JPH0236899Y2 - - Google Patents

Info

Publication number
JPH0236899Y2
JPH0236899Y2 JP1981127521U JP12752181U JPH0236899Y2 JP H0236899 Y2 JPH0236899 Y2 JP H0236899Y2 JP 1981127521 U JP1981127521 U JP 1981127521U JP 12752181 U JP12752181 U JP 12752181U JP H0236899 Y2 JPH0236899 Y2 JP H0236899Y2
Authority
JP
Japan
Prior art keywords
cooling water
passage
air
water
water passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981127521U
Other languages
Japanese (ja)
Other versions
JPS5833729U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12752181U priority Critical patent/JPS5833729U/en
Publication of JPS5833729U publication Critical patent/JPS5833729U/en
Application granted granted Critical
Publication of JPH0236899Y2 publication Critical patent/JPH0236899Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 この考案は水冷式エンジンのシリンダ周囲に発
生するキヤビテーシヨンエロージヨンを防止する
装置に関する。
[Detailed Description of the Invention] This invention relates to a device for preventing cavitation erosion occurring around the cylinder of a water-cooled engine.

ウエツトライナ型のシリンダをもつエンジン
は、運転時、シリンダライナやシリンダブロツク
の振動によりシリンダ周囲の冷却水中にキヤビテ
ーシヨン現象を生じる傾向にある。
Engines with wet liner type cylinders tend to cause cavitation in the cooling water surrounding the cylinders due to vibrations of the cylinder liner and cylinder block during operation.

このキヤビテーシヨンは、シリンダライナの外
周に接触する冷却水中に発生する水蒸気の気泡で
あつて、エンジン振動に伴う水圧の低下に起因し
て発生する。この気泡は、ライナ表面の微小凹部
を核として低圧部に発生し、次の高圧に移行した
とき瞬時のうちに崩壊し、このとき、冷却水路の
内部に高周波の水圧変動を生じてライナ表面の凹
部にキヤビテーシヨンエロージヨンを発生するの
である。
This cavitation is water vapor bubbles generated in the cooling water that comes into contact with the outer periphery of the cylinder liner, and is caused by a drop in water pressure due to engine vibration. These bubbles are generated in the low-pressure area using minute depressions on the liner surface as nuclei, and instantly collapse when the next high pressure is reached. At this time, high-frequency water pressure fluctuations are generated inside the cooling channel, causing the liner surface to rise. Cavitation erosion occurs in the recess.

第1図は、従来のエンジン冷却系統をあらわす
もので、始動時などの冷却水温が低いとき、サー
モスタツト5が閉じることにより冷却水はエンジ
ン本体3からラジエータ4に回さずにバイパス冷
却水通路6を介しウオータポンプ2から再びエン
ジン本体3のシリンダライナ周囲に供給し、暖機
を促進する。
Figure 1 shows a conventional engine cooling system. When the cooling water temperature is low, such as during startup, the thermostat 5 closes and the cooling water is routed through the bypass cooling water passage instead of being routed from the engine body 3 to the radiator 4. The water is again supplied from the water pump 2 to the area around the cylinder liner of the engine body 3 via the water pump 6 to promote warm-up.

一方、暖機後は冷却水温が高くなりサーモスタ
ツト5が開弁するので、エンジン本体3からの暖
かい冷却水は、一旦ラジエータ4で冷却された後
再びエンジン本体3を循環するのである。エンジ
ン運転中は、サーモスタツト5およびラジエータ
4からエアパイプ9,11を通り絶えず冷却水が
ウオータタンク1へ流れ込み気水分離を行う。
On the other hand, after warm-up, the cooling water temperature becomes high and the thermostat 5 opens, so the warm cooling water from the engine body 3 is once cooled by the radiator 4 and then circulates through the engine body 3 again. During engine operation, cooling water constantly flows from the thermostat 5 and the radiator 4 through the air pipes 9 and 11 into the water tank 1 to separate air and water.

