JPH0237104B2 - HANDOTAISHUSEKIKAIRO - Google Patents

HANDOTAISHUSEKIKAIRO

Info

Publication number
JPH0237104B2
JPH0237104B2 JP12992982A JP12992982A JPH0237104B2 JP H0237104 B2 JPH0237104 B2 JP H0237104B2 JP 12992982 A JP12992982 A JP 12992982A JP 12992982 A JP12992982 A JP 12992982A JP H0237104 B2 JPH0237104 B2 JP H0237104B2
Authority
JP
Japan
Prior art keywords
field effect
channel mis
vertical bipolar
mis field
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12992982A
Other languages
Japanese (ja)
Other versions
JPS5921056A (en
Inventor
Shigetaka Kuzuhara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI AISHII MAIKON SHISUTEMU KK
Original Assignee
NIPPON DENKI AISHII MAIKON SHISUTEMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI AISHII MAIKON SHISUTEMU KK filed Critical NIPPON DENKI AISHII MAIKON SHISUTEMU KK
Priority to JP12992982A priority Critical patent/JPH0237104B2/en
Publication of JPS5921056A publication Critical patent/JPS5921056A/en
Publication of JPH0237104B2 publication Critical patent/JPH0237104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は半導体集積回路に関し、特に絶縁ゲー
ト型電界効果トランジスタ(MISFETという)
からなる差動増幅回路を形成した半導体集積回路
に関する。
[Detailed Description of the Invention] The present invention relates to semiconductor integrated circuits, and in particular to insulated gate field effect transistors (referred to as MISFETs).
The present invention relates to a semiconductor integrated circuit in which a differential amplifier circuit is formed.

従来、差動増幅器はバイポーラ型トランジスタ
を用いたものが主に用いられて来たが、最近にお
けるMISFETの進歩ならびにその応用回路の要
求とにより、MISFETからなる差動増幅器の実
用化が進んでいる。ところでこのMISFETを用
いた差動増幅回路は、流す電流を制御するために
定電流回路が複雑となりこれを集積化するとチツ
プの所要面積が大となるとともに回路の安定度も
悪いという問題点を有している。
Conventionally, differential amplifiers using bipolar transistors have mainly been used, but due to recent advances in MISFETs and requirements for their application circuits, differential amplifiers made of MISFETs are being put into practical use. . However, the differential amplifier circuit using MISFET has the problem that the constant current circuit is complicated in order to control the flowing current, and when this circuit is integrated, the required area of the chip becomes large and the stability of the circuit is poor. are doing.

第1図はかかる従来の差動増幅回路として、
MISFETを用いたものを示したものである。N
型FET Q1,Q2はそれぞれ負荷抵抗としてP型
FET Q3,Q4を有し差動増幅部を形成している。
そしてN型FET Q5〜Q8からなる定電流回路が設
けられている。なお1,2は入力端子、3,4は
出力端子、5はVDD電源端子、6はVSS電源端子
である。すなわち、この回路では定電流回路とし
て同じ能力であれば縦型構造で小さな面積しか必
要でないこれまでのバイポーラ型トランジスタに
対して大きな面積を必要とし、しかも流れる電流
を制御するためにMOSFETを4個も用いている
ために、チツプ面積が大きくなるととももに、十
分な能力を有するまでには大きくできないことに
加えて製造のばらつきも大きいことなどにより回
路の安定度も十分でない。
FIG. 1 shows such a conventional differential amplifier circuit.
This shows what uses MISFET. N
Type FET Q 1 and Q 2 are each P type as load resistance.
It has FETs Q 3 and Q 4 and forms a differential amplification section.
A constant current circuit consisting of N-type FETs Q5 to Q8 is provided. Note that 1 and 2 are input terminals, 3 and 4 are output terminals, 5 is a V DD power supply terminal, and 6 is a V SS power supply terminal. In other words, this circuit requires a larger area than conventional bipolar transistors, which have a vertical structure and require a small area for the same performance as a constant current circuit, and also requires four MOSFETs to control the flowing current. Since the chip is also used, the chip area becomes large, and the stability of the circuit is also not sufficient due to the fact that it cannot be made large enough to have sufficient capability and there are large manufacturing variations.

