JPH0237366B2 - - Google Patents

Info

Publication number
JPH0237366B2
JPH0237366B2 JP57101453A JP10145382A JPH0237366B2 JP H0237366 B2 JPH0237366 B2 JP H0237366B2 JP 57101453 A JP57101453 A JP 57101453A JP 10145382 A JP10145382 A JP 10145382A JP H0237366 B2 JPH0237366 B2 JP H0237366B2
Authority
JP
Japan
Prior art keywords
silica powder
filler material
present
mesh
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57101453A
Other languages
Japanese (ja)
Other versions
JPS58219242A (en
Inventor
Hiroyuki Watabe
Yoshuki Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP10145382A priority Critical patent/JPS58219242A/en
Publication of JPS58219242A publication Critical patent/JPS58219242A/en
Publication of JPH0237366B2 publication Critical patent/JPH0237366B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、ICプラスチツクパツケージ用フイ
ラー材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to filler materials for IC plastic packages.

従来のICプラスチツクパツケージ用フイラー
材には、主に溶融シリカ粉と結晶質シリカ粉が使
用されている。溶融シリカ粉は電気的特性に優れ
ている。このため、IC、LSI等には、主として溶
融シリカ粉が使われている。しかし、溶融シリカ
粉は熱伝導率が小さい。このため、消費電力が大
きい集積回路のフイラー材としては不向きといわ
れていた。消費電力が大きく発熱しやすい集積回
路としてはバイポーラ型IC、LSI等がある。
Conventional filler materials for IC plastic packages mainly use fused silica powder and crystalline silica powder. Fused silica powder has excellent electrical properties. For this reason, fused silica powder is mainly used in ICs, LSIs, etc. However, fused silica powder has low thermal conductivity. For this reason, it was said to be unsuitable as a filler material for integrated circuits that consume large amounts of power. Bipolar ICs, LSIs, etc. are integrated circuits that consume a lot of power and easily generate heat.

この点、結晶質シリカ粉は熱伝導率が大きい。
しかし、結晶質シリカ粉は電気的特性が不安定で
ある。
In this regard, crystalline silica powder has high thermal conductivity.
However, crystalline silica powder has unstable electrical properties.

第1図は、従来の結晶質シリカ粉の偏光顕微鏡
写真を模写した図である。1つ1つの粉体粒子1
は角ばつていて丸みがない。
FIG. 1 is a reproduction of a polarized light micrograph of a conventional crystalline silica powder. Each powder particle 1
is angular and not rounded.

本発明は、上記の実情に鑑みてなされたもの
で、消費電力の大きい集積回路に最適でしかも電
気的に安定なICプラスチツクパツケージ用フイ
ラー材を提供することを目的とする。
The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to provide a filler material for an IC plastic package that is optimal for integrated circuits with large power consumption and is electrically stable.

本発明のICプラスチツクパツケージ用フイラ
ー材は、溶融部の内側に未溶融部を有するシリカ
粉体粒子で構成されたものである。
The filler material for IC plastic packages of the present invention is composed of silica powder particles having an unfused part inside a fused part.

本発明のフイラー材は、粒度が60メツシユより
も細かい粒子であることが好ましい。
The filler material of the present invention preferably has particles with a particle size smaller than 60 mesh.

シリカ粉が60メツシユよりも粗いと、モールデ
イングの際にゲート詰りを起こす可能性がある。
従つて、シリカ粉は原料の段階で60メツシユより
も細かくしておくことが好ましい。
If the silica powder is coarser than 60 mesh, it may cause gate clogging during molding.
Therefore, it is preferable that the silica powder be made finer than 60 mesh at the raw material stage.

本発明のフイラー材は、シリカ粉体粒子の表面
層を瞬間的に溶融して製造する。表面層を溶融す
るには、例えばプラズマ炎で加熱してもよいし、
あるいは酸水素溶融法やアーク溶融法等によつて
もよい。
The filler material of the present invention is produced by instantaneously melting the surface layer of silica powder particles. To melt the surface layer, it may be heated, for example, with a plasma flame, or
Alternatively, an oxyhydrogen melting method, an arc melting method, or the like may be used.