しかしながら、上述のようにエンジン振動が著
しいと、シリンダライナの表面に接触する冷却水
の圧力変動が生じ、飽和水蒸気で形成されるキヤ
ビテーシヨンの生成・崩壊を繰り返し、これによ
つてシリンダライナのエロージヨンを生起し、つ
いにはエンジン自体の耐久性の低下をきたすとい
う問題を生じた。
However, as mentioned above, when the engine vibration is significant, the pressure of the cooling water that comes into contact with the cylinder liner surface fluctuates, causing cavitation formed by saturated steam to repeatedly form and collapse, thereby causing cylinder liner erosion. This eventually led to the problem of reduced durability of the engine itself.

本考案はこのような問題点に着目してなされた
もので、冷却系統を循環する冷却水中に、ウオー
タタンクの空気室の空気を気泡として混入するこ
とにより、上記問題点を解決することを目的とす
る。
This invention was developed with a focus on these problems, and aims to solve the above problems by mixing the air in the air chamber of the water tank as bubbles into the cooling water circulating in the cooling system. shall be.

このために本考案では、ウエツト型シリンダラ
イナを装備する水冷式エンジンにおいて、エンジ
ン本体からラジエータを経てウオータポンプの吸
込側に至る冷却水通路と、前記ラジエータを迂回
するバイパス状の冷却水通路と、冷却水温が所定
値以下のときに前記バイパス冷却水通路を開くサ
ーモスタツトと、前記冷却水通路への供給冷却水
を所定量貯留したウオータタンクとを備えると共
に、前記ウオータタンクの空気室とバイパス冷却
水通路とを連通する空気通路を設け、これによ
り、冷却水温が所定値以下のときにのみ、ウオー
タポンプの吸込側圧力と空気室との差圧に基づ
き、バイパス冷却水通路の冷却水中に空気室から
の空気を導入して冷却水中に気泡を混入させるよ
うにした。
To this end, in the present invention, in a water-cooled engine equipped with a wet cylinder liner, a cooling water passage from the engine body to the suction side of the water pump via the radiator, a bypass cooling water passage that bypasses the radiator, A thermostat that opens the bypass cooling water passage when the cooling water temperature is below a predetermined value, and a water tank storing a predetermined amount of cooling water to be supplied to the cooling water passage, and an air chamber of the water tank and a bypass cooling An air passage is provided that communicates with the water passage, and this allows air to flow into the cooling water in the bypass cooling water passage based on the differential pressure between the suction side pressure of the water pump and the air chamber only when the cooling water temperature is below a predetermined value. Air from the chamber was introduced to mix air bubbles into the cooling water.

以下本考案の実施例を図面にもとづいて説明す
るが、第1図と同一構成部位には同一符号を付
す。
Embodiments of the present invention will be described below based on the drawings, in which the same components as in FIG. 1 are given the same reference numerals.

第2図、第3図において、1はウオータタン
ク、2はウオータポンプ、3はエンジン本体、4
はラジエータであり、従来の冷却系統と同じ構成
をとる。
In Figures 2 and 3, 1 is a water tank, 2 is a water pump, 3 is an engine body, and 4 is a water tank.
is a radiator and has the same configuration as a conventional cooling system.

すなわち、エンジン本体3で暖められた冷却水
は、サーモスタツト5に供給され、冷却水温が所
定値以下のとき、このサーモスタツト5から直接
冷却水通路6を介してウオータポンプ2に供給さ
れ、次にエンジン本体3へ圧送され、これらの冷
却系を循環する。
That is, the coolant heated by the engine body 3 is supplied to the thermostat 5, and when the coolant temperature is below a predetermined value, it is directly supplied from the thermostat 5 to the water pump 2 via the coolant passage 6, and then It is then pressure-fed to the engine body 3 and circulated through these cooling systems.

一方、冷却水温が所定値を越えるとサーモスタ
ツト5が開き冷却水はラジエータ4で十分に冷や
された後、一部は直接ウオータポンプ2へと、残
存部は一旦ウオータタンク1に戻されてからウオ
ータポンプ2へと供給される。こうして、ラジエ
ータ4で冷却水温を一定値以上にならないよう
に、冷却水を冷却保持しつつ冷却系に循環させる
のである。
On the other hand, when the cooling water temperature exceeds a predetermined value, the thermostat 5 opens and the cooling water is sufficiently cooled by the radiator 4, and then a portion of the cooling water is sent directly to the water pump 2, and the remaining portion is temporarily returned to the water tank 1. The water is supplied to the water pump 2. In this way, the cooling water is kept cool and circulated through the cooling system so that the temperature of the cooling water does not exceed a certain value in the radiator 4.

