JPH0236802B2 - - Google Patents

Info

Publication number
JPH0236802B2
JPH0236802B2 JP61122081A JP12208186A JPH0236802B2 JP H0236802 B2 JPH0236802 B2 JP H0236802B2 JP 61122081 A JP61122081 A JP 61122081A JP 12208186 A JP12208186 A JP 12208186A JP H0236802 B2 JPH0236802 B2 JP H0236802B2
Authority
JP
Japan
Prior art keywords
oil
air
chamber
plunger
oil chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61122081A
Other languages
Japanese (ja)
Other versions
JPS61282604A (en
Inventor
Osamu Suzuki
Kunio Yamaguchi
Shu Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP61122081A priority Critical patent/JPS61282604A/en
Publication of JPS61282604A publication Critical patent/JPS61282604A/en
Publication of JPH0236802B2 publication Critical patent/JPH0236802B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧縮空気圧を油圧に間欠的に変換し
て、この油圧により例えば工作機械の送り装置と
して使用される複動型油圧シリンダ(以下、単に
油圧シリンダという)を駆動させるようにした駆
動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to a double-acting hydraulic cylinder (hereinafter referred to as a , simply referred to as a hydraulic cylinder).

この種駆動装置は、一般に、空油駆動装置とよ
ばれ、空圧と油圧の長所を兼ね備えているため、
注目されている。
This type of drive device is generally called an air-hydraulic drive device, and because it combines the advantages of pneumatics and hydraulics,
Attention has been paid.

〔従来技術とその問題点〕[Prior art and its problems]

ところで、従来提案された空油駆動装置におい
ては、一つの油圧シリンダを往動させるための圧
油を得るために高価な空油変換器が設けられ、ま
た同油圧シリンダを復動させるための圧油を得る
ために他の空油変換器が設けられていて、コスト
高となる欠点があるばかりか、装置の大型化は避
けられず配設スペースの確保が困難であるといつ
た欠点がある。また従来の装置においては、空油
変換器とリザーバが別個に設けられていて、接続
配管が必要であるばかりか、大きな占有床面積が
必要であつた。
By the way, in conventionally proposed pneumatic-hydraulic drive devices, an expensive pneumatic-hydraulic converter is provided to obtain pressure oil for moving one hydraulic cylinder forward, and an expensive air-hydraulic converter is provided to obtain pressure oil for moving the same hydraulic cylinder backward. Another air-oil converter is installed to obtain the oil, which not only has the disadvantage of high costs, but also has the disadvantage that it is inevitable that the device will be larger and that it is difficult to secure installation space. . Furthermore, in the conventional device, the air-oil converter and the reservoir are provided separately, which not only requires connecting piping but also requires a large occupied floor space.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記した問題を解決すべくなされた
もので、当該駆動装置を、 吐出及び吸入ポートを有するケーシングと、こ
のケーシング内に往復動可能に嵌装されて同ケー
シング内を前記吐出及び吸入ポートが開口する油
室と空圧源に接続される空室に区画するプランジ
ヤを備え、前記油室は前記プランジヤが同油室に
向けて押動されたとき少なくとも一つの複動型油
圧シリンダを一往復させるに足る作動油を吐出す
る吐出容量を有する単一の空油変換器と、 この空油変換器における前記油室の外周に一体
的に設けられて、帰還油路に接続される流入ポー
トと前記吸入ポートに連通路を通して接続される
流出ポートを有し、上方部分にエアブリーザを備
え、前記空油変換器の油室の吐出容量と実質的に
同じかそれより大きい容量の環状リザーバと、 このリザーバの前記流出ポートと前記空油変換
器の前記吸入ポートを接続する前記連通路内に配
置され、前記吸入ポートへの作動油の流れを許す
とともに前記リザーバへの作動油の流れを遮断す
るチエツク弁と、 第1位置では前記プランジヤが前記油室に向け
て前進移動すべく前記空室を空圧源に接続し、第
2位置では前記プランジヤの後退移動を可能とす
べく前記空室を大気に接続する第1切換弁と、 この第1切換弁が前記第1位置に保持されてい
る状態にて、前記吐出ポートに接続した供給油路
及び前記帰還油路と前記複動型油圧シリンダの両
油室の接続を転換する第2切換弁 を備える構成とした。
The present invention has been made to solve the above-mentioned problems, and includes a casing having a discharge port and a suction port, and a drive device fitted in the casing so as to be able to reciprocate and move the discharge and suction ports within the casing. a plunger partitioned into an oil chamber in which a port opens and an empty chamber connected to an air pressure source; the oil chamber is configured to open at least one double-acting hydraulic cylinder when the plunger is pushed toward the oil chamber; A single air-oil converter having a discharge capacity sufficient to discharge hydraulic oil for one reciprocation, and an inlet integrally provided on the outer periphery of the oil chamber in this air-oil converter and connected to a return oil path. and an annular reservoir having a volume substantially equal to or larger than the discharge volume of the oil chamber of the air-oil converter, having an outflow port connected to the port and the suction port through a communication passage, an air breather in an upper portion, and a discharge volume of the oil chamber of the air-oil converter. , disposed within the communication path connecting the outflow port of the reservoir and the suction port of the air-oil converter, allowing the flow of hydraulic oil to the suction port and blocking the flow of hydraulic oil to the reservoir. a check valve that connects the cavity to a pneumatic source in order to allow the plunger to move forward toward the oil chamber in a first position, and in a second position to allow the plunger to move backward; a first switching valve that connects the valve to the atmosphere; and, while the first switching valve is held at the first position, the supply oil passage and the return oil passage that are connected to the discharge port, and the double-acting hydraulic pressure. The configuration includes a second switching valve that switches the connection between both oil chambers of the cylinder.