本発明の目的は、定電流回路部分を同一基板に
形成した縦型バイポーラトランジスタにより形成
すると共に負荷抵抗としてのP型FETの接続を
変えることにより、上述の問題点を除去し、より
小形化、より高安定度の差動増幅回路が形成され
た半導体集積回路を提供することにある。
It is an object of the present invention to eliminate the above-mentioned problems and to achieve further miniaturization by forming the constant current circuit part using vertical bipolar transistors formed on the same substrate and by changing the connection of the P-type FET as a load resistor. An object of the present invention is to provide a semiconductor integrated circuit in which a differential amplifier circuit with higher stability is formed.

本発明の回路の構成は、同一半導体基板に形成
された、第一および第二の一導電チヤンネルMIS
電界効果トランジスタと、第一および第二の反対
導電チヤンネルMIS電界効果トランジスタと、第
一および第二の縦型バイポーラトランジスタとか
らなり、前記第一および第二の一導電チヤンネル
MIS電界効果トランジスタのソースは共通接続し
て第一の電位に導き、そのゲートはそれぞれ第一
および第二の入力端子に接続し、そのドレインは
それぞれ前記第一および第二の反対導電チヤンネ
ルMIS電界効果トランジスタのドレインならびに
第一および第二の出力端子に接続し、前記第一の
反対導電チヤンネルMIS電界効果トランジスタの
ソースを前記第一および第二の反対導電チヤンネ
ルMIS電界効果トランジスタのゲートに接続し、
前記第一および第二の反対導電チヤンネルMIS電
界効果トランジスタのソースをそれぞれ前記第一
および第二の縦型バイポーラトランジスタのエミ
ツタに接続し、前記第一および第二の縦型バイポ
ーラトランジスタのベースならびにコレクタを共
通接続して前記半導体基板の基板電位と共通にし
て第二の電位に導くことからなることを特徴とす
る。
The circuit configuration of the present invention includes first and second one conductive channel MIS formed on the same semiconductor substrate.
a field effect transistor, first and second opposite conductive channel MIS field effect transistors, and first and second vertical bipolar transistors, said first and second one conductive channel;
The sources of the MIS field effect transistors are commonly connected to lead to a first potential, their gates are connected to the first and second input terminals, respectively, and their drains are connected to said first and second oppositely conducting channels MIS electric field, respectively. the drain of the effect transistor and the first and second output terminals, and the source of the first oppositely conductive channel MIS field effect transistor connected to the gate of the first and second oppositely conductive channel MIS field effect transistor; ,
the sources of said first and second opposite conduction channel MIS field effect transistors are connected to the emitters of said first and second vertical bipolar transistors, respectively, and the bases and collectors of said first and second vertical bipolar transistors are connected; are commonly connected to the substrate potential of the semiconductor substrate and lead to a second potential.

以下本発明について図面を参照して詳細に説明
する。
The present invention will be described in detail below with reference to the drawings.

第2図は本発明の一実施例の差動増幅器として
の等価回路図、第3図は構造を説明するための模
式的一部断面図であり、フイールド酸化膜および
アルミニウム電極配線などは省略し配線は結線図
でもつて示してある。
Fig. 2 is an equivalent circuit diagram of a differential amplifier according to an embodiment of the present invention, and Fig. 3 is a schematic partial cross-sectional view for explaining the structure, with field oxide films and aluminum electrode wiring etc. omitted. Wiring is also shown in the wiring diagram.

