JPS6135696Y2 - - Google Patents
Info
- Publication number
- JPS6135696Y2 JPS6135696Y2 JP1981194672U JP19467281U JPS6135696Y2 JP S6135696 Y2 JPS6135696 Y2 JP S6135696Y2 JP 1981194672 U JP1981194672 U JP 1981194672U JP 19467281 U JP19467281 U JP 19467281U JP S6135696 Y2 JPS6135696 Y2 JP S6135696Y2
- Authority
- JP
- Japan
- Prior art keywords
- engine
- cooling water
- water
- bypass
- water pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000498 cooling water Substances 0.000 claims description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 42
- 238000001816 cooling Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Temperature-Responsive Valves (AREA)
Description
【考案の詳細な説明】
本考案は、エンジンの冷却装置に係り、特に冷
却水の温度が低い場合のウオターポンプの消費動
力を小さくし、かつ排気熱を利用して冷却水を効
率的に加熱させることができるようにしたエンジ
ンの冷却装置に関する。[Detailed description of the invention] The present invention relates to an engine cooling system, and particularly reduces the power consumption of a water pump when the temperature of the cooling water is low, and efficiently heats the cooling water using exhaust heat. This invention relates to an engine cooling system that enables
従来、ウオターポンプを用いた水冷式エンジン
においては、冷却水の温度が一定値以下の場合に
は、ウオターポンプからエンジン内を通過した冷
却水は、サーモスタツトの働きによりラジエータ
に流れずバイパスを通つてウオターポンプの吸入
側に流れて循環するようになつていた。しかし該
従来例によると、ウオターポンプの吐出側から流
れ出る冷却水の全量が常にエンジンに送られるの
で、エンジンを必要以上に冷却してしまい、緩機
運転が長くかかると共に、ウオターポンプには全
負荷がかかるので、該ウオターポンプにおける消
費動力が大きく、冷却水の低温時における馬力損
失が大きいという欠点があつた。また従来例にお
いては、エンジンの始動後直ちに高温となる排気
ガスの熱を有効に利用して冷却水の温度上昇を助
長する試みはなされていなかつた。特開昭52−
18551号公報及び特開昭52−40239号公報に記載さ
れた発明においても、これらの欠点のすべてを解
決しているものではなく、改良の余地が残されて
いた。 Conventionally, in a water-cooled engine using a water pump, when the temperature of the cooling water is below a certain value, the cooling water that has passed through the engine from the water pump does not flow to the radiator due to the action of the thermostat, but instead goes through the bypass and is sent to the water pump. It was designed to flow to the suction side of the tank and circulate. However, according to the conventional example, the entire amount of cooling water flowing out from the discharge side of the water pump is always sent to the engine, which cools the engine more than necessary, which takes a long time to run the machine and puts the full load on the water pump. Therefore, the power consumption of the water pump is large, and the loss of horsepower is large when the cooling water is at a low temperature. Further, in the conventional example, no attempt has been made to effectively utilize the heat of the exhaust gas, which becomes hot immediately after the engine is started, to help raise the temperature of the cooling water. Unexamined Japanese Patent Publication 1972-
Even the inventions described in JP-A No. 18551 and JP-A-52-40239 do not solve all of these drawbacks, and there remains room for improvement.
本考案は、上記した従来技術の欠点を除くため
になされたものであつて、その目的とするところ
は、ウオターポンプを用いた水冷式エンジンにお
いて、冷却水の温度が低い暖機運転時には、必要
最小限の冷却水のみをエンジンに流し、他の冷却
水はバイパスを通してウオターポンプの吸入側に
戻すことができるようにすることであり、またこ
れによつて冷却水低温時のウオターポンプの消費
動力を小さくし、エンジンの馬力損失を低減させ
ることである。また他の目的は、エンジンに流れ
ないでウオターポンプに戻される冷却水をエンジ
ンの排気熱を利用して加熱し、冷却水の温度を急
上昇させ、暖機運転時間を短縮し、燃料消費の低
減を図ることである。 The present invention was devised to eliminate the drawbacks of the prior art described above, and its purpose is to minimize the amount of water required during warm-up operation when the temperature of the cooling water is low in a water-cooled engine using a water pump. The purpose of this system is to allow only a limited amount of cooling water to flow to the engine, while other cooling water is returned to the intake side of the water pump through a bypass.This also reduces the power consumption of the water pump when the cooling water is low. , to reduce engine horsepower loss. Another purpose is to use engine exhaust heat to heat the cooling water that does not flow into the engine but is returned to the water pump, rapidly increasing the temperature of the cooling water, shortening warm-up time, and reducing fuel consumption. It is to aim for it.