〔発明の作用・効果〕[Action/effect of the invention]

上記のように構成した本発明による駆動装置に
おいては、第1切換弁によつて空室に空圧が供給
されるようにすることができ、同空圧によつてプ
ランジヤを油室に向けて押動させることができ
て、少なくとも一つの複動型油圧シリンダを一往
復させるに足る圧油を油室から供給油路に吐出さ
せることができ、同圧油を第2切換弁によつて複
動型油圧シリンダに供給したり、同油圧シリンダ
から帰還油路に還流させたりすることができて、
同油圧シリンダを待ち時間なく短時間に少なくと
も一往復させることができる。このため、油圧シ
リンダの作動効率を高めることができることは勿
論のこと、少なくとも一つの複動型油圧シリンダ
を往復動させるために単一の空油変換器があれば
よく、当該装置の小型化を図ることができるとと
もにコスト低減を図ることができる。
In the drive device according to the present invention configured as described above, air pressure can be supplied to the empty chamber by the first switching valve, and the plunger can be directed toward the oil chamber by the air pressure. Pressure oil sufficient to make at least one double-acting hydraulic cylinder reciprocate one time can be discharged from the oil chamber into the supply oil passage, and the same pressure oil can be transferred to the supply oil passage by the second switching valve. It can be supplied to a dynamic hydraulic cylinder, and can be returned from the hydraulic cylinder to a return oil path.
The hydraulic cylinder can be reciprocated at least once in a short time without waiting time. For this reason, not only can the operating efficiency of the hydraulic cylinder be improved, but also a single air-hydraulic converter is required to reciprocate at least one double-acting hydraulic cylinder, which reduces the size of the device. It is possible to achieve this goal and also to reduce costs.

また本発明による駆動装置においては、リザー
バとして空油変換器における油室の外周に一体的
に設けられてチエツク弁を介装してなる連通路を
通して油室に連通する還状リザーバが採用されて
いるため、空油変換器とリザーバ間の配管を無く
すことができて配管作業を容易とすることができ
るとともに、占有床面積の減少を図ることができ
て省スペース化を図ることができる。
Further, in the drive device according to the present invention, a recirculating reservoir is adopted as the reservoir, which is integrally provided on the outer periphery of the oil chamber in the air-oil converter and communicates with the oil chamber through a communication passage with a check valve interposed therebetween. Therefore, piping between the air-oil converter and the reservoir can be eliminated, making piping work easier, and the occupied floor area can be reduced, leading to space savings.