N型シリコン半導体基板10にP型ウエル1
1,12を例えば選択拡散法により形成する。次
いで、第一の縦型バイポーラトランジスタQ15
コレクタ電極取出N+領域13(基板10の電極
取出領域も兼ねる)およびエミツタN+領域15、
第一のNチヤンネルMOSFET Q11のドレインN+
領域19およびソースN+領域21を例えば選択
拡散法により形成する。次いで縦型トランジスタ
Q15のベース電極取出P+領域14、第一のPチヤ
ンネル型MOSFET Q13のソースP+領域16およ
びドレインP+領域18、第一の電位点であるVSS
電源端子引出P+領域22を同様に選択拡散法を
用いて形成する。次いで、MOSFET Q11のゲー
トシリコン酸化膜20およびMOSFET Q13のゲ
ートシリコン酸化膜17を形成する。図示してい
ないけれども同時にこれらと並列に対称的に配置
された第二の縦型バイポーラトランジスタQ16
第二のP型MOSFET Q14および第二のN型MOS
トランジスタQ12が形成される。そして最後にア
ルミニウム蒸着配線を以下のように行う。
P-type well 1 in N-type silicon semiconductor substrate 10
1 and 12 are formed by, for example, a selective diffusion method. Next, the collector electrode extraction N + region 13 (also serves as the electrode extraction region of the substrate 10) and the emitter N + region 15 of the first vertical bipolar transistor Q15 ,
Drain N + of the first N-channel MOSFET Q 11
Region 19 and source N + region 21 are formed, for example, by selective diffusion. Then vertical transistor
Base electrode extraction P + region 14 of Q 15 , source P + region 16 and drain P + region 18 of first P channel type MOSFET Q 13 , first potential point V SS
The power terminal lead-out P + region 22 is similarly formed using the selective diffusion method. Next, a gate silicon oxide film 20 of MOSFET Q 11 and a gate silicon oxide film 17 of MOSFET Q 13 are formed. Although not shown, a second vertical bipolar transistor Q 16 is arranged symmetrically in parallel with these at the same time.
Second P-type MOSFET Q 14 and second N-type MOS
Transistor Q12 is formed. Finally, aluminum evaporation wiring is performed as follows.

すなわち、第2図の等価回路図に示すように、
Nチヤンネル型MOSFET Q11、Q12のソースを
共通接続しVSS電源端子6に導き、そのゲートは
それぞれ入力端子1,2に接続し、そのドレイン
はそれぞれPチヤンネル型MOSFET Q13,Q14
のドレインならびに出力端子3,4に接続し、P
チヤンネル型MOSFET Q13のソースを
MOSFET Q13,Q14のゲートに接続し、
MOSFET Q13、Q14のソースを縦型バイポーラ
トランジスタQ15,Q16のエミツタに接続し、縦
型バイポーラトランジスタQ15,Q16のベースお
よびコレクタに共通接続して(半導体基板10の
基板電位と共通にして)第二の電位であるVDD
源端子5に導く。
That is, as shown in the equivalent circuit diagram of Fig. 2,
The sources of N-channel MOSFETs Q 11 and Q 12 are commonly connected and led to V SS power supply terminal 6, their gates are connected to input terminals 1 and 2, respectively, and their drains are connected to P-channel MOSFETs Q 13 and Q 14 , respectively.
connected to the drain and output terminals 3 and 4, and P
Channel type MOSFET Q 13 source
Connect to the gates of MOSFET Q 13 and Q 14 ,
The sources of MOSFETs Q 13 and Q 14 are connected to the emitters of vertical bipolar transistors Q 15 and Q 16 , and commonly connected to the bases and collectors of vertical bipolar transistors Q 15 and Q 16 (the substrate potential of semiconductor substrate 10 and common) to the second potential V DD power supply terminal 5.

この実施例において、MOSFET Q11〜Q14
差動増幅部を形成し、縦型バイポーラトランジス
タQ15,Q16とで定電流回路を形成している。こ
の実施例の回路を第1図の従来回路と比較する
と、この実施例は、MOSFETと同一の製造工程
で所望の電流値が得られる縦型バイポーラトラン
ジスタで形成し、かつ負荷抵抗としての
MOSFET Q13の抵抗値をMOSFET Q14側で制
御した構成としているため、定電流回路は従来の
MOSFET4個に対して縦型FET2個のみで形成さ
れるので、その必要とするチツプ面積は従来のも
のの約1/2と大幅に減少できる。更に縦型バイポ
ーラトランジスタの大きな能力および製造ばらつ
きも小さいことからより安定度も向上する。しか
も、定電流回路を縦型バイポーラトランジスタの
ベースとコレクタを共通接続し基板電位に導き
VDD電源端子に接続しているので、上述の説明か
らも明らかなように、特別な製造工程を付加する
こと無く、従来のMOS集積回路の工程と同一工
程で製造することができる。
In this embodiment, MOSFETs Q 11 to Q 14 form a differential amplifier section, and vertical bipolar transistors Q 15 and Q 16 form a constant current circuit. Comparing the circuit of this example with the conventional circuit shown in Fig. 1, this example is formed using a vertical bipolar transistor that can obtain the desired current value in the same manufacturing process as the MOSFET, and also uses a vertical bipolar transistor as a load resistor.
Since the resistance value of MOSFET Q 13 is controlled on the MOSFET Q 14 side, the constant current circuit is different from the conventional one.
Since it is formed using only two vertical FETs for four MOSFETs, the required chip area can be significantly reduced to approximately 1/2 of that of conventional devices. Further, since the vertical bipolar transistor has a large capacity and manufacturing variations are small, stability is further improved. Moreover, the constant current circuit is connected to the base and collector of the vertical bipolar transistor in common and is led to the substrate potential.
Since it is connected to the V DD power supply terminal, as is clear from the above explanation, it can be manufactured in the same process as a conventional MOS integrated circuit without adding any special manufacturing process.