要するに本考案は、ウオターポンプを備えた冷
冷式エンジンにおいて、該ウオターポンプの吐出
側と吸入側とに連通接続されたバイパスを設け、
前記ウオターポンプの吐出側から前記エンジンに
至る流路と前記バイパスとの分岐点に、冷却水の
温度が低い場合には該冷却水の一部を前記エンジ
ンに流しながら前記バイパスを通して前記ウオタ
ーポンプの吸入側に戻すのに対して冷却水の温度
が高い場合には冷却水の全量を前記エンジンに流
すようにしたサーモバルブを配設し、前記バイパ
スの途中には、前記エンジンの排気熱を吸収して
該バイパス内の冷却水を加熱するようにした熱交
換器を配設したことを特徴とするものである。 In short, the present invention provides, in a cold-cooled engine equipped with a water pump, a bypass connected to the discharge side and suction side of the water pump,
At a branch point between the flow path from the discharge side of the water pump to the engine and the bypass, when the temperature of the cooling water is low, a part of the cooling water is flowed to the engine and passed through the bypass to the suction side of the water pump. In contrast, a thermo valve is installed to allow the entire amount of cooling water to flow to the engine when the temperature of the cooling water is high. It is characterized in that a heat exchanger is provided to heat the cooling water in the bypass.
以下本発明を図面に示す実施例に基いて説明す
る。第1図において水冷式エンジン1はウオター
ポンプ2を備えており、該ウオターポンプの吐出
側2aと吸入側2bとに連続接続されたバイパス
3が設けられている。ウオターポンプ2の吐出側
2aからエンジン1に至る流路4とバイパス3と
の分岐点5には、冷却水の温度が低い場合には冷
却水の一部をエンジン1に流しながらバイパス3
を通してウオターポンプ2の吸入側2bに戻すの
に対して冷却水の温度が高い場合には冷却水の全
量をエンジン1に流すようにしたサーモバルブ6
が配設されており、更にバイパス3の途中には、
エンジン1の排気熱を吸収してバイパス3内の冷
却水を加熱するようにした熱交換器7が配設され
ている。 The present invention will be explained below based on embodiments shown in the drawings. In FIG. 1, a water-cooled engine 1 includes a water pump 2, and a bypass 3 is provided that is continuously connected to a discharge side 2a and a suction side 2b of the water pump. At a branch point 5 between a flow path 4 leading from the discharge side 2a of the water pump 2 to the engine 1 and the bypass 3, when the temperature of the cooling water is low, a part of the cooling water is flowed to the engine 1 and a bypass 3 is connected.
The thermo valve 6 is configured to flow the entire amount of cooling water to the engine 1 when the temperature of the cooling water is high, whereas the cooling water is returned to the suction side 2b of the water pump 2 through the cooling water.
is installed, and furthermore, in the middle of Bypass 3,
A heat exchanger 7 is provided that absorbs exhaust heat from the engine 1 and heats the cooling water in the bypass 3.
なお第1図において、8はエンジン1からサー
モスタツト9へ至る冷却水送水管、10は公知の
ラジエータ用バイパス、11はアツパホース、1
2はラジエータ、13はロワホース、14は該ロ
ワホースからウオターポンプ2への送水管であ
る。 In FIG. 1, 8 is a cooling water water pipe leading from the engine 1 to the thermostat 9, 10 is a known radiator bypass, 11 is an atspa hose, 1
2 is a radiator, 13 is a lower hose, and 14 is a water pipe from the lower hose to the water pump 2.
熱交換器7は、排気管15と熱的に連結されて
おり、該熱交換器を排気管15に直接接触させて
もよく、またヒートパイプ16を用い、その蒸発
部16aを排気管15に設け、凝縮部16bを熱
交換器7に設けるようにしてもよい。 The heat exchanger 7 is thermally connected to the exhaust pipe 15, and the heat exchanger may be brought into direct contact with the exhaust pipe 15, or the heat pipe 16 may be used to connect its evaporation section 16a to the exhaust pipe 15. In addition, the condensing section 16b may be provided in the heat exchanger 7.