〔実施例〕〔Example〕

以下に、本発明の実施例を図面に基づいて説明
する。第1図は本発明による駆動装置によつて一
つの油圧シリンダを作動させる基本的な回路を示
している。この第1図において、空油変換器10
とリザーバ41は一体的に形成されていて、空油
変換器10は、段付のケーシング11と、このケ
ーシング11内に往復動可能に嵌装した段付のプ
ランジヤ12からなり、ケーシング11内には、
吐出ポート11a及び吸入ポート11bが常時開
口し作動油が充満する油室Roと、ポート11c
が常時開口する環状の空室A1と、ポート11d
が常時開口する空室A2とが形成されている。空
室A1はポート11cに接続したエア流路21を
介して電磁切換弁20に接続され、また空室A2
はポート11dに接続したエア流路22を介して
電磁切換弁20に接続されている。電磁切換弁2
0は、二位置切換弁であり、ソレノイド20aが
非作動である図示位置においてエア流路21を圧
縮空気源23に接続しかつエア流路22を大気に
連通する消音器24に接続し、またソレノイド2
0aが作動したときの位置においてエア流路21
を消音器24に接続しかつエア流路22を圧縮空
気源23に接続する。
Embodiments of the present invention will be described below based on the drawings. FIG. 1 shows the basic circuit for operating one hydraulic cylinder by means of a drive device according to the invention. In this FIG. 1, an air-oil converter 10
and the reservoir 41 are integrally formed. teeth,
The discharge port 11a and the suction port 11b are always open and the oil chamber Ro is filled with hydraulic oil, and the port 11c
An annular cavity A1 that is always open and a port 11d
A vacant room A2 is formed which is always open. The empty chamber A1 is connected to the electromagnetic switching valve 20 via an air passage 21 connected to the port 11c, and the empty chamber A2
is connected to the electromagnetic switching valve 20 via an air passage 22 connected to the port 11d. Solenoid switching valve 2
0 is a two-position switching valve, which connects the air passage 21 to the compressed air source 23 and the air passage 22 to a silencer 24 communicating with the atmosphere in the illustrated position where the solenoid 20a is inactive; solenoid 2
The air flow path 21 is in the position when 0a is activated.
is connected to a silencer 24 and the air flow path 22 is connected to a compressed air source 23.

油室Roは、油圧シリンダ60を一往復させる
に足る作動油を収容していて、吐出ポート11a
に接続した供給油路30を介して電磁切換弁50
に接続されている。供給油路30は油室Roから
の作動油の吐出を許容するチエツク弁31を備え
ており、ストツパバルブ32を介して圧力計33
が取付けられている。また油室Roは、吸入ポー
ト11bにて作動油の吸入を許容するチエツク弁
42を介装してなる連通路43を通してリザーバ
41の流出ポート41bに連通している。リザー
バ41は油室Roの外周に一体的に設けられてい
て環状を呈しており、その容量は油室Roの吐出
容量と実質的に同じかそれより大きくしてある。
また、リザーバ41は、その上方部分にエアブリ
ーザ41aを有するとともに、その下方部分に流
入ポート41cを有していて、同流入ポート41
cは帰還油路40を介して電磁切換弁50に接続
されている。
The oil chamber Ro accommodates enough hydraulic oil to make the hydraulic cylinder 60 reciprocate once, and the oil chamber Ro contains enough hydraulic oil to make one reciprocation of the hydraulic cylinder 60.
The electromagnetic switching valve 50 is connected to the
It is connected to the. The supply oil passage 30 is equipped with a check valve 31 that allows hydraulic oil to be discharged from the oil chamber Ro, and a pressure gauge 33 is provided through a stopper valve 32.
is installed. Further, the oil chamber Ro communicates with the outflow port 41b of the reservoir 41 through a communication passage 43 which is provided with a check valve 42 that allows the suction of hydraulic oil at the suction port 11b. The reservoir 41 is integrally provided around the outer periphery of the oil chamber Ro, has an annular shape, and has a capacity that is substantially the same as or larger than the discharge capacity of the oil chamber Ro.
Further, the reservoir 41 has an air breather 41a in its upper part and an inflow port 41c in its lower part.
c is connected to an electromagnetic switching valve 50 via a return oil passage 40.

電磁切換弁50は、油圧シリンダ60のピスト
ン61の停止・下動・上動を切換える三位置切換
弁であり、両ソレノイド50a,50bが非作動
である図示位置において供給油路30、帰還油路
40、油圧シリンダ60の図示上方油室62に接
続した油路70及び油圧シリンダ60の図示下方
油室63に接続した油路80の全ての接続を断
ち、ソレノイド50aが作動したときの位置にお
いて供給油路30を油路70に接続しかつ帰還油
路40を油路80に接続し、ソレノイド50bが
作動したときの位置において供給油路30を油路
80に接続しかつ帰還油路40を油路70に接続
する。なお、油路70はスピードコントローラ
(逆止弁付の流量制御弁)71を備え、また油路
80はチエツク弁81,82、常時開放形デセラ
レイシヨン弁付のスピードコントローラ83及び
スピードコントローラ84を備えている。
The electromagnetic switching valve 50 is a three-position switching valve that switches the piston 61 of the hydraulic cylinder 60 between stop, downward movement, and upward movement, and in the illustrated position where both solenoids 50a and 50b are inactive, the supply oil passage 30 and the return oil passage are closed. 40. Cut off all connections between the oil passage 70 connected to the illustrated upper oil chamber 62 of the hydraulic cylinder 60 and the oil passage 80 connected to the illustrated lower oil chamber 63 of the hydraulic cylinder 60, and supply the oil at the position when the solenoid 50a was activated. The oil passage 30 is connected to the oil passage 70, the return oil passage 40 is connected to the oil passage 80, and the supply oil passage 30 is connected to the oil passage 80 at the position when the solenoid 50b is activated, and the return oil passage 40 is connected to the oil passage 80. 70. The oil passage 70 is equipped with a speed controller (flow rate control valve with a check valve) 71, and the oil passage 80 is equipped with check valves 81, 82, a speed controller 83 and a speed controller 84 with normally open deceleration valves. There is.