以下、実施例を掲げて本発明のICプラスチツ
クパツケージ用フイラー材をより具体的に説明す
る。
Hereinafter, the filler material for IC plastic packages of the present invention will be explained in more detail with reference to Examples.

実施例 まず、20Kgの結晶質シリカ粉を原料の段階で60
メツシユよりも細かく粉砕した。この結晶質シリ
カ粉の表面層のみをプラズマガンにより瞬間的に
溶融した。そして、本発明のフイラー材を偏光顕
微鏡で調べた。その結果、シリカ粉体粒子の表面
は溶融して丸くなつていた。しかし、内部に偏光
し溶融されていないことがわかる(第2図参照)。
また、60〜90メツシユのシリカ粉で構成された本
発明のフイラー材を粉砕して偏光顕微鏡で調べた
ところ、明らかに未溶融部が存在した。325メツ
シユよりも細かいシリカ粉で構成された本発明の
フイラー材についても同様な条件で溶融して、偏
光顕微鏡で調べた。その結果、325メツシユより
も細かい本発明のフイラー材には未溶融部が存在
しなかつた。
Example First, 20 kg of crystalline silica powder was
It was ground finer than Metsuyu. Only the surface layer of this crystalline silica powder was instantaneously melted using a plasma gun. Then, the filler material of the present invention was examined using a polarizing microscope. As a result, the surfaces of the silica powder particles were melted and rounded. However, it can be seen that the light is polarized inside and is not melted (see Figure 2).
Further, when the filler material of the present invention composed of 60 to 90 mesh silica powder was crushed and examined with a polarizing microscope, it was clearly found that there were unfused portions. The filler material of the present invention, which is composed of silica powder finer than 325 mesh, was also melted under similar conditions and examined using a polarizing microscope. As a result, there was no unfused portion in the filler material of the present invention which was finer than 325 mesh.

第2図は本発明のICプラスチツクパツケージ
用フイラー材の偏光顕微鏡写真を模写した図であ
る。
FIG. 2 is a reproduction of a polarized light micrograph of the filler material for an IC plastic package of the present invention.

第1図の粉体粒子1に比べて第2図の粉体粒子
2は、表面が溶融して丸くなつている。
Compared to the powder particles 1 in FIG. 1, the powder particles 2 in FIG. 2 have melted and rounded surfaces.

第3図は、本発明のフイラー材を構成するシリ
カ粉体粒子を模式的に示した図である。
FIG. 3 is a diagram schematically showing silica powder particles constituting the filler material of the present invention.

溶融部3の内側に未溶融部4が存在する。 An unmelted part 4 exists inside the melted part 3.

溶融部3と未溶融部4の体積比はプラズマガン
の条件を変えることにより制御することができ
る。
The volume ratio of the melted part 3 and the unmelted part 4 can be controlled by changing the conditions of the plasma gun.

この実施例で溶融部3と未溶融部4の体積比
は、粉砕後にX線による定量で求めた。
In this example, the volume ratio of the melted part 3 and the unmelted part 4 was determined by quantitative determination using X-rays after pulverization.

代表的な粒子について測定したところ、粒子径
Aは90μであり、溶融部3の厚さBは15μであつ
た。粒子径Aが60μのものは溶融部3の厚さBが
25μで約8割であつた。粒子が大きくなれば溶融
部3の割合は減少し、粒子が小さくなれば溶融部
3の割合は増加した。
When representative particles were measured, the particle diameter A was 90μ, and the thickness B of the melted zone 3 was 15μ. For particles with a particle diameter A of 60 μ, the thickness B of the melted part 3 is
It was about 80% at 25μ. As the particles became larger, the proportion of the melted part 3 decreased, and as the particles became smaller, the proportion of the melted part 3 increased.