次にサーモバルブ6について説明すると、該サ
ーモバルブ6は第2図から第4図に示すように、
ピストンバルブ17とワツクスエレメント18
と、該ワツクスエレメントの取付部材19と、ピ
ストンバルブ17とワツクスエレメント18とを
連結するニードル20と、一端がワツクスエレメ
ント18に固着され他端がピストンバルブ17に
固着され互いに引つ張り合うように機能するスプ
リングSと、ストツパ部材21とからなる。ピス
トンバルブ17は上部17aが開口し、下部17
bが閉じられて通水穴17cが複数設けられてお
り、流路4を構成する送水管22内に摺動自在に
嵌挿されている。ニードル20は、ワツクスエレ
メント18によつて冷却水の温度上昇に伴なつて
下方に押し出され、温度の下降に伴なつてスプリ
ングSによつて引き上げられるようになつてい
る。取付部材19には複数の送水穴19aが設け
られ、送水管22内に固着される。ストツパ部材
21には複数の送水穴21aが設けられており、
該ストツパ部材21はその上面21bがバイパス
3の入口3aよりも若干低い位置において送水管
22内に固着されている。 Next, the thermovalve 6 will be explained. As shown in FIGS. 2 to 4, the thermovalve 6 has the following features:
Piston valve 17 and wax element 18
, a mounting member 19 of the wax element, and a needle 20 connecting the piston valve 17 and the wax element 18, one end of which is fixed to the wax element 18 and the other end of which is fixed to the piston valve 17, and they are pulled together. It consists of a spring S that functions as follows, and a stopper member 21. The piston valve 17 has an open upper part 17a and an open lower part 17a.
b is closed and a plurality of water passage holes 17c are provided, and the water passage holes 17c are slidably inserted into the water pipe 22 constituting the flow path 4. The needle 20 is pushed downward by the wax element 18 as the temperature of the cooling water increases, and is pulled up by the spring S as the temperature decreases. The mounting member 19 is provided with a plurality of water supply holes 19a and is fixed within the water pipe 22. The stopper member 21 is provided with a plurality of water supply holes 21a,
The stopper member 21 has its upper surface 21b fixed in the water pipe 22 at a position slightly lower than the inlet 3a of the bypass 3.
本考案は、上記のように構成されており、以下
その作用について説明する。寒冷時におけるエン
ジン1の始動時等において、冷却水温度が一定値
以下の場合には、第3図に示すようにスプリング
Sによりピストンバルブ17が引き上げられ、そ
の下部17bがバイパス3の入口3aよりも上方
に移動するので、冷却水は、その一部が矢印Aの
如く流路4を通てエンジン1、即ちシリンダブロ
ツク1aに流れ、他の一部は矢印Bの如く、バイ
パス3に流れて熱交換器7で加熱されてウオター
ポンプ2の吸入側2bに戻され、該吸入側の圧力
が上昇する。このため冷却水の温度が速かに上昇
し、暖機運転時間が短縮されるばかりでなく、ウ
オターポンプ2の消費動力が少なくて済み、エン
ジン1の馬力損失が減少する。熱交換器7は、エ
ンジン1の始動と同時に排気の温度が上昇するの
で、直ちに一定の熱量を供給され、これを冷却水
に与えることになる。 The present invention is constructed as described above, and its operation will be explained below. When starting the engine 1 in cold weather, etc., if the coolant temperature is below a certain value, the piston valve 17 is pulled up by the spring S as shown in FIG. Since the cooling water also moves upward, part of the cooling water flows through the flow path 4 to the engine 1, that is, the cylinder block 1a, as shown by arrow A, and the other part flows to the bypass 3, as shown by arrow B. It is heated by the heat exchanger 7 and returned to the suction side 2b of the water pump 2, increasing the pressure on the suction side. Therefore, the temperature of the cooling water rises quickly, and not only the warm-up operation time is shortened, but also the power consumption of the water pump 2 is reduced, and the horsepower loss of the engine 1 is reduced. Since the temperature of the exhaust gas increases at the same time as the engine 1 is started, the heat exchanger 7 is immediately supplied with a certain amount of heat, which is then given to the cooling water.