このように構成した本実施例において、切換弁
20のソレノイド20aを作動させると、圧縮空
気源23から圧縮空気がエア流路22及びポート
11dを通つて空室A2内に流入し、同時に空室
A1内の圧縮空気がポート11c、エア流路21
及び消音器24を通つて大気中に排出し、プラン
ジヤ12が油室Roに向けて押圧される。このと
きの押圧力はプランジヤ12の受圧面積比に応じ
て増圧されて油室Ro内の作動油に付与される。
かかる状態において切換弁50のソレノイド50
aを作動させると、供給油路30が油路70に接
続されかつ帰還油路40が油路80に接続され、
プランジヤ12が空室A2内の圧縮空気により油
室Roに向けて上動されて、油室Ro内の作動油が
チエツク弁42によりリザーバ41への流動を阻
止され、また供給油路30及び油路70を通つて
油圧シリンダ60の図示上方油室62内へと流動
し、同時に油圧シリンダ60の図示下方油室63
内の作動油が油路80及び帰還油路40を通つて
リザーバ41内へと流動し、油圧シリンダ60の
ピストン61が図示上方油室62内に供給される
圧油により下動(往動)される。このピストン6
1の下動時には、作動油が主としてスピードコン
トローラ83,84によつて流動を制御され、ピ
ストン61の下動が制御される。この作動は、プ
ランジヤ12の上端が図示一点鎖線にて示した位
置まで上動する間続き、プランジヤ12の上端が
図示一点鎖線にて示した位置まで上動すると、油
圧シリンダ60のピストン61が下端停止位置に
達して停止し、同時にプランジヤ12が停止す
る。
In this embodiment configured as described above, when the solenoid 20a of the switching valve 20 is operated, compressed air flows from the compressed air source 23 into the empty space A2 through the air passage 22 and the port 11d, and at the same time, the air flows into the empty space A2. The compressed air in A1 is transferred to port 11c, air flow path 21
and exhaust into the atmosphere through the muffler 24, and the plunger 12 is pressed toward the oil chamber Ro. The pressing force at this time is increased in accordance with the pressure receiving area ratio of the plunger 12 and is applied to the hydraulic oil in the oil chamber Ro.
In this state, the solenoid 50 of the switching valve 50
When actuating a, the supply oil passage 30 is connected to the oil passage 70 and the return oil passage 40 is connected to the oil passage 80,
The plunger 12 is moved upward toward the oil chamber Ro by the compressed air in the chamber A2, and the hydraulic oil in the oil chamber Ro is prevented from flowing to the reservoir 41 by the check valve 42, and the oil supply path 30 and oil through the passage 70 into the illustrated upper oil chamber 62 of the hydraulic cylinder 60 and at the same time into the illustrated lower oil chamber 63 of the hydraulic cylinder 60.
The hydraulic oil inside flows into the reservoir 41 through the oil passage 80 and the return oil passage 40, and the piston 61 of the hydraulic cylinder 60 is moved downward (forward movement) by the pressure oil supplied into the upper oil chamber 62 in the figure. be done. This piston 6
During the downward movement of the piston 61, the flow of the hydraulic oil is mainly controlled by the speed controllers 83 and 84, and the downward movement of the piston 61 is controlled. This operation continues while the upper end of the plunger 12 moves upward to the position indicated by the dashed line in the figure. When the upper end of the plunger 12 moves upward to the position indicated by the chain line in the figure, the piston 61 of the hydraulic cylinder 60 moves to the lower end. It reaches the stop position and stops, and at the same time the plunger 12 stops.