この事を確認するため粉体粒子を90メツシユよ
りも粗いもの、90〜150メツシユのもの、150〜
250メツシユのもの、250〜325メツシユのもの、
325メツシユより細かいものに篩別し、それぞれ
20μ程度に粉砕してX線分析によつてα−コルツ
(未溶融部)を定量した。その結果を第1表(後
掲)に示す。
To confirm this, we used powder particles coarser than 90 mesh, powder particles with 90 to 150 mesh, and powder particles coarser than 90 mesh.
250 mesh, 250-325 mesh,
Sieve into finer than 325 mesh, each
It was crushed into particles of about 20 μm and the α-colts (unmelted portion) was quantified by X-ray analysis. The results are shown in Table 1 (see below).

次に、本発明のICプラスチツクパツケージ用
フイラー材の電気的特性及び熱的特性を調べた。
電気的及び熱的特性を調べるために本発明のフイ
ラー材の抽出水電気伝導度、熱伝導率及び線熱膨
脹係数を測定した。比較のために、従来の溶融シ
リカ粉と結晶質シリカ粉についても同様の測定を
行なつた。その結果を第2表(後掲)に示す。
尚、熱伝導率及び線熱膨脹係数は300℃における
値を示す。
Next, the electrical and thermal properties of the filler material for IC plastic packages of the present invention were investigated.
In order to examine the electrical and thermal properties, the extracted water electrical conductivity, thermal conductivity, and linear thermal expansion coefficient of the filler material of the present invention were measured. For comparison, similar measurements were performed on conventional fused silica powder and crystalline silica powder. The results are shown in Table 2 (see below).
Note that the thermal conductivity and linear thermal expansion coefficient are the values at 300°C.

第2表で明らかなように、本発明のICプラス
チツクパツケージ用フイラー材は、抽出水電気伝
導度が従来の溶融シリカ粉とほぼ同じで、熱伝導
率が従来の溶融シリカ粉と結晶質シリカ粉の中間
の値を示した。
As is clear from Table 2, the filler material for IC plastic packages of the present invention has approximately the same extracted water electrical conductivity as conventional fused silica powder, and has thermal conductivity similar to conventional fused silica powder and crystalline silica powder. showed an intermediate value.

従つて、本発明のICプラスチツクパツケージ
用フイラー材は電気的に安定で、しかも熱伝導率
が大きい。このため、本発明のICプラスチツク
パツケージ用フイラー材は、消費電力の大きい集
積回路のフイラー材として大変有効である。
Therefore, the filler material for IC plastic packages of the present invention is electrically stable and has high thermal conductivity. Therefore, the filler material for IC plastic packages of the present invention is very effective as a filler material for integrated circuits that consume large amounts of power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の結晶質シリカ粉の偏光顕微鏡写
真を模写した図、第2図は本発明によるICプラ
スチツクパツケージ用フイラー材の偏光顕微鏡写
真を模写した図、第3図は本発明によるICプラ
スチツクパツケージ用フイラー材を構成する粉体
粒子を模式的に示した図である。 1,2…粉体粒子、3…溶融部、4…未溶融
部。 第1表 粒子径 α−コルツ量 1) 90#以上 90% 2) 90〜150# 65% 3) 150〜250# 48% 4) 250〜325# 30% 5) 325#以上 5%
Figure 1 is a reproduction of a polarized light microscope photograph of conventional crystalline silica powder, Figure 2 is a reproduction of a polarized light microscope photograph of a filler material for an IC plastic package according to the present invention, and Figure 3 is a reproduction of a polarized light microscope photograph of a filler material for an IC plastic package according to the present invention. FIG. 2 is a diagram schematically showing powder particles constituting a filler material for a package. 1, 2... Powder particles, 3... Melted part, 4... Unmelted part. Table 1 Particle size α-Colts amount 1) 90# or more 90% 2) 90-150# 65% 3) 150-250# 48% 4) 250-325# 30% 5) 325# or more 5%

【表】 リカ粉
[Table] Rica powder

Claims (1)