なお、以上の説明においては、MISFETとし
てMOSFETを用いたが本発明はMISFET全般に
適用されることは言うまでもない。さらに、半導
体基板としてN型を用いたけれどもP型の場合に
は上述の説明でのNとPとを置換することで同様
に説明されることは明らかである。
In the above description, a MOSFET was used as the MISFET, but it goes without saying that the present invention is applicable to MISFETs in general. Furthermore, although an N-type semiconductor substrate is used, it is clear that in the case of a P-type semiconductor substrate, the same explanation can be made by replacing N and P in the above explanation.

以上詳細に説明した通り、本発明の半導体集積
回路は、定電流回路部分を同一基板に形成した縦
型バイポーラトランジスタにより形成しているの
で、より小形化、より高安定度の差動増幅回路が
形成されると言う効果を有している。
As explained in detail above, in the semiconductor integrated circuit of the present invention, the constant current circuit portion is formed by vertical bipolar transistors formed on the same substrate, so a smaller and more stable differential amplifier circuit can be realized. It has the effect of being formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の差動増幅器としての等価回路
図、第2図は本発明の一実施例の差動増幅器とし
ての等価回路図、第3図は一実施例の模式的一部
断面図である。 1……第一の入力端子、2……第2の入力端
子、3……第一の出力端子、4……第二の出力端
子、5……VDD電源端子、6……VSS電源端子、
Q1,Q2,Q5〜Q8,Q11,Q12……N型チヤンネル
型MOSFET、Q3,Q4,Q13,Q14……Pチヤンネ
ル型FET、Q15,Q16……縦型バイポーラトラン
ジスタ、10……N型シリコン半導体基板、1
1,12……P型ウエル、13……Q15のコレク
タ電極取出N+領域、14……Q15のベース電極取
出P+領域、15……Q15のエミツタN+領域、1
6……Q13のソースP+領域、17……Q13のゲー
トシリコン酸化膜、18……Q13のドレインP+
域、19……Q11のドレインN+領域、20……
Q11のゲートシリコン酸化膜、21……Q11のソ
ースN+領域、22……VSS電源端子取出P+領域。
Fig. 1 is an equivalent circuit diagram of a conventional differential amplifier, Fig. 2 is an equivalent circuit diagram of an embodiment of the present invention, and Fig. 3 is a schematic partial sectional view of an embodiment. It is. 1...First input terminal, 2...Second input terminal, 3...First output terminal, 4...Second output terminal, 5...V DD power supply terminal, 6...V SS power supply terminal,
Q 1 , Q 2 , Q 5 ~ Q 8 , Q 11 , Q 12 ... N-channel MOSFET, Q 3 , Q 4 , Q 13 , Q 14 ... P-channel FET, Q 15 , Q 16 ... Vertical bipolar transistor, 10...N-type silicon semiconductor substrate, 1
1, 12...P-type well, 13...Collector electrode extraction N + area of Q15 , 14...Base electrode extraction P + area of Q15 , 15...Emitter N + area of Q15 , 1
6...Source P + region of Q13 , 17...Gate silicon oxide film of Q13 , 18...Drain P + region of Q13 , 19...Drain N + region of Q11 , 20...
Gate silicon oxide film of Q11 , 21...source N + region of Q11 , 22... VSS power supply terminal extraction P + region.