次いで、切換弁50のソレノイド50aを非作
動とするとともにソレノイド50bを作動させる
と、供給油路30が油路80に接続されかつ帰還
油路40が油路70に接続され、プランジヤ12
が空室A2内の圧縮空気により再び油室Roに向
けて上動されて、油室Ro内の作動油がチエツク
弁42によりリザーバ41への流動を阻止され、
また供給油路30及び油路80を通つて油圧シリ
ンダ60の図示下方油室63内へと流動し、同時
に油圧シリンダ60の図示上方油室62内の作動
油が油路70及び帰還油路40を通つてリザーバ
41内へと流動し、油圧シリンダ60のピストン
61が図示下方油室63内に供給される圧油によ
り上動(復動)される。このピストン61の上動
時には、作動油が主としてスピードコントローラ
71によつて流動を制御され、ピストン61の上
動が制御される。この作動は、プランジヤ12の
上端が図示二点鎖線にて示した位置まで上動する
間続き、プランジヤ12の上端が図示二点鎖線に
て示した位置まで上動すると、油圧シリンダ60
のピストン61が上端停止位置(図示元位置)に
達して停止し、同時にプランジヤ12が停止す
る。
Next, when the solenoid 50a of the switching valve 50 is deactivated and the solenoid 50b is activated, the supply oil passage 30 is connected to the oil passage 80, the return oil passage 40 is connected to the oil passage 70, and the plunger 12
is again moved upward toward the oil chamber Ro by the compressed air in the empty chamber A2, and the hydraulic oil in the oil chamber Ro is prevented from flowing to the reservoir 41 by the check valve 42.
Further, the hydraulic oil flows through the supply oil passage 30 and the oil passage 80 into the illustrated lower oil chamber 63 of the hydraulic cylinder 60, and at the same time, the hydraulic oil in the illustrated upper oil chamber 62 of the hydraulic cylinder 60 flows into the illustrated oil passage 70 and the return oil passage 40. The piston 61 of the hydraulic cylinder 60 is moved upward (backwards) by the pressure oil supplied into the lower oil chamber 63 shown in the figure. When the piston 61 moves upward, the flow of the hydraulic oil is mainly controlled by the speed controller 71, and the upward movement of the piston 61 is controlled. This operation continues while the upper end of the plunger 12 moves upward to the position indicated by the two-dot chain line in the figure. When the upper end of the plunger 12 moves upward to the position indicated by the two-dot chain line in the figure, the hydraulic cylinder 60
The piston 61 reaches the upper end stop position (original position in the figure) and stops, and at the same time the plunger 12 stops.

その後、切換弁50のソレノイド50bを非作
動とし、切換弁20のソレノイド20aを非作動
とすると、供給油路30、帰還油路40、油路7
0及び油路80の接続が断たれ、圧縮空気源23
から圧縮空気がエア流路21及びポート11cを
通つて空室A1内に流入し、同時に空室A2内の
圧縮空気がポート11d、エア流路22及び消音
器24を通して大気中に排出し、プランジヤ12
が空室A1内の圧縮空気により下動され、同時に
リザーバ41内の作動油がチエツク弁42を通し
て油室Ro内に吸入されて、図示した状態となる。
After that, when the solenoid 50b of the switching valve 50 is deactivated and the solenoid 20a of the switching valve 20 is deactivated, the supply oil path 30, the return oil path 40, and the oil path 7
0 and the oil line 80 are disconnected, and the compressed air source 23
Compressed air flows into the cavity A1 through the air passage 21 and the port 11c, and at the same time compressed air in the cavity A2 is discharged into the atmosphere through the port 11d, the air passage 22 and the muffler 24, and the plunger 12
is moved downward by the compressed air in the chamber A1, and at the same time, the hydraulic oil in the reservoir 41 is sucked into the oil chamber Ro through the check valve 42, resulting in the state shown in the figure.

以上の説明から理解されるように、この実施例
においては、空油変換器10の油室Ro内にてプ
ランジヤ12の上動により得られる圧油によつて
油圧シリンダ60を待ち時間なく短時間に一往復
させることができるため、油圧シリンダ60の作
動効率を高めることができることは勿論のこと、
従来のごとく空油変換器を二つ設ける必要がな
く、当該装置の小型化を図るとともにコスト低減
を図ることができる。また空油変換器の数が従来
に比して半減することにより、空室A1,A2か
ら大気中に圧縮空気が排出されるときに生じる排
気騒音が半減し、作業環境の改善を図ることがで
きる。また、上記実施例においては、空油変換器
10とリザーバ41を一体化して構成したため、
空油変換器10とリザーバ41間の配管を無くす
ことができて配管作業を容易とすることができる
ことは勿論のこと、占有床面積の減少を図ること
ができて省スペース化を図ることができる。
As can be understood from the above explanation, in this embodiment, the hydraulic cylinder 60 is heated in a short time without waiting time by the pressure oil obtained by the upward movement of the plunger 12 in the oil chamber Ro of the air-oil converter 10. Since the hydraulic cylinder 60 can be reciprocated once, it goes without saying that the operating efficiency of the hydraulic cylinder 60 can be increased.
It is not necessary to provide two air-oil converters as in the past, and the device can be made smaller and cost can be reduced. In addition, by reducing the number of air-oil converters by half compared to the conventional one, the exhaust noise generated when compressed air is discharged into the atmosphere from the vacant rooms A1 and A2 is halved, improving the working environment. can. Further, in the above embodiment, since the air-oil converter 10 and the reservoir 41 are integrated,
Not only can piping between the air-oil converter 10 and the reservoir 41 be eliminated, making piping work easier, but also space can be saved by reducing the occupied floor area. .

