an oriented flake-shaped oxide superconductor. The axis-oriented flake-shaped oxide superconductor is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は配向したフレーク状酸化物超電導体の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing oriented flaky oxide superconductors.

(従来の技術) 従来の希土類元素、アルカリ土金属、及びCu等及び酸
素からなる酸化物超電導体(線条体)の製造法では、酸
化物超電導体の構成元素を含む酸化物、炭酸塩などの一
次原料物質を超電導体組成となるよう秤量、混合し、こ
れを仮焼成して得た二次原料粉末(仮焼成粉)を用いて
いた。
(Prior art) In the conventional manufacturing method of an oxide superconductor (striated body) made of rare earth elements, alkaline earth metals, Cu, etc., and oxygen, oxides, carbonates, etc. containing the constituent elements of the oxide superconductor are A secondary raw material powder (pre-sintered powder) obtained by weighing and mixing the primary raw materials so as to have a superconducting composition and pre-sintering them was used.

この仮焼成粉を用いて線条体を得る方法は、同仮焼成粉
な金属パイプ内に充填し、これに引抜き、押出し、圧延
、スウエージングなどの塑性加工を施して所望形状1寸
法の複合線を製造し、然る後、含酸素雰囲気中で熱処理
する方法が一般に知られている。
The method of obtaining a filament using this pre-sintered powder is to fill a metal pipe with the pre-sintered powder, and then subject it to plastic processing such as drawing, extrusion, rolling, and swaging to form a composite material with a desired shape and one dimension. It is generally known to produce a wire and then heat treat it in an oxygen-containing atmosphere.

また、従来は前記仮焼成粉を圧粉成形した後、含酸素雰
囲気中で熱処理してバルク体を得ることも行なわれてい
る。
In addition, conventionally, the calcined powder is compacted and then heat-treated in an oxygen-containing atmosphere to obtain a bulk body.

一方、例えばYBaCuO系超電導体はその結晶構造が
明らかになっており、層状でab面内の方がC軸方向よ
りも極めて電流が流れ易いことが知られている。
On the other hand, for example, the crystal structure of a YBaCuO-based superconductor has been clarified, and it is known that it is layered and current flows much more easily in the a-b plane than in the C-axis direction.

(発明が解決しようとする課題) しかしながら、前記のような従来方法で得られた酸化物
超電導体の前駆体の仮焼成粉の結晶配向はランダムであ
るため、これを圧粉成形して得られる成形体は高い臨界
電流密度(Jc)をもつものが得られないという欠点が
あった。
(Problem to be Solved by the Invention) However, since the crystal orientation of the calcined powder of the oxide superconductor precursor obtained by the conventional method as described above is random, There was a drawback that a molded article having a high critical current density (Jc) could not be obtained.

(発明の目的) 本発明の目的は、粉末成形−熱処理という従来の酸化物
超電導体の製法(固相法)における結晶の配向制御が可
能なフレーク状酸化物超電導体の製造方法を提供するこ
とにある。
(Objective of the Invention) An object of the present invention is to provide a method for producing a flake-like oxide superconductor that is capable of controlling crystal orientation in the conventional oxide superconductor production method (solid phase method) of powder compaction and heat treatment. It is in.

(問題点を解決するための手段) 本発明のフレーク状酸化物超電導体の製造方法は、Bi
又は希土類元素、アルカリ土金属、銅及び酸素からなる
所望組成の酸化物超電導体の構成元素を含有する物質を
一旦加熱溶融した後、半溶融状態または溶融状態よりそ
の長さ方向の一端側から一方向に凝固冷却し、しかる後
、粉砕することを特徴とするものである。
(Means for Solving the Problems) The method for producing a flaky oxide superconductor of the present invention includes Bi
Or, after once heating and melting a substance containing constituent elements of an oxide superconductor with a desired composition consisting of rare earth elements, alkaline earth metals, copper, and oxygen, from one end in the length direction from a semi-molten state or a molten state. It is characterized by being solidified and cooled in the same direction, and then pulverized.

本発明方法をYBaCuO系超電導体の場合を中心とし
て説明する。
The method of the present invention will be explained focusing on the case of YBaCuO superconductor.