そして、本実施例では、ウオータタンク1の空
気室1Aと、サーモスタツト5からウオータポン
プ2の吸込側へと接続するバイパス冷却水通路6
とを連通する空気通路7を形成する。空気通路7
の冷却水通路6との接続部7Aは、空気を冷却水
通路6の冷却水中に気泡として混入するように、
ノズル状に形成し、かつウオータタンク1の空気
室1Aの圧力とウオータポンプ2の上流吸込圧力
との差圧によつて空気を冷却水中に供給する。
In this embodiment, a bypass cooling water passage 6 is connected to the air chamber 1A of the water tank 1 and the thermostat 5 to the suction side of the water pump 2.
An air passage 7 is formed which communicates with the air passage 7
The connecting portion 7A with the cooling water passage 6 is configured such that air is mixed into the cooling water of the cooling water passage 6 as bubbles.
It is formed in a nozzle shape, and air is supplied into the cooling water by the pressure difference between the pressure in the air chamber 1A of the water tank 1 and the upstream suction pressure of the water pump 2.

空気の気泡は、冷却水とともにウオータポンプ
2によりエンジン本体3に圧送され、シリンダラ
イナ(図示せず)周囲の冷却水通路を通過した後
サーモスタツト5に向かう。
The air bubbles are pumped together with cooling water to the engine body 3 by the water pump 2, and are directed to the thermostat 5 after passing through a cooling water passage around a cylinder liner (not shown).

そして、サーモスタツト5の直前の冷却水路8
で冷却水と空気がいつしよになつて冷却水路8か
ら分岐してウオータタンク1の空気室1Aと連通
するエアパイプ9を流れる。又ラジエータ4から
もエアパイプ11がウオータタンク1につながつ
ており気水分解を行つている。この後空気は再び
空気通路7から冷却水に混入して、エンジン本体
3のシリンダライナ周囲を循環する。
And the cooling water channel 8 just before the thermostat 5
The cooling water and air are then branched from the cooling water channel 8 and flow through an air pipe 9 communicating with the air chamber 1A of the water tank 1. An air pipe 11 is also connected from the radiator 4 to the water tank 1 to perform steam and water decomposition. Thereafter, the air is mixed into the cooling water from the air passage 7 again and circulated around the cylinder liner of the engine body 3.

なお、本実施例では、冷却系統の水および空気
の総量は一定であり、冷却系統の空気圧が異常に
高くなつたときのみプレツシヤバルブ10から空
気を逃がすようになつている。
In this embodiment, the total amount of water and air in the cooling system is constant, and air is released from the pressure valve 10 only when the air pressure in the cooling system becomes abnormally high.

エンジンの低温時にはサーモスタツト5が閉
じ、エンジン本体3を冷却して冷却水はバイパス
冷却水通路6からウオータポンプ2の吸込側へと
流入し、ラジエータ4には流れ込まない。
When the engine is at a low temperature, the thermostat 5 closes to cool the engine body 3, and the cooling water flows into the suction side of the water pump 2 from the bypass cooling water passage 6, but does not flow into the radiator 4.

エンジン運転時、シリンダライナやシリンダブ
ロツクの振動によりシリンダライナ周囲の冷却水
通路は水圧変動をきたし、低温時にはキヤビテー
シヨンの発生が激しくなる。
When the engine is running, vibrations of the cylinder liner and cylinder block cause water pressure fluctuations in the cooling water passage around the cylinder liner, and cavitation becomes more severe at low temperatures.

ところが、上記の通りバイパス冷却水通路6の
途中で空気通路7から空気が混入し、循環冷却水
中には空気の気泡を含むため、この空気の気泡が
水圧の変動を緩和するように、気泡容積が弾性変
化する。
However, as mentioned above, air is mixed in from the air passage 7 in the middle of the bypass cooling water passage 6, and the circulating cooling water contains air bubbles. changes elastically.