一方、エンジン1のシリンダブロツク1aに流
される冷却水の一部は、エンジン1が過熱しない
程度にエンジン1を冷却しながら、サーモスタツ
ト9からバイパス10に流れ、ウオターポンプ2
の吸入側2bに戻され、やはり短時間のうちに温
度が上昇して行く。 On the other hand, a part of the cooling water flowing into the cylinder block 1a of the engine 1 flows from the thermostat 9 to the bypass 10 while cooling the engine 1 to the extent that the engine 1 does not overheat.
is returned to the suction side 2b, and the temperature also rises within a short period of time.
以上のように冷却水が循環して適当に達すると
サーモバルブ6のワツクスエレメント18がニー
ドル20を介してピストンバルブ17を押し下げ
る力がスプリングSの引き上げ力より強くなりピ
ストンバルブ17を第4図に示すように押し下げ
るので、バイパス3が閉鎖され、冷却水の全量が
矢印Aの如く流路4からエンジン1に流れるよう
になり、サーモスタツト9もバイパス10の流路
を閉じ、ラジエータ12へ冷却水を流し、該ラジ
エータで冷却されてウオータポンプ2に戻され、
通常の循環経路で冷却水が流れるようになる。 As described above, when the cooling water circulates and reaches a suitable level, the force of the wax element 18 of the thermovalve 6 pushing down the piston valve 17 via the needle 20 is stronger than the pulling force of the spring S, and the piston valve 17 is pushed down as shown in FIG. By pressing down as shown in , the bypass 3 is closed, and the entire amount of cooling water flows from the flow path 4 to the engine 1 as shown by arrow A. The thermostat 9 also closes the flow path of the bypass 10, and the cooling water is sent to the radiator 12. The water is passed, cooled by the radiator, and returned to the water pump 2,
Cooling water will now flow through the normal circulation path.
本考案は、上記のように構成され、作用するも
のであるから、ウオターポンプを用いた水冷式エ
ンジンにおいて、冷却水の温度が低い暖機運転時
には、必要最小限の冷却水のみエンジンに流し、
他の冷却水はバイパスを通してウオターポンプの
吸入側に戻すことができるようになり、この結果
冷却水低温時のウオターポンプの吸入側の圧力が
高くなるので消費動力が小さくすることができ、
エンジンの馬力損失を低減させることができる効
果が得られる。またエンジンに流れないでウオー
タポンプに戻される冷却水をエンジンの排気熱を
利用して加熱するようにしたので、冷却水の温度
を急上昇させ、暖機運転時間を短縮できると共
に、燃料消費の低減を図ることができる効果が得
られる。更には、寒冷時において、エンジン始動
後短時間で暖房が効き始めるという効果も得ら
れ、その効果の極めて優れた考案である。 Since the present invention is constructed and operates as described above, in a water-cooled engine using a water pump, during warm-up operation when the temperature of the cooling water is low, only the minimum necessary amount of cooling water is allowed to flow into the engine.
Other cooling water can now be returned to the suction side of the water pump through the bypass, and as a result, the pressure on the suction side of the water pump when the cooling water is low is increased, so power consumption can be reduced.
The effect of reducing engine horsepower loss can be obtained. In addition, the cooling water that does not flow into the engine but is returned to the water pump is heated using engine exhaust heat, which rapidly raises the temperature of the cooling water, shortening warm-up time and reducing fuel consumption. The effect that can be achieved is obtained. Furthermore, in cold weather, heating can start working in a short time after the engine is started, making this an extremely effective device.