【特許請求の範囲】 1 溶融部の内側に未溶融部すなわち結晶質部を
有するシリカ粉体粒子で構成され、抽出水電気伝
導度が溶融シリカ粉とほぼ同じで、熱伝導率が溶
融シリカ粉と結晶質シリカ粉の中間の値を示すこ
とを特徴とするICプラスチツクパツケージ用フ
イラー材。 2 前記シリカ粉体粒子が60メツシユよりも細か
い粒子であることを特徴とする特許請求の範囲第
1項に記載のICプラスチツクパツケージ用フイ
ラー材。
[Claims] 1. It is composed of silica powder particles having an unfused part, that is, a crystalline part, inside the fused part, and the electric conductivity of extracted water is almost the same as that of fused silica powder, and the thermal conductivity is similar to that of fused silica powder. A filler material for IC plastic packaging characterized by exhibiting a value intermediate between that of crystalline silica powder and crystalline silica powder. 2. The filler material for an IC plastic package according to claim 1, wherein the silica powder particles are finer than 60 mesh.
JP10145382A 1982-06-15 1982-06-15 Filler for ic plastic package Granted JPS58219242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10145382A JPS58219242A (en) 1982-06-15 1982-06-15 Filler for ic plastic package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10145382A JPS58219242A (en) 1982-06-15 1982-06-15 Filler for ic plastic package

Publications (2)

Publication Number Publication Date
JPS58219242A JPS58219242A (en) 1983-12-20
JPH0237366B2 true JPH0237366B2 (en) 1990-08-23

Family

ID=14301110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10145382A Granted JPS58219242A (en) 1982-06-15 1982-06-15 Filler for ic plastic package

Country Status (1)

Country Link
JP (1) JPS58219242A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8320086D0 (en) * 1983-07-26 1983-08-24 Ciba Geigy Ag Spherical fused silica
JPS60141776A (en) * 1983-12-29 1985-07-26 Toshiba Ceramics Co Ltd Filler for ic plastic package
JPS6164754A (en) * 1984-09-05 1986-04-03 Nippon Steel Corp Inorganic filler-containing resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138740A (en) * 1982-02-15 1983-08-17 Denki Kagaku Kogyo Kk Resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138740A (en) * 1982-02-15 1983-08-17 Denki Kagaku Kogyo Kk Resin composition

Also Published As

Publication number Publication date
JPS58219242A (en) 1983-12-20

Similar Documents

Publication Publication Date Title
KR20120125232A (en) Synthetic amorphous silica powder and method for producing same
TWI374858B (en) Process for producing aluminum oxide powder
JPH0237366B2 (en)
HK1001048A1 (en) Process for the production of a sintered refractory vitreous silica material
US3762936A (en) Manufacture of borosilicate glass powder essentially free of alkali and alkaline earth metals
JP3816052B2 (en) Method for producing spherical siliceous powder
JP3303374B2 (en) Gibbsite type aluminum hydroxide for resin filling
JPS62191420A (en) Spherical corundum particle and production thereof
JP7406444B2 (en) Method for producing spherical particle material
JP3853137B2 (en) Method for producing fine spherical silica
JPH04116161A (en) Titanium target material and production thereof
JP4313943B2 (en) Method for producing fine spherical silica powder
JP4313924B2 (en) Spherical silica powder and method for producing the same
JPS6296569A (en) Semiconductor sealing resin composition
WO2020121511A1 (en) Method for producing opaque quartz glass
JPH0645446B2 (en) Method for producing high-purity graphite fine powder
JPH1160234A (en) Production of spherical silica powder with low uranium content, and silica powder
JPH02158637A (en) Silica filler and sealing resin composition using the same
WO2024128320A1 (en) Spherical alumina powder
JP2820865B2 (en) Method for producing quartz glass foam
JP3368365B2 (en) Composition for artificial lightweight aggregate and method for producing artificial lightweight aggregate
JPH0249244B2 (en)
JPH0528744B2 (en)
JPS60131868A (en) Manufacture of silicic acid powder sphere
JPS5858129B2 (en) Solid filter manufacturing method