JPH0237332B2 - - Google Patents

Info

Publication number
JPH0237332B2
JPH0237332B2 JP57093792A JP9379282A JPH0237332B2 JP H0237332 B2 JPH0237332 B2 JP H0237332B2 JP 57093792 A JP57093792 A JP 57093792A JP 9379282 A JP9379282 A JP 9379282A JP H0237332 B2 JPH0237332 B2 JP H0237332B2
Authority
JP
Japan
Prior art keywords
catalyst
phenol
reaction
temperature
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57093792A
Other languages
Japanese (ja)
Other versions
JPS58210037A (en
Inventor
Yasuhiko Inoe
Tadao Nishizaki
Satoshi Taguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP57093792A priority Critical patent/JPS58210037A/en
Priority to DE8282107818T priority patent/DE3263906D1/en
Priority to EP82107818A priority patent/EP0073471B1/en
Priority to US06/411,806 priority patent/US4454357A/en
Priority to CA000410450A priority patent/CA1200560A/en
Publication of JPS58210037A publication Critical patent/JPS58210037A/en
Publication of JPH0237332B2 publication Critical patent/JPH0237332B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はフエノール類とアルコール類を反応さ
せてアルキルフエノール類を製造する方法に用い
られる金属酸化物をフエノール類で前処理した触
媒およびフエノラート類含有触媒の活性化方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst in which a metal oxide is pretreated with a phenol, and a method for activating a phenolate-containing catalyst, which is used in a method for producing alkylphenols by reacting phenols and alcohols. .

アルキルフエノール類、特にその中のオルソア
ルキル化物である2,6−キシレノールは有用な
プラスチツクであるポリフエニレンエーテル
(PPE)製造用原料として重要であるばかりでな
く、樹脂類、可塑剤、酸化防止剤、殺菌剤および
農薬等の原料として用いられることは良く知られ
ている。
Alkylphenols, especially the orthoalkylated 2,6-xylenol, are not only important as raw materials for the production of polyphenylene ether (PPE), a useful plastic, but also as resins, plasticizers, and antioxidants. It is well known that it is used as a raw material for disinfectants, fungicides, agricultural chemicals, etc.

フエノール類のアルキル化方法において酸化ア
ルミニウム、酸化マグネシウム、酸化マンガン、
酸化鉄、酸化クロム、ゼオライト等、或はこれら
に各種の成分を添加したものを触媒として使用す
ることは知られている。更にこれ等触媒の総合性
能の向上を計る目的からこれらの金属酸化物をフ
エノール類で処理した後触媒として使用する方法
およびこれらの金属のフエノラート類を触媒とし
て使用する方法が本発明者等により提案されてい
る(特開昭58−38225号公報、特開昭58−128333
号公報)。
Aluminum oxide, magnesium oxide, manganese oxide,
It is known to use iron oxide, chromium oxide, zeolite, etc., or their mixtures with various components as catalysts. Furthermore, in order to improve the overall performance of these catalysts, the present inventors have proposed a method in which these metal oxides are treated with phenols and then used as catalysts, and a method in which phenolates of these metals are used as catalysts. (Japanese Patent Application Laid-Open No. 58-38225, Japanese Patent Application Laid-open No. 128333-1982)
Publication No.).

しかしながら、前記金属酸化物系触媒およびフ
エノラート系触媒においても触媒の誘導期間が長
く、触媒活性が定常状態に到達するまでに数十時
間といつた長時間を要することが多い。
However, even in the metal oxide catalyst and the phenolate catalyst, the induction period of the catalyst is long, and it often takes a long time, such as several tens of hours, for the catalyst activity to reach a steady state.

本発明者らはこのような触媒の誘導期間を短縮
する方法について種々検討した結果、水蒸気含有
ガスで前処理することによつてこれらの目的が容
易に達せられることを知り、本発明を完成した。
The present inventors have studied various ways to shorten the induction period of such catalysts, and have found that these objectives can be easily achieved by pretreatment with a water vapor-containing gas, and have completed the present invention. .