第1図は一方向凝固冷却する場合の一例である、これは
ボー1−1に所望組成の酸化物超電導体の構成元素を含
有する原料物質2を入れてこれを電気炉3内で加熱溶融
する。なお原料物質2がY系の場合は950〜1200
℃程度で半溶融状態となり、1200℃以上で溶融状態
となる。しかし、あまり温度を上げ過ぎるとボート1の
構成材料との反応が激しくなるので1500℃以下がよ
い、この原料物質2が半溶融状態または溶融状態の所定
温度に達したら、索条4をドラム5に巻き取ってボート
lを第1図の右側に移動する。
Figure 1 shows an example of unidirectional solidification and cooling. In this case, a raw material 2 containing constituent elements of an oxide superconductor with a desired composition is placed in a bowl 1-1, and then heated and melted in an electric furnace 3. do. In addition, when the raw material 2 is Y-based, the range is 950 to 1200.
It becomes a semi-molten state at about 1200°C and becomes a molten state at 1200°C or more. However, if the temperature is raised too much, the reaction with the constituent materials of the boat 1 will be intense, so it is better to keep it below 1500°C.When the raw material 2 reaches a predetermined temperature at which it is semi-molten or molten, the rope 4 is moved to the drum 5. Wind it up and move the boat l to the right side in Figure 1.

この場合、原料物質2としては予め仮焼成したものを用
いるとよい。
In this case, it is preferable to use a pre-fired material as the raw material 2.

ボートlの材質は例えばpt、pt金合金どのように極
力原料物質との反応が少ないものが望ましい。
The material of the boat 1 is desirably one that reacts with the raw material as little as possible, such as PT or PT gold alloy.

ボート!の移動速度は適宜決定できるが数十μ/S程度
が好ましい、この場合、電気炉3内は第2図のような温
度勾配となっているため、ボートlを右側に移動するこ
とにより、溶融状態の原料物質2は引き取り側から一方
向的に凝固冷却しはじめる。他端まで連続的に冷却する
と原料物質2は長さ方向に細長い結晶構造となる。夫々
の結晶粒は長さ方向をab面、厚さ方向をC軸方向とし
たフレーク状となる。
boat! The moving speed of can be determined as appropriate, but it is preferably about several tens of μ/S. In this case, since the temperature gradient inside the electric furnace 3 is as shown in Fig. The raw material 2 in this state begins to solidify and cool unidirectionally from the withdrawal side. When continuously cooled to the other end, the raw material 2 becomes a crystal structure elongated in the length direction. Each crystal grain has a flake shape with the length direction being the a-b plane and the thickness direction being the c-axis direction.

次にこれらを含酸素雰囲気中で比較的低温で熱処理し、
然る後、粉砕すると配向したフレーク状酸化物超電導体
が得られる。なお、この一方向凝固冷却操作を含酸素雰
囲気中で行なえば、その後に熱処理をすることなく粉砕
するだけでフレーク状酸化物超電導体が得られる。
Next, these are heat treated at a relatively low temperature in an oxygen-containing atmosphere,
Thereafter, pulverization yields oriented flaky oxide superconductors. Note that if this unidirectional solidification and cooling operation is performed in an oxygen-containing atmosphere, flaky oxide superconductors can be obtained simply by pulverizing without subsequent heat treatment.

加熱方法は電気炉に限らず、例えば、高周波誘導加熱、
赤外加熱などの手段を適宜使用できる。
Heating methods are not limited to electric furnaces, for example, high frequency induction heating,
Means such as infrared heating can be used as appropriate.

なお、YBa 2 Cu z 07−5超電導体の場合
は出発原料物質の組成を若干Cu多め又はCu、Ba多
めにしておくことが望ましい。その理由はY : Ba
 : Cuが1+2:3 (モル比)の場合、凝固冷却
過程で異相(YxBaCuOs)が生成し特性を悪化さ
せる傾向があるためである。
In addition, in the case of YBa 2 Cu z 07-5 superconductor, it is desirable that the composition of the starting material be slightly richer in Cu or in larger amounts in Cu and Ba. The reason is Y: Ba
: When Cu is 1+2:3 (molar ratio), a different phase (YxBaCuOs) is generated during the solidification and cooling process, which tends to deteriorate the properties.