したがつて、冷却水通路内の圧力変動は低減
し、圧力変動の際発生しやすいキヤビテーシヨン
を有効に抑制することができる。
Therefore, pressure fluctuations within the cooling water passage can be reduced, and cavitation, which tends to occur when pressure fluctuations occur, can be effectively suppressed.

一方、キヤビテーシヨンの発生しにくい高温時
には、サーモスタツト5の制御に応じて冷却水は
ラジエータ4を介してエンジン本体3を循環し、
バイパス冷却水通路6を流れない。
On the other hand, at high temperatures when cavitation is less likely to occur, the cooling water is circulated through the engine body 3 via the radiator 4 according to the control of the thermostat 5.
It does not flow through the bypass cooling water passage 6.

したがつて、この場合には冷却水中に空気通路
7からの空気は混入されず、冷却系統は高い冷却
作用によりもつぱらエンジン本体3の冷却機能だ
けを高め、エンジン冷却効率を向上させることが
できる。
Therefore, in this case, the air from the air passage 7 is not mixed into the cooling water, and the cooling system only enhances the cooling function of the engine body 3 through its high cooling action, thereby improving engine cooling efficiency. .

以上説明したように本考案によれば、ウエツト
型シリンダライナをもつエンジンの冷却系統に、
ウオータタンクの空気室中の空気を混入させたの
で、エンジン振動に伴いシリンダライナ周囲の冷
却水通路に発生しやすいキヤビテーシヨンを防止
し、この結果シリンダライナのエロージヨンを抑
制してエンジンの耐久性を高めることができると
いう効果がある。
As explained above, according to the present invention, in the cooling system of an engine having a wet type cylinder liner,
By mixing the air in the air chamber of the water tank, cavitation that tends to occur in the cooling water passage around the cylinder liner due to engine vibration is prevented, and as a result, cylinder liner erosion is suppressed and engine durability is increased. It has the effect of being able to

また、本考案ではサーモスタツトを介してバイ
パス冷却水通路へと空気を供給する構成として、
冷却水温が所定値以下のときにのみ冷却水中に気
泡を混入させるようにしたので、高温時において
は空気の混入による冷却効率の低下やこれに原因
するオーバヒートなどを引き起こすおそれが無
い。また、ウオータポンプの吸込側圧力と空気室
との差圧により冷却水中に気泡を混入させるよう
にしたので、空気を混入させるために新たに加圧
用のコンプレツサ等を設ける必要がなく、従つて
構造簡単で低コストで実現できるという利点もあ
る。
In addition, in this invention, air is supplied to the bypass cooling water passage via the thermostat.
Since air bubbles are mixed into the cooling water only when the cooling water temperature is below a predetermined value, there is no risk of a drop in cooling efficiency due to the mixing of air or overheating caused by this at high temperatures. In addition, since air bubbles are mixed into the cooling water using the differential pressure between the suction side pressure of the water pump and the air chamber, there is no need to install a new pressurizing compressor or the like to mix air. It also has the advantage of being simple and low-cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例をあらわす概略構成図、第2図
は本考案の実施例をあらわす概略構成図、第3図
は同じく本考案の実施例の要部をあらわす詳細説
明図である。 1……ウオータタンク、1A……空気室、2…
…ウオータポンプ、3……エンジン本体、4……
ラジエータ、5……サーモスタツト、6……冷却
水通路、7……空気通路。
FIG. 1 is a schematic block diagram showing a conventional example, FIG. 2 is a schematic block diagram showing an embodiment of the present invention, and FIG. 3 is a detailed explanatory diagram showing the main parts of the embodiment of the present invention. 1...Water tank, 1A...Air chamber, 2...
...Water pump, 3...Engine body, 4...
Radiator, 5... thermostat, 6... cooling water passage, 7... air passage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ウエツト型シリンダライナを装備する水冷式エ
ンジンにおいて、エンジン本体からラジエータを
経てウオータポンプの吸込側に至る冷却水通路
と、前記ラジエータを迂回するバイパス状の冷却
水通路と、冷却水温が所定値以下のときに前記バ
イパス冷却水通路を開くサーモスタツトと、前記
冷却水通路への供給冷却水を所定量貯留したウオ
ータタンクとを備えると共に、前記ウオータタン
クの空気室とバイパス冷却水通路とを連通する空
気通路を設け、冷却水温が所定値以下のときに、
ウオータポンプの吸込側圧力と空気室との差圧に
基づき、バイパス冷却水通路の冷却水中に空気室
からの空気を導入して冷却水中に気泡を混入させ
ることを特徴とするキヤビテーシヨンエロージヨ
ン防止装置。
In a water-cooled engine equipped with a wet type cylinder liner, there is a cooling water passage from the engine body to the suction side of the water pump via the radiator, a bypass cooling water passage that bypasses the radiator, and a cooling water passage whose cooling water temperature is below a predetermined value. A thermostat that sometimes opens the bypass cooling water passage, and a water tank storing a predetermined amount of cooling water to be supplied to the cooling water passage, and an air chamber that communicates the air chamber of the water tank with the bypass cooling water passage. A passage is provided, and when the cooling water temperature is below a specified value,
Cavitation yellow is characterized by introducing air from the air chamber into the cooling water in the bypass cooling water passage to mix air bubbles into the cooling water based on the differential pressure between the suction side pressure of the water pump and the air chamber. Anti-jeong device.
JP12752181U 1981-08-28 1981-08-28 Cavity erosion prevention device Granted JPS5833729U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12752181U JPS5833729U (en) 1981-08-28 1981-08-28 Cavity erosion prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12752181U JPS5833729U (en) 1981-08-28 1981-08-28 Cavity erosion prevention device