即ち本発明は、芳香族環上に少なくとも1個の
水素原子を有するフエノール類とアルコール類と
を反応させてアルキルフエノール類を製造する方
法において、マグネシウム、マンガンおよび鉄の
中の少なくとも1種を含む酸化物をフエノール類
で処理した触媒又はマグネシウムフエノールを含
有する触媒を300℃以上700℃以下の温度条件下に
水蒸気含有ガスにより処理することからなるアル
キルフエノール類の製造方法である。
That is, the present invention provides a method for producing alkylphenols by reacting phenols having at least one hydrogen atom on an aromatic ring with alcohols, which contain at least one of magnesium, manganese, and iron. This is a method for producing alkylphenols, which comprises treating a catalyst obtained by treating an oxide with phenols or a catalyst containing magnesium phenol with a steam-containing gas at a temperature of 300°C or more and 700°C or less.

本発明方法で使用されるフエノール類は、芳香
族環上に1個以上の水素原子を有するフエノール
化合物で、一般式 (式中、R1〜R5は水素、炭化水素基、ヒドロキ
シル基又は非置換もしくは置換のフエニル、ナフ
チルなどの芳香族炭化水素基であり、その中の少
なくとも1個は水素原子である。) で表わされる。このような化合物としては例えば
フエノール、クレゾール類、キシレノール類、ト
リメチルフエノール類、各種のエチルフエノール
類、n−、iso−、tert−のブチルフエノール類、
フエニルフエノール類、ナフチルフエノール類な
どがあげられる。同様に異種の官能基が芳香族環
に1個以上置換したフエノール化合物も使用でき
る。
The phenols used in the method of the present invention are phenolic compounds having one or more hydrogen atoms on the aromatic ring, and have the general formula (In the formula, R 1 to R 5 are hydrogen, a hydrocarbon group, a hydroxyl group, or an unsubstituted or substituted aromatic hydrocarbon group such as phenyl or naphthyl, and at least one of them is a hydrogen atom.) It is expressed as Examples of such compounds include phenols, cresols, xylenols, trimethylphenols, various ethylphenols, n-, iso-, and tert-butylphenols,
Examples include phenylphenols and naphthylphenols. Similarly, phenol compounds in which one or more different functional groups are substituted on the aromatic ring can also be used.

又、本発明方法で使用されるアルコール類は炭
素原子数1〜4の低級アルコールで、例えばメタ
ノール、エタノール、n−プロパノール、iso−
プロパノール、n−ブタノール、iso−ブタノー
ル、tert−ブタノールなどがある。
The alcohols used in the method of the present invention are lower alcohols having 1 to 4 carbon atoms, such as methanol, ethanol, n-propanol, iso-
Examples include propanol, n-butanol, iso-butanol, and tert-butanol.