本発明における酸化物超電導体の原料物質2はY系に限
らずB 1−3r−Ca−Cu−0系とかT2系等のも
のでも適用できる。
The raw material 2 of the oxide superconductor in the present invention is not limited to Y-based materials, but may also be B 1-3r-Ca-Cu-0-based materials, T2-based materials, and the like.

(実施例) 原料物質としてY2O3、BaCO3,CuO粉末をY
:Ba:Cu=l :2:3.5 (モル比)となるよ
うに陣1、混合した後、この混合物を920℃x20h
r、Ot気流(4g/m1n)中で仮焼成した。而して
得た仮焼成原料物質を第1図に示すような方法で加熱溶
融し、一方向凝固冷却した。このときボート1としてl
 0mmX5mm (深さ)X50mmI2のpt製を
使用し、02気流中(4I2/m1n)で行なった。又
ボートlの移動速度は100μ/Sとした。温度勾配は
100°C/cmである。而して得られたバルク体を取
り出し、自動乳鉢で15分粉砕した。その結果、厚さ#
20μ、長さlOO〜300μのフレーク状酸化物超電
導体が得られた。
(Example) Using Y2O3, BaCO3, and CuO powders as raw materials
:Ba:Cu=l :2:3.5 (molar ratio). After mixing, this mixture was heated at 920℃ x 20h.
Temporary firing was carried out in r, Ot air flow (4 g/m1n). The pre-fired raw material thus obtained was heated and melted in the manner shown in FIG. 1, and unidirectionally solidified and cooled. At this time, as boat 1, l
A PT product measuring 0 mm x 5 mm (depth) x 50 mm I2 was used, and the test was carried out in 02 air flow (4 I2/m1n). Further, the moving speed of the boat 1 was set to 100 μ/S. The temperature gradient is 100°C/cm. The thus obtained bulk body was taken out and ground in an automatic mortar for 15 minutes. As a result, the thickness #
A flaky oxide superconductor with a length of 20μ and a length of lOO~300μ was obtained.

得られたフレーク状酸化物超電導体をX線回折したとこ
ろ厚さ方向がC軸方向であることが確認された。まお、
同一組成の原料物質を950℃、1050°C,115
0℃の半溶融状態から一方向凝固冷却した場合も、また
1250℃、1350℃の溶融状態から一方向凝固冷却
した場合もほぼ同様であった。
When the obtained flaky oxide superconductor was subjected to X-ray diffraction, it was confirmed that the thickness direction was the C-axis direction. Mao,
Raw materials of the same composition are heated at 950°C, 1050°C, 115°C.
The results were almost the same when unidirectional solidification and cooling was performed from a semi-molten state at 0°C, and when unidirectional solidification and cooling was performed from a molten state at 1250°C and 1350°C.

このフレーク状酸化物超電導体を外径10mmΦ、内径
5mmφのAgバイブ内に充填した後。
After filling this flaky oxide superconductor into an Ag vibe with an outer diameter of 10 mmΦ and an inner diameter of 5 mmΦ.

スウエージング、溝ロール圧延を行なって外径0.4m
mφの複合線とした。その後850℃×4hr、0□気
流中(4g/m1n)で熱処理した後、2℃/minの
速度で除冷した。而して得られた超電導線の臨界電流密
度Jcを測定したところ、18500A/cm”LN2
0Gであった1はボート 2は酸化物超電導体の構成元素を含有する原料物質 3は電気炉 4は索条 5はドラム 比較のため前記原料仮焼成粉を前記の場合と同様にAg
バイブに充填して複合線に加工し、その後熱処理を行な
ったところJcは1500A/cm ” L N 20
 Gと低い値のものであった。
External diameter: 0.4m by swaging and groove roll rolling
It was made into a composite line of mφ. After that, it was heat-treated at 850° C. for 4 hr in a 0□ air flow (4 g/ml), and then slowly cooled at a rate of 2° C./min. When the critical current density Jc of the superconducting wire thus obtained was measured, it was found to be 18,500 A/cm"LN2
1, which was 0G, is a boat 2, a raw material 3 containing the constituent elements of the oxide superconductor is an electric furnace 4, and a rope 5 is a drum.
When it was filled into a vibrator and processed into a composite wire, and then heat treated, the Jc was 1500A/cm" L N 20
It had a low value of G.