Claims (1)

【特許請求の範囲】[Claims] 1 同一半導体基板に形成された、第一および第
二の一導電チヤンネルMIS型電界効果トランジス
タと、第一および第二の反対導電チヤンネルMIS
型電界効果トランジスタと、第一および第二の縦
型バイポーラトランジスタとからなり、前記第一
および第二の一導電チヤンネルMIS電界効果トラ
ンジスタのソースは共通接続して第一の電位に導
き、そのゲーはそれぞれ第一および第二の入力端
子に接続し、そのドレインはそれぞれ前記第一お
よび第二の反対導電チヤンネルMIS電界効果トラ
ンジスタのドレインならびに第一および第二の出
力端子に接続し、前記第一の反対導電チヤンネル
MIS電界効果トランジスタのソースを前記第一お
よび第二の反対導電チヤンネルMIS電界効果トラ
ンジスタのゲートに接続し、前記第一および第二
の反対導電チヤンネルMIS電界効果トランジスタ
のソースをそれぞれ前記第一および第二の縦型バ
イポーラトランジスタのエミツタに接続し、前記
第一および第二の縦型バイポーラトランジスタの
ベースならびにコレクタを共通接続して前記半導
体基板の基板電位と共通にして第二の電位に導く
ことからなることを特徴とする半導体集積回路。
1 First and second one conductive channel MIS type field effect transistors and first and second opposite conductive channel MIS formed on the same semiconductor substrate
and first and second vertical bipolar transistors, the sources of the first and second single-channel MIS field-effect transistors are commonly connected to lead to a first potential, and the gate are connected to first and second input terminals, respectively, and their drains are connected to the drains and first and second output terminals of said first and second opposite conducting channel MIS field effect transistors, respectively, and said first opposite conducting channel of
a source of the MIS field effect transistor is connected to a gate of the first and second oppositely conducting channel MIS field effect transistor, and a source of the first and second oppositely conducting channel MIS field effect transistor is connected to the first and second oppositely conducting channel MIS field effect transistor, respectively connecting to the emitter of a second vertical bipolar transistor, and commonly connecting the bases and collectors of the first and second vertical bipolar transistors to a common substrate potential of the semiconductor substrate, leading to a second potential; A semiconductor integrated circuit characterized by:
JP12992982A 1982-07-26 1982-07-26 HANDOTAISHUSEKIKAIRO Expired - Lifetime JPH0237104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12992982A JPH0237104B2 (en) 1982-07-26 1982-07-26 HANDOTAISHUSEKIKAIRO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12992982A JPH0237104B2 (en) 1982-07-26 1982-07-26 HANDOTAISHUSEKIKAIRO

Publications (2)

Publication Number Publication Date
JPS5921056A JPS5921056A (en) 1984-02-02
JPH0237104B2 true JPH0237104B2 (en) 1990-08-22

Family

ID=15021906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12992982A Expired - Lifetime JPH0237104B2 (en) 1982-07-26 1982-07-26 HANDOTAISHUSEKIKAIRO

Country Status (1)

Country Link
JP (1) JPH0237104B2 (en)

Also Published As

Publication number Publication date
JPS5921056A (en) 1984-02-02

Similar Documents

Publication Publication Date Title
US5376816A (en) Bi-cmos integrated circuit device having buried region use in common for bipolar and mos transistors
KR940004402B1 (en) Semiconductor memory device containing sense amplifier
US4678936A (en) MOS-cascoded bipolar current sources in non-epitaxial structure
JPH0620113B2 (en) An IC including a MOS direct-coupled bipolar current source in a non-epitaxial structure
JPH0237104B2 (en) HANDOTAISHUSEKIKAIRO
JP3379050B2 (en) Semiconductor device
JPS58207672A (en) Semiconductor device
JP2926785B2 (en) Semiconductor device
JPS60110138A (en) Gate array basic cell
JP2971666B2 (en) Semiconductor circuit
JP3071819B2 (en) Insulated gate type semiconductor device
KR890005033Y1 (en) Cmos accumulation of opposite electric current output circuit
JPH0438864A (en) Semiconductor device having complementary field effect transistor
JPS61160964A (en) Semiconductor ic
JPH03148866A (en) Semiconductor device
JPS6362901B2 (en)
JPH05160711A (en) Logic circuit
JPS6281053A (en) Semiconductor integrated circuit device
JPH01202910A (en) Clamp circuit device
JPS585611B2 (en) Lonely Cairo
JPS61156854A (en) Input protection circuit for cmos semiconductor device
JPS61208864A (en) C-mos integrated circuit device
JPH0440867B2 (en)
JPH0567738A (en) Semiconductor integrated circuit device
JPS60154554A (en) Complementary type insulated gate field effect semiconductor device