なお、上記実施例においては、空室A1と油室
Ro間をシールする一対の0リング13,14間
には環状の溝15が設けられており、この溝15
は連通孔16を通してリザーバ41内に連通して
いる。したがつて、仮に空室A1から圧縮空気が
下方の0リング14を通過したとしても、この圧
縮空気は溝15及び連通孔16を通つてリザーバ
41内に入り、エアブリーザ41aから大気中に
流出するため、油室Ro内に圧縮空気が流入する
ことはなく、作動油中への空気流入に伴う不具合
が防止される。また、仮に油室Roから圧油が上
方の0リング13を通過したとしても、この圧油
は溝15及び連通孔16を通つてリザーバ41内
に入り、空室A1内に入ることはない。
In addition, in the above embodiment, the empty chamber A1 and the oil chamber
An annular groove 15 is provided between a pair of O rings 13 and 14 for sealing between Ro.
communicates with the reservoir 41 through the communication hole 16. Therefore, even if compressed air passes through the lower O-ring 14 from the cavity A1, this compressed air enters the reservoir 41 through the groove 15 and the communication hole 16, and flows out into the atmosphere from the air breather 41a. Therefore, compressed air does not flow into the oil chamber Ro, and problems associated with air flowing into the hydraulic oil are prevented. Further, even if pressure oil passes through the upper O-ring 13 from the oil chamber Ro, this pressure oil enters the reservoir 41 through the groove 15 and the communication hole 16, and does not enter the empty chamber A1.

なお、本発明の実施に際して、プランジヤ12
の上動により油室Roから吐出される作動油の量
及びリザーバ41の作動油収容容積を倍増させれ
ば、プランジヤ12の上動により得られる圧油に
よつて油圧シリンダ60を二往復させ得ることは
勿論のこと、第2図にて示したようにして二つの
油圧シリンダ60,160をそれぞれ一往復させ
ることができる。第2図にて示した回路において
は、上記実施例の切換弁50から油圧シリンダ6
0に至る間の回路と同一構成の回路(対応する部
材には類似した符号を付した)が両油路30,4
0に対して並列的に接続されている。このため、
この実施例においては、切換弁50及び150の
各ソレノイド50a,50b,150a,150
bの作動タイミングを切換弁20のソレノイド2
0aの作動タイミングに対して適宜に設定するこ
とにより、両油圧シリンダ60,160の作動タ
イミングを同時とし得ることは勿論のこと、異に
することも可能である。
Note that when implementing the present invention, the plunger 12
If the amount of hydraulic oil discharged from the oil chamber Ro by the upward movement and the hydraulic oil storage capacity of the reservoir 41 are doubled, the hydraulic cylinder 60 can be made to reciprocate twice by the pressure oil obtained by the upward movement of the plunger 12. Of course, the two hydraulic cylinders 60, 160 can each be reciprocated once as shown in FIG. In the circuit shown in FIG. 2, from the switching valve 50 of the above embodiment to the hydraulic cylinder 6.
A circuit having the same configuration as the circuit leading to 0 (corresponding members are given similar symbols) is connected to both oil passages 30 and 4.
0 in parallel. For this reason,
In this embodiment, each solenoid 50a, 50b, 150a, 150 of the switching valves 50 and 150
Solenoid 2 of switching valve 20
By appropriately setting the operation timing of 0a, the operation timings of both hydraulic cylinders 60 and 160 can of course be made to be the same time, but also can be made to be different.