アルキルフエノールを製造する際の反応温度は
300〜600℃、好ましくは350〜540℃、反応圧力は
大気圧以下でも実施可能であるが、通常は常圧下
ないしは加圧下で行われる。アルキル化生成物を
最高収率で得るためには、アルキル化すべきフエ
ノール類の水素原子1個についてアルコールは少
なくとも1モル、好ましくは2〜4モルでメチル
化して2,6−キシレノールを高収率で得たい場
合はフエノール1モルについてメタノールを4〜
8モル使用することが望ましい。反応系への原料
の供給は液空間速度で0.2〜10hr-1が好ましく、
一般に反応温度が高い領域では液空間速度が大き
い方向が、又温度が低い領域では液空間速度が小
さい方向が適当である。原料供給時に窒素等の不
活性ガス、水素、一酸化炭素などの還元性ガスを
同伴することも可能である。フエノール類で処理
し触媒として用いられる金属酸化物にはアルカリ
土類金属、土類金属、遷移元素等の酸化物等が有
効であるが、特にマグネシウム、マンガンおよび
鉄の少なくとも1種を含有する酸化物が好適であ
る。又、触媒に供されるフエノラート類の金属成
分元素はアルカリ金属、アルカリ土類金属、土類
金属、遷移元素等があるが、その中でも特にマグ
ネシウムが良くこれをアルキルフエノール類の製
造に用いた場合には触媒活性の向上、オルソ選択
性の向上、反応温度の低温化による触媒寿命の延
長等従来の触媒に比べ格段に高性能を示すことが
認められる。フエノール類で処理される金属酸化
物は単独であるいはバインダーと混合して通常の
方法によつて最適な形状に造粒される。又フエノ
ラート類はそのまま通常の造粒法によつて適切な
形状と強度にした後用いられるが、金属酸化物担
体に含浸させたり、コーテイングしたり混合して
用いることができる。金属酸化物担体としてはア
ルミナ、シリカ、マグネシア、チタニア、ジルコ
ニア等通常の触媒担体を用いることができる。
The reaction temperature for producing alkylphenols is
Although the reaction can be carried out at 300 to 600°C, preferably 350 to 540°C, and the reaction pressure is below atmospheric pressure, it is usually carried out under normal pressure or increased pressure. In order to obtain the highest yields of alkylated products, the alcohol should be methylated at least 1 mole, preferably 2 to 4 moles, per hydrogen atom of the phenol to be alkylated to give 2,6-xylenol in high yields. If you want to obtain it, add 4 to 4 methanol per mole of phenol.
It is desirable to use 8 mol. The raw material is preferably supplied to the reaction system at a liquid hourly space velocity of 0.2 to 10 hr -1 .
Generally, in a region where the reaction temperature is high, a direction in which the liquid hourly space velocity is large is appropriate, and in a region where the reaction temperature is low, a direction in which the liquid hourly space velocity is small is appropriate. It is also possible to include an inert gas such as nitrogen, or a reducing gas such as hydrogen or carbon monoxide when supplying the raw material. Oxides of alkaline earth metals, earth metals, transition elements, etc. are effective as metal oxides treated with phenols and used as catalysts, but oxides containing at least one of magnesium, manganese and iron are particularly effective. Preferably. In addition, the metal component elements of phenolates used as catalysts include alkali metals, alkaline earth metals, earth metals, transition elements, etc. Among them, magnesium is particularly good when used in the production of alkylphenols. It is recognized that this catalyst exhibits much higher performance than conventional catalysts, such as improved catalytic activity, improved ortho-selectivity, and extended catalyst life due to lower reaction temperatures. The metal oxide treated with phenols is granulated into an optimal shape by a conventional method, either alone or in combination with a binder. Phenolates can be used as they are after being made into an appropriate shape and strength by a conventional granulation method, but they can also be used after being impregnated with a metal oxide carrier, coated, or mixed. As the metal oxide carrier, common catalyst carriers such as alumina, silica, magnesia, titania, and zirconia can be used.

このようにして得られた触媒は300℃以上700℃
以下の温度条件下に水蒸気含有ガスを通じて処理
される。この際処理温度が300℃以下に低い場合
には誘導時間は短縮できるが、触媒寿命が短縮さ
れる傾向を有する。300℃以上であれば、特に制
約されることはないが、工業的には一般に300〜
700℃程度で実施する時好適な結果が得られる。
The catalyst obtained in this way can be heated to temperatures above 300°C and 700°C.
Processed through water vapor-containing gas under the following temperature conditions: In this case, if the treatment temperature is as low as 300°C or less, the induction time can be shortened, but the catalyst life tends to be shortened. There are no particular restrictions as long as the temperature is 300℃ or higher, but in industry it is generally 300℃ or higher.
Suitable results can be obtained when carried out at a temperature of about 700°C.

本発明方法において用いられる水蒸気含有ガス
はその水蒸気濃度について特に制約されることは
ないが、一般にその濃度が低い場合には長時間を
要する傾向にある。
Although there are no particular restrictions on the water vapor concentration of the water vapor-containing gas used in the method of the present invention, in general, when the water vapor concentration is low, it tends to require a long time.

又、その際水蒸気に同伴されるガスは不活性ガ
スであれば良く、窒素、二酸化炭素等が用いられ
る。
Further, the gas entrained in the water vapor at this time may be an inert gas, and nitrogen, carbon dioxide, etc. are used.

触媒の水蒸気含有ガスによる処理は触媒に水蒸
気を前記温度条件下に接触させることによつて達
せられるが、一般的には触媒層中へ水蒸気含有ガ
スを通ずることによつて行なわれる。
Treatment of the catalyst with a steam-containing gas is accomplished by contacting the catalyst with steam under the temperature conditions described above, but is generally carried out by passing the steam-containing gas through the catalyst bed.