図面は本考案の実施例に係り、第1図は本考案
に係るエンジンの冷却装置を装着した冷却装置の
概略図、第2図はサーモバルブの分解斜視図、第
3図は冷却水の温度が低い場合のサーモバルブの
作動状態を示す縦断面図、第4図は冷却水の温度
が適当となつた場合のサーモバルブの作動状態を
示す縦断面図である。
1は水冷式のエンジン、2はウオターポンプ、
2aは吐出側、2bは吸入側、3はバイパス、4
は流路、5は分岐点、6はサーモバルブ、7は熱
交換器である。
The drawings relate to embodiments of the present invention; Fig. 1 is a schematic diagram of a cooling system equipped with an engine cooling system according to the present invention, Fig. 2 is an exploded perspective view of a thermovalve, and Fig. 3 shows the temperature of cooling water. FIG. 4 is a longitudinal sectional view showing the operating state of the thermovalve when the temperature of the cooling water is low, and FIG. 4 is a longitudinal sectional view showing the operating state of the thermovalve when the temperature of the cooling water is appropriate. 1 is a water-cooled engine, 2 is a water pump,
2a is the discharge side, 2b is the suction side, 3 is the bypass, 4
5 is a flow path, 5 is a branch point, 6 is a thermovalve, and 7 is a heat exchanger.
Claims (1)
て、該ウオターポンプの吐出側と吸入側とに連通
接続されたバイパスを設け、前記ウオターポンプ
の吐出側から前記エンジンに至る流路と前記バイ
パスとの分岐点に、冷却水の温度が低い場合には
該冷却水の一部を前記エンジンに流しながら前記
バイパスを通して前記ウオータポンプの吸入側に
戻すのに対して冷却水の温度が高い場合には冷却
水の全量を前記エンジンに流すようにしたサーモ
バルブを配設し、前記バイパスの途中には、前記
エンジンの排気熱を吸収して該バイパス内の冷却
水を加熱するようにした熱交換器を配設したこと
を特徴とするエンジンの冷却装置。 In a water-cooled engine equipped with a water pump, a bypass is provided that is connected to the discharge side and the suction side of the water pump, and cooling water is provided at a branch point between the bypass and the flow path from the discharge side of the water pump to the engine. When the temperature of the cooling water is low, part of the cooling water is passed through the engine and returned to the intake side of the water pump through the bypass, whereas when the temperature of the cooling water is high, the entire amount of the cooling water is sent to the engine. A heat exchanger is provided in the middle of the bypass to absorb the exhaust heat of the engine and heat the cooling water in the bypass. cooling system for the engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981194672U JPS58102712U (en) | 1981-12-29 | 1981-12-29 | engine cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981194672U JPS58102712U (en) | 1981-12-29 | 1981-12-29 | engine cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58102712U JPS58102712U (en) | 1983-07-13 |
JPS6135696Y2 true JPS6135696Y2 (en) | 1986-10-17 |
Family
ID=30107979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981194672U Granted JPS58102712U (en) | 1981-12-29 | 1981-12-29 | engine cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58102712U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5338761B2 (en) * | 2010-07-12 | 2013-11-13 | トヨタ自動車株式会社 | Cooling device for in-vehicle internal combustion engine |
-
1981
- 1981-12-29 JP JP1981194672U patent/JPS58102712U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58102712U (en) | 1983-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5337704A (en) | Engine cooling system with thermostat coolant flow control between head and block | |
CN105298613A (en) | Double-loop cooling system and method for engine | |
CN108049956B (en) | Engine cooling system | |
CN108643998A (en) | A kind of engine thermal management system | |
US6758171B2 (en) | Engine cooling system with two thermostats | |
CN101196135B (en) | Engine cooling system | |
JPS5855351B2 (en) | Internal combustion engine with liquid circuit | |
JP2003172140A (en) | Engine cooling system and method | |
JPS6135696Y2 (en) | ||
JP3891233B2 (en) | Oil temperature control device for internal combustion engine | |
JPS6114588Y2 (en) | ||
KR102359941B1 (en) | Engine cooling system | |
KR100227552B1 (en) | Cooling device of forced circulation water cooling engine | |
JP3870306B2 (en) | Oil cooler cooling channel structure | |
JP2001082120A (en) | Oil warming device for engine | |
JPS6320819Y2 (en) | ||
KR100435946B1 (en) | Cooling system for engine | |
JPS6033286Y2 (en) | Internal combustion engine lubrication system | |
JPS597139Y2 (en) | Vehicle engine cooling mechanism | |
JPS5917262B2 (en) | Hot water device that uses engine waste heat | |
KR100428217B1 (en) | Engine cooling system | |
JPS6226583Y2 (en) | ||
KR20090007950A (en) | Cooling water line structure of cylinder head | |
JPH0332751Y2 (en) | ||
JPS5915663A (en) | Heating controller of suction system of engine |