また、上記実施例においては、圧縮空気圧を油
圧に間欠的に変換する空油変換器として、増圧形
の空油変換器10を採用したが、本発明の実施に
際しては、第3図にて示した空油変換器110を
採用することも可能である。この空油変換器11
0においては、プランジヤ112の上動が圧縮空
気によりなされ、プランジヤ112の下動が圧縮
コイルスプリング119によりなされる。また、
上記実施例においては、切換弁50,150によ
つて、供給油路30と油路70,170又は油路
80,180の断続を行うとともに、帰還油路4
0と油路80,180又は油路70,170の断
続を行うようにしたが、本発明の実施に際して
は、第1の二位置切換弁により供給油路30と油
路70,170又は油路80,180の断続を行
い、かつ第2の二位置切換弁により帰還油路40
と油路80,180又は油路70,170の断続
を行うようにして実施することも可能である。
Further, in the above embodiment, a pressure-increasing type air-oil converter 10 was adopted as the air-oil converter that intermittently converts compressed air pressure into hydraulic pressure, but when implementing the present invention, as shown in FIG. It is also possible to employ the air-oil converter 110 shown. This air-oil converter 11
0, the upward movement of the plunger 112 is made by compressed air, and the downward movement of the plunger 112 is made by the compression coil spring 119. Also,
In the above embodiment, the switching valves 50 and 150 are used to connect and disconnect the supply oil passage 30 and the oil passages 70 and 170 or the oil passages 80 and 180, and also to connect the return oil passage 4
0 and the oil passages 80, 180 or the oil passages 70, 170, however, when implementing the present invention, the supply oil passage 30 and the oil passages 70, 170 or the oil passages are 80 and 180, and the return oil path 40 is switched on and off by the second two-position switching valve.
It is also possible to implement this by connecting and disconnecting the oil passages 80, 180 or the oil passages 70, 170.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による駆動装置によつて一つの
油圧シリンダを作動させる基本的な回路図、第2
図は本発明による駆動装置によつて二つの油圧シ
リンダを作動させる回路図、第3図は本発明の実
施に際して採用可能な空油変換器の概略構成図で
ある。 符号の説明、10……空油変換器、11……ケ
ーシング、11a……吐出ポート、11b……吸
入ポート、12……プランジヤ、20……電磁切
換弁(第1切換弁)、30……供給油路、40…
…帰還油路、41……リザーバ、41a……エア
ブリーザ、41b……流出ポート、41c……流
入ポート、42……チエツク弁、43……連通
路、50……電磁切換弁(第2切換弁)、60…
…油圧シリンダ、62……上方油室、63……下
方油室、Ro……空油変換器の油室、A2……空
室。
Fig. 1 is a basic circuit diagram for operating one hydraulic cylinder by the drive device according to the present invention;
The figure is a circuit diagram for operating two hydraulic cylinders by the drive device according to the present invention, and FIG. 3 is a schematic configuration diagram of an air-hydraulic converter that can be employed in carrying out the present invention. Explanation of symbols, 10...Air-oil converter, 11...Casing, 11a...Discharge port, 11b...Suction port, 12...Plunger, 20...Solenoid switching valve (first switching valve), 30... Supply oil line, 40...
...Return oil path, 41...Reservoir, 41a...Air breather, 41b...Outflow port, 41c...Inflow port, 42...Check valve, 43...Communication path, 50...Solenoid switching valve (second switching valve) ), 60...
...Hydraulic cylinder, 62...Upper oil chamber, 63...Lower oil chamber, Ro...Oil chamber of air-oil converter, A2...Empty chamber.

Claims (1)