このように本発明方法によれば水蒸気含有ガス
による処理という簡単な操作により触媒の活性化
までの時間を容易に短縮することができるので工
業的に極めて有用性の高いものである。
As described above, according to the method of the present invention, the time required to activate the catalyst can be easily shortened by the simple operation of treatment with a water vapor-containing gas, and therefore it is extremely useful industrially.

以下に実施例を挙げて本発明を更に具体的に説
明するが、本発明はこれら実施例によつて何ら限
定されるものではない。
The present invention will be described in more detail below with reference to Examples, but the present invention is not limited by these Examples.

尚、実施例および比較例においての触媒性能
は、フエノールの転化率と2,6−キシレノール
選択率によつて示され、それぞれ次式によつて定
義される。
The catalyst performance in Examples and Comparative Examples is shown by the phenol conversion rate and 2,6-xylenol selectivity, and each is defined by the following formula.

フエノールの転化率 =(1−未反応フエノール量(モル)/供給フエノー
ル量)×100 フエノール基準の2,6−キシレノール選択率 =2,6−キシレノール生成量(モル)/供給フエノ
ール量(モル)−未反応フエノール量(モル)×100 フエノール基準の2,6−キシレノール選択率 =2×2,6−キシレノール生成量(モル)/供給メ
タノール量(モル)−未反応メタノール量(モル)×10
0 又、活性化とは反応開始後2,6−キシレノー
ルの選択率(フエノール基準)が90%に到達した
時以降をいう。
Conversion rate of phenol = (1 - Amount of unreacted phenol (mol) / Amount of phenol supplied) × 100 Selectivity of 2,6-xylenol based on phenol = Amount of 2,6-xylenol produced (mol) / Amount of phenol supplied (mol) - Amount of unreacted phenol (mol) x 100 2,6-xylenol selectivity based on phenol = 2 x Amount of 2,6-xylenol produced (mol) / Amount of methanol supplied (mol) - Amount of unreacted methanol (mol) x 10
0 Furthermore, activation refers to the time after the start of the reaction when the selectivity of 2,6-xylenol (based on phenol) reaches 90%.

実施例 1 金属マグネシウムとメタノールから合成したマ
グネシウムメチラート86gにフエノール282gを
加えた後、70℃で加熱溶解後n−ヘプタン300ml
を加えて98℃で一昼夜還流させた後冷却しロータ
リーエバポレーターを用いてヘプタン、フエノー
ルおよびメタノールを蒸発除去しマグネシウムフ
エノラート170gを得た。これから10gをとり酸
化マグネシウム粉末90gとよく混合後加圧成型
し、10〜16メツシユ整流しその20mlを触媒として
フエノールのメチル化用に石英製反応管に充填後
窒素30ml/min、水33.0ml/hrと触媒層温度400
℃の条件下に3時間通じ触媒の処理を行なつた。
次にLHSV1.65hr-1、メタノール:フエノール:
水がモル比で5:1:1.69で温度500℃で反応を
行なわせたところ、活性化するまでの時間は30時
間であつた。尚反応温度490℃でのフエノール転
化率は94%、フエノール基準の2,6−キシレノ
ール選択率は91%、メタノール基準の選択率は79
%であつた。
Example 1 282 g of phenol was added to 86 g of magnesium methylate synthesized from magnesium metal and methanol, and after heating and dissolving at 70°C, 300 ml of n-heptane was added.
The mixture was refluxed at 98° C. for a day and night, then cooled and heptane, phenol and methanol were removed by evaporation using a rotary evaporator to obtain 170 g of magnesium phenolate. Take 10g of this, mix well with 90g of magnesium oxide powder, press-mold, rectify 10 to 16 meshes, fill a quartz reaction tube with 20ml of the mixture as a catalyst for methylation of phenol, and use nitrogen at 30ml/min and water at 33.0ml/min. hr and catalyst layer temperature 400
The catalyst was treated for 3 hours at .degree.
Then LHSV1.65hr -1 , methanol:phenol:
When the reaction was carried out at a temperature of 500° C. with a molar ratio of water of 5:1:1.69, the time required for activation was 30 hours. At a reaction temperature of 490°C, the phenol conversion rate was 94%, the 2,6-xylenol selectivity based on phenol was 91%, and the selectivity based on methanol was 79%.
It was %.