(発明の効果) 本発明の製造方法によれば、軸配向したフレーク状酸化
物超電導体が得られるので、それを用いて臨界電流密度
(Jc)の向上した線材、厚膜等種々の形状に容易に加
工することができるものであり、工業上、W4著な効果
を有する。
(Effects of the Invention) According to the manufacturing method of the present invention, an axially oriented flake-like oxide superconductor can be obtained, which can be used to produce various shapes such as wire rods and thick films with improved critical current density (Jc). W4 can be easily processed and has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 所望組成の酸化物超電導体の構成元素を含有する物質を
加熱溶融した後、半溶融状態または溶融状態よりその長
さ方向の一端側から一方向に凝固冷却し、しかる後粉砕
することを特徴とするフレーク状酸化物超電導体の製造
方法。
A material containing constituent elements of an oxide superconductor having a desired composition is heated and melted, then solidified and cooled in one direction from one end in the longitudinal direction from a semi-molten state or a molten state, and then pulverized. A method for producing a flaky oxide superconductor.
JP63187555A 1987-09-21 1988-07-27 Method for producing flake-like oxide superconductor Expired - Lifetime JP2583288B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63187555A JP2583288B2 (en) 1988-07-27 1988-07-27 Method for producing flake-like oxide superconductor
KR1019880011929A KR910007385B1 (en) 1987-09-21 1988-09-15 Flaky oxide superconductor and its manufacturing method
AU22387/88A AU594889B2 (en) 1987-09-21 1988-09-19 Flaky oxide superconductor and method of manufacturing the same
EP88115471A EP0308892B1 (en) 1987-09-21 1988-09-21 Flaky oxide superconductor and method of manufacturing the same
CN88106780A CN1033897A (en) 1987-09-21 1988-09-21 Flaky oxide superconductor and manufacture method thereof
DE3853658T DE3853658D1 (en) 1987-09-21 1988-09-21 Superconducting oxide flakes and their manufacturing processes.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63187555A JP2583288B2 (en) 1988-07-27 1988-07-27 Method for producing flake-like oxide superconductor

Publications (2)

Publication Number Publication Date
JPH0237624A true JPH0237624A (en) 1990-02-07
JP2583288B2 JP2583288B2 (en) 1997-02-19

Family

ID=16208126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63187555A Expired - Lifetime JP2583288B2 (en) 1987-09-21 1988-07-27 Method for producing flake-like oxide superconductor

Country Status (1)

Country Link
JP (1) JP2583288B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479011A (en) * 1987-09-21 1989-03-24 Furukawa Electric Co Ltd Flaky oxide superconductor and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479011A (en) * 1987-09-21 1989-03-24 Furukawa Electric Co Ltd Flaky oxide superconductor and production thereof

Also Published As

Publication number Publication date
JP2583288B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
EP0308892B1 (en) Flaky oxide superconductor and method of manufacturing the same
JPH0237624A (en) Manufacture of flake-shaped oxide superconductor
JP2610033B2 (en) Method for producing oxide-based superconducting molded body
JPH01241713A (en) Manufacture of oxide superconductor wire
JPS63307622A (en) Manufacture of superconductive wire
JPH0451414A (en) Manufacture of ceramic superconductor
JP2611778B2 (en) Superconducting wire manufacturing method
JPH0451413A (en) Manufacture of ceramic superconductor
JP2567891B2 (en) Method for producing oxide superconducting molded body
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JP3048404B2 (en) Method for producing Bi-based oxide superconducting wire
JPH02141423A (en) Production of thallium-based superconductor
JPH01239713A (en) Manufacture of oxide superconductive wire
JP2556545B2 (en) Method for manufacturing oxide superconducting wire
JP2545443B2 (en) Method for manufacturing oxide superconductor
JPH02204325A (en) Production of thallium-based superconductor
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JPH02158013A (en) Manufacture of oxide superconductive compact
JPH02157151A (en) Production of thallium superconductor and raw material powder for sintering
JPH02263606A (en) Manufacture of oxide superconductor
JPH02239522A (en) Manufacture of bi oxide superconducting wire having high critical current density
JPH02160317A (en) Manufacture of superconducting wire
JPH0465343A (en) Production of oxide superconducting wire
JPH05234438A (en) Manufacture of oxide superconductive wire
JPH06199565A (en) Production of molding from oxide-ceramic high temperature superconductor