Publications (2)

Publication Number Publication Date
JPS5833729U JPS5833729U (en) 1983-03-04
JPH0236899Y2 true JPH0236899Y2 (en) 1990-10-05

Family

ID=29921246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12752181U Granted JPS5833729U (en) 1981-08-28 1981-08-28 Cavity erosion prevention device

Country Status (1)

Country Link
JP (1) JPS5833729U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187328U (en) * 1984-05-23 1985-12-12 マツダ株式会社 Engine cooling structure
JP2007024011A (en) 2005-07-21 2007-02-01 Toyota Motor Corp Medium circulation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141940A (en) * 1975-06-02 1976-12-07 Isuzu Motors Ltd Method for reducing noises in internal combustion engine
JPS54145122A (en) * 1978-04-30 1979-11-13 Kawai Musical Instr Mfg Co Electronic musical instrument for varying accompaniment chord
JPS5650393A (en) * 1979-09-29 1981-05-07 Casio Computer Co Ltd Electronic musical instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141940A (en) * 1975-06-02 1976-12-07 Isuzu Motors Ltd Method for reducing noises in internal combustion engine
JPS54145122A (en) * 1978-04-30 1979-11-13 Kawai Musical Instr Mfg Co Electronic musical instrument for varying accompaniment chord
JPS5650393A (en) * 1979-09-29 1981-05-07 Casio Computer Co Ltd Electronic musical instrument

Also Published As

Publication number Publication date
JPS5833729U (en) 1983-03-04

Similar Documents

Publication Publication Date Title
US4364339A (en) Internal combustion engine with cooling system
US20020050251A1 (en) Cooling apparatus for liquid-cooled internal combustion engine
RU1802852C (en) Internal combustion engine with oil cooling
KR100482547B1 (en) A system for cooling an engine
GB2245703A (en) Engine cooling system
JPH0236899Y2 (en)
GB2108262A (en) Liquid-cooled i.c. engine
JPH0545446B2 (en)
KR100227552B1 (en) Cooling device of forced circulation water cooling engine
US3498278A (en) Automobile engine cooling system
JPS641460Y2 (en)
JPH0320492Y2 (en)
GB1564692A (en) Cooling circuit for the cylinder heat of an internal combustion engine
SU1716180A1 (en) Cooling system of internal combustion engine
RU2160372C2 (en) Internal combustion engine cooling system
JPH0240254Y2 (en)
JPH0343446B2 (en)
JPH0330587Y2 (en)
JPH0318654Y2 (en)
JPS641459Y2 (en)
JPS6329145Y2 (en)
JPS6135696Y2 (en)
JPS59150965A (en) Warming device for air suction system of engine
JPH0318655Y2 (en)
SU1483067A1 (en) Ic-engine