実施例 2 市販の酸化マグネシウム粉末を550℃で3時間
焼成したあと加圧成型し引続き整粒して10〜16メ
ツシユの粒状触媒を得た。この触媒20mlを石英製
反応管に充填後、窒素60ml/min、フエノール
0.9g/hrを通じ乍ら触媒層温度500℃で2時間処
理した。続いて窒素30ml/min、水16.5ml/hrを
通じながら触媒層温度500℃で5時間触媒の処理
を行なつた。この触媒を用いLHSV1.65hr-1、メ
タノール:フエノール:水がモル比で5:1:
1.69で温度500℃で反応を行なわせたところ、活
性化するまでの時間は24時間であつた。尚反応温
度480℃でのフエノール転化率は100%、フエノー
ル基準の2,6−キシレノール選択率は97%、メ
タノール基準の2,6−キシレノール選択率は86
%であつた。
Example 2 Commercially available magnesium oxide powder was calcined at 550° C. for 3 hours, then pressure molded and subsequently sized to obtain a granular catalyst of 10 to 16 meshes. After filling 20ml of this catalyst into a quartz reaction tube, nitrogen 60ml/min, phenol
The treatment was carried out at a catalyst bed temperature of 500° C. for 2 hours at a rate of 0.9 g/hr. Subsequently, the catalyst was treated at a catalyst bed temperature of 500° C. for 5 hours while passing nitrogen at 30 ml/min and water at 16.5 ml/hr. Using this catalyst, LHSV1.65hr -1 , methanol:phenol:water in a molar ratio of 5:1:
When the reaction was carried out at a temperature of 500°C with 1.69, it took 24 hours to activate. At a reaction temperature of 480°C, the phenol conversion rate is 100%, the 2,6-xylenol selectivity based on phenol is 97%, and the 2,6-xylenol selectivity based on methanol is 86.
It was %.

比較例 1 触媒の処理に水を使用しなかつた以外は実施例
2と同様に反応を行なつたところ、活性化するま
での時間は33時間であつた。尚反応温度490℃で
のフエノールの転化率は96%、フエノール基準の
2,6−キシレノール選択率は93%、メタノール
基準の2,6−キシレノール選択率は83%であつ
た。
Comparative Example 1 The reaction was carried out in the same manner as in Example 2 except that water was not used to treat the catalyst, and the time until activation was 33 hours. At a reaction temperature of 490 DEG C., the phenol conversion rate was 96%, the 2,6-xylenol selectivity based on phenol was 93%, and the 2,6-xylenol selectivity based on methanol was 83%.

実施例 3 市販の粒状二酸化マンガンを500℃で5時間焼
成後10〜16メツシユに粉砕整粒した。この触媒20
mlを石英製反応管に充填後窒素60ml/min、フエ
ノール10g/hr、触媒層温度450℃で3時間処理
し、ひきつづき窒素30ml/min、水20ml/hrを触
媒層430℃の条件下に通じ触媒の処理を行なつた。
Example 3 Commercially available granular manganese dioxide was calcined at 500°C for 5 hours and then pulverized into 10 to 16 meshes. This catalyst 20
ml was charged into a quartz reaction tube, treated with nitrogen at 60 ml/min, phenol at 10 g/hr, and catalyst bed temperature at 450°C for 3 hours, and then nitrogen at 30 ml/min and water at 20 ml/hr at catalyst bed temperature at 430°C. The catalyst was treated.

次にLHSV1.20hr-1、メタノール:フエノール
対水がモル比で5:1:1.41で温度430℃で反応
を行なわせたところ、活性化するまでの時間は15
時間であつた。
Next, when the reaction was carried out at a temperature of 430°C with a LHSV of 1.20 hr -1 and methanol:phenol:water at a molar ratio of 5:1:1.41, the time required for activation was 15
It was time.