【特許請求の範囲】 1 吐出及び吸入ポートを有するケーシングと、
このケーシング内に往復動可能に嵌装されて同ケ
ーシング内を前記吐出及び吸入ポートが開口する
油室と空圧源に接続される空室に区画するプラン
ジヤを備え、前記油室は前記プランジヤが同油室
に向けて押動されたとき少なくとも一つの複動型
油圧シリンダを一往復させるに足る作動油を吐出
する吐出容量を有する単一の空油変換器と、 この空油変換器における前記油室の外周に一体
的に設けられて、帰還油路に接続される流入ポー
トと前記吸入ポートに連通路を通して接続される
流出ポートを有し、上方部分にエアブリーザを備
え、前記空油変換器の油室の吐出容量と実質的に
同じかそれより大きい容量の環状リザーバと、 このリザーバの前記流出ポートと前記空油変換
器の前記吸入ポートを接続する前記連通路内に配
置され、前記吸入ポートへの作動油の流れを許す
とともに前記リザーバへの作動油の流れを遮断す
るチエツク弁と、 第1位置では前記プランジヤが前記油室に向け
て前進移動すべく前記空室を空圧源に接続し、第
2位置では前記プランジヤの後退移動を可能とす
べく前記空室を大気に接続する第1切換弁と、 この第1切換弁が前記第1位置に保持されてい
る状態にて、前記吐出ポートに接続した供給油路
及び前記帰還油路と前記複動型油圧シリンダの両
油室の接続を転換する第2切換弁 を備える複動型油圧シリンダの駆動装置。
[Claims] 1. A casing having discharge and suction ports;
A plunger is reciprocatably fitted into the casing and divides the inside of the casing into an oil chamber in which the discharge and suction ports open and a cavity connected to an air pressure source, and the oil chamber is provided with a plunger in which the plunger is connected. a single pneumatic-hydraulic converter having a discharge capacity sufficient to discharge hydraulic fluid enough to make at least one double-acting hydraulic cylinder reciprocate once when pushed toward the same oil chamber; The oil chamber has an inflow port connected to the return oil path and an outflow port connected to the suction port through a communication path, which is integrally provided on the outer periphery of the oil chamber, and includes an air breather in an upper portion of the air-oil converter. an annular reservoir having a capacity that is substantially the same as or larger than the discharge capacity of the oil chamber; and an annular reservoir disposed within the communication passage connecting the outflow port of the reservoir and the suction port of the air-oil converter; a check valve that allows flow of hydraulic oil to the port and blocks the flow of hydraulic oil to the reservoir; and in a first position, uses the hollow chamber as a pneumatic pressure source to move the plunger forward toward the oil chamber. a first switching valve that connects the empty chamber to the atmosphere in a second position to enable backward movement of the plunger; and a first switching valve that is held in the first position; A drive device for a double-acting hydraulic cylinder, comprising a second switching valve that switches connections between the supply oil path and the return oil path connected to the discharge port and both oil chambers of the double-acting hydraulic cylinder.
JP61122081A 1986-05-27 1986-05-27 Driving device of double action type hydraulic cylinder Granted JPS61282604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122081A JPS61282604A (en) 1986-05-27 1986-05-27 Driving device of double action type hydraulic cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122081A JPS61282604A (en) 1986-05-27 1986-05-27 Driving device of double action type hydraulic cylinder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5395980A Division JPS56150601A (en) 1980-04-22 1980-04-22 Driving system for hydraulic actuator

Publications (2)

Publication Number Publication Date
JPS61282604A JPS61282604A (en) 1986-12-12
JPH0236802B2 true JPH0236802B2 (en) 1990-08-21

Family

ID=14827187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122081A Granted JPS61282604A (en) 1986-05-27 1986-05-27 Driving device of double action type hydraulic cylinder

Country Status (1)

Country Link
JP (1) JPS61282604A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428601U (en) * 1990-07-04 1992-03-06
JPH0547903U (en) * 1991-11-27 1993-06-25 安藤電気株式会社 Optical fiber cable surplus length handling mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245754U (en) * 1975-09-26 1977-03-31

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163095U (en) * 1974-11-13 1976-05-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245754U (en) * 1975-09-26 1977-03-31

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428601U (en) * 1990-07-04 1992-03-06
JPH0547903U (en) * 1991-11-27 1993-06-25 安藤電気株式会社 Optical fiber cable surplus length handling mechanism

Also Published As

Publication number Publication date
JPS61282604A (en) 1986-12-12

Similar Documents

Publication Publication Date Title
CA1048462A (en) Variable volume clearance chamber for compressors
JP3696103B2 (en) High speed pressurizing method and mechanism in cylinder with cushion mechanism
KR101655420B1 (en) Hydraulic Power Cylinder with Booser Pump Equipment
US4971531A (en) Pump arrangement driven by compressed-air
JPH08200211A (en) Reducing icing air valve
US3776665A (en) Two stage fluid pump
CN108979869A (en) A kind of vehicle
JPH0570722B2 (en)
US4437309A (en) Pneumatic-hydraulic system for hydraulic actuator
JPH0610638A (en) Device for controlling exhaust valve during engine brake driving
US5435228A (en) Pneumatic transformer
JPH0236802B2 (en)
JPH0288005U (en)
JP3705730B2 (en) Pneumatic cylinder exhaust recovery device
JPH0361675A (en) Auxiliary pressure forming apparatus
EP0428406B1 (en) Reciprocating actuator
US5353683A (en) Pneumatic transformer
RU19404U1 (en) FLUID PRESSURE AMPLIFIER
JP2001153106A (en) Hydraulic cylinder and hydraulic system having speed changing function
JP2955220B2 (en) In-line pressure booster
KR101830165B1 (en) Actuator for valve
US7089896B2 (en) Device for controlling gas exchange valves
JP4117636B2 (en) Solenoid valve for energy saving drive
JPH0417284B2 (en)
JP2002527296A (en) Fluid driven actuator