比較例 2 触媒の活性化処理に水を使わなかつた以外は実
施例3と同様にして反応を行なつたところ、活性
化するまでの時間は25時間であつた。
Comparative Example 2 A reaction was carried out in the same manner as in Example 3 except that water was not used for the activation treatment of the catalyst, and the time required for activation was 25 hours.

Claims (1)

【特許請求の範囲】[Claims] 1 芳香族環上に少なくとも1個以上の水素原子
を有するフエノール類とアルコール類とを反応さ
せてアルキルフエノール類を製造する方法におい
て、マグネシウムおよび/またはマンガンの酸化
物をフエノール類で処理したもの又はマグネシウ
ムフエノラートを含有する触媒を300℃以上700℃
以下の温度条件下に水蒸気含有ガスにより処理し
たものをアルキル化触媒として使用することを特
徴とするアルキルフエノール類の製造方法。
1 In a method for producing alkylphenols by reacting phenols having at least one hydrogen atom on an aromatic ring with alcohols, magnesium and/or manganese oxides are treated with phenols or Catalyst containing magnesium phenolate from 300℃ to 700℃
A method for producing alkylphenols, which comprises using as an alkylation catalyst an alkylphenol treated with a steam-containing gas under the following temperature conditions.
JP57093792A 1981-08-31 1982-05-31 Production of alkylphenol Granted JPS58210037A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57093792A JPS58210037A (en) 1982-05-31 1982-05-31 Production of alkylphenol
DE8282107818T DE3263906D1 (en) 1981-08-31 1982-08-25 A process for producing o-methylated phenols
EP82107818A EP0073471B1 (en) 1981-08-31 1982-08-25 A process for producing o-methylated phenols
US06/411,806 US4454357A (en) 1981-08-31 1982-08-26 Process for producing o-methylated phenols
CA000410450A CA1200560A (en) 1981-08-31 1982-08-30 Process for producing o-methylated phenols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57093792A JPS58210037A (en) 1982-05-31 1982-05-31 Production of alkylphenol

Publications (2)

Publication Number Publication Date
JPS58210037A JPS58210037A (en) 1983-12-07
JPH0237332B2 true JPH0237332B2 (en) 1990-08-23

Family

ID=14092261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57093792A Granted JPS58210037A (en) 1981-08-31 1982-05-31 Production of alkylphenol

Country Status (1)

Country Link
JP (1) JPS58210037A (en)

Also Published As

Publication number Publication date
JPS58210037A (en) 1983-12-07

Similar Documents

Publication Publication Date Title
US3974229A (en) Preparation of ortho-alkylated phenols
US3972836A (en) Preparation of ortho-alkylated phenols
US4024195A (en) Process for alkylating the ortho-position of phenol compounds
US4041085A (en) Ortho-alkylation of phenols
JPS5822088B2 (en) Selective orthoalkylation method for phenolic compounds
US4645753A (en) Doped aluminum borate
US3971832A (en) Process for producing ortho-methylphenols
CN1212251A (en) Suppression of highly alkylated phenols in catalytic alkylation reaction of phenol
US4208537A (en) Process for the selective ortho-alkylation of phenolic compounds
US4097411A (en) Catalyst for preparation of ortho-alkylated phenols
JPS599530B2 (en) Method for producing ortho-alkylated phenols
JPH07265710A (en) Orthoalkylation catalyst of phenols, precursor thereof and production of orthoalkylated phenols using catalyst
JPH0237332B2 (en)
US4454357A (en) Process for producing o-methylated phenols
JP4294209B2 (en) Process for producing ortho-position alkylated hydroxyaromatic compounds
US6951966B1 (en) Orthoalkylation catalyst for phenol and process for producing orthoalkylated phenol with use thereof
JPS6136732B2 (en)
JPS6127378B2 (en)
JPH0237331B2 (en)
EP0868417B1 (en) Method to prepare ortho substituted phenol
JPS6134A (en) Zinc oxide catalyst dealkylation for alkylated phenols
JPS6343372B2 (en)
US5098879A (en) Catalyst for preparation of ortho-alkylated phenols
JPH0625041A (en) Production of o-alkylphenol
JPS6219409B2 (en)