JPH0236171B2 - - Google Patents

Info

Publication number
JPH0236171B2
JPH0236171B2 JP57230405A JP23040582A JPH0236171B2 JP H0236171 B2 JPH0236171 B2 JP H0236171B2 JP 57230405 A JP57230405 A JP 57230405A JP 23040582 A JP23040582 A JP 23040582A JP H0236171 B2 JPH0236171 B2 JP H0236171B2
Authority
JP
Japan
Prior art keywords
optical system
output
emissivity
measuring device
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57230405A
Other languages
Japanese (ja)
Other versions
JPS59116517A (en
Inventor
Naoki Kishimoto
Haruki Shiraishi
Hideo Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN SENSAA KOOHOREISHON KK
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
JAPAN SENSAA KOOHOREISHON KK
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN SENSAA KOOHOREISHON KK, KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical JAPAN SENSAA KOOHOREISHON KK
Priority to JP57230405A priority Critical patent/JPS59116517A/en
Publication of JPS59116517A publication Critical patent/JPS59116517A/en
Publication of JPH0236171B2 publication Critical patent/JPH0236171B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は物理分析、精密計測、熱処理等におけ
る温度測定に用いる赤外温度測定装置に関するも
のである。 半導体工業において電気回路素子のジユール加
熱による温度上昇は重要な問題であり、その温度
計測には非接触型が要求される関係上赤外線温度
計が用いられてきた。又、最近、高速応答素子や
オプトエレクトロニクスの発展がめざましいが、
この場合高速の電子的現象に付随して高速の熱的
過渡現象が生じる。 更に、イオンビームを利用する精密工業では、
ビームによる発熱を伴うが、ビームの変動時やパ
ルス運転中(例えば核融合炉)には、ビームが照
射された部分に高速の温度変化がひき起されるよ
うになり、従つて高速応答の温度速度が必要とな
る。従来、かゝる目的に用いられるものとしては
いわゆる単色式の赤外線温度計があるが、この温
度計は被測定物体の赤外線放射率に大きく影響さ
れるために温度の絶対値の測定を行うのが極めて
困難であつた。 又、従来、放射率の影響を受け難い温度計とし
て二波長比較式の温度計も使用されているが、こ
れは二波長の強度を比較する際機械的なチヨツパ
を用いる必要があるため、その応答時間は10ミリ
秒が限度であり、高速応答は不可能である。 これがため、放射率の影響を受けず、しかも高
速応答で温度計測を行うためには単波長式赤外線
温度計及び二波長式赤外線温度計を併用する必要
があるがかように個別の測定装置で計測を行う場
合には装置が高価になるだけでなく、システム全
体としての温度較正が困難であり、信頼性が低下
する。又二種類の個別の測定器の被測定表面上に
おける光スポツトの形状及び位置を一致させるこ
とは極めて困難である。 本発明は上述の問題点を解決し、二系統の光学
系及びその信号処理系を適宜組合せることによつ
て、ミリ秒以下の高速応答性を有し、しかも自動
的に放射率補正を行い得る非接触式赤外温度測定
装置を提供することを目的とするものである。 本発明赤外温度測定装置は、単波長光学系と、
この光学系の出力を処理する第1電気回路系と、
二波長比較光学系と、この光学系の出力を処理す
る第2電気回路系と、前記二波長比較光学系の出
力を受け前記単波長光学系の出力に対し放射率の
補正を高速で行い得る放射率補正回路とを具える
ことを特徴とする。 図面につき本発明を説明する。 本発明赤外温度測定装置は、二つの光学系を収
納する測置本体と、両光学系に対する電気回路系
とを以て構成する。即ち第1図に示すように本発
明赤外温度測定装置の本体1は高速赤外線センサ
2及び有孔凹面反射鏡3を有するカセグレン配置
の高速応答用単波長光学系Aと、凸レンズ、フイ
ルタ(窓)5を有する光チヨツパ6及び二波長比
較計測用赤外線センサ7を有する二波長比較光学
系Bとを以て構成する。赤外線センサ2を液体窒
素容器8内に収納して使用温度が77Kとなるよう
にし、その測定波長を1.8〜5.5μmとする。この
赤外線センサ2は例えばインジウム・アンチモン
で造るが、インジウム・砒素、カドミウム・水
銀・テルル等の材料で造ることもできる。赤外線
センサ7の光学系Bは二波長、例えば2.02μm及
び2.33μmを選択する光学フイルタ5によつて入
射赤外光をチヨツプして互に異る二波長の赤外線
が赤外線センサ7に到達し得るようにする。赤外
線センサ7は二波長比較式のものとすると共に硫
化鉛で造り、室温で使用し得るようにする。又、
このセンサ7は光学フイルタのチヨツプ時間より
も充分に速い応答性を有するものとする。これら
両光学系A及びBは外匣9内に収納すると共にそ
の光軸及び被測定物体10の表面での光スポツト
11が互に一致し得るように配置し、この外匣9
には照準用のぞき窓12を設け、これにより被測
定物体10の表面での光スポツト11の位置決め
及び調整を行い得るようにする。従つて同一点か
らの赤外光の情報が両光学系A及びB並びにその
電気回路系に入力され得得るようにする。又、外
匣9の出力側から導出する2本の導線13及び1
4を光学系A及びBの電気回路系A′及びB′(第2
図参照)に夫々接続する。 即ち、第2図に示すように電気回路系A′は装
置本体1の出力導線13に接続されたバツフア増
幅器15と、単波長式主増幅器16と、リニアラ
イザ17と、A/D変換器18と、デイジタル表
示器19とを以て構成する。 又、電気回路系B′は、前置増幅器20と、二
波長比較による対数増幅器21と、放射率補正回
路22と、放射率表示器23とを以て構成する。
この放射率補正回路22は、前記対数増幅器21
に組込まれた放射率演算回路24と、その出力側
に自動スイツチ25を介して接続された放射率補
正演算回路26と、放射率設定回路27とを以て
構成する。 更に電気回路系A′の主増幅器16と電気回路
系B′の二波長比較対数増幅器21との間には室
温補償回路28を設け、これにより装置全体とし
ての温度較正を行ない得るようにする。 斯様に構成した本発明赤外温度測定装置の作動
は次の通りである。 今、照準用のぞき窓12を見ながら被測定物体
10の表面上の測定スポツト11を位置決めす
る。 斯様にすると測定スポツト11の赤外温度の放
射光は、高速応答の単波長光学系Aにおいては有
孔凹面反射鏡3で反射されて赤外線センサ2に到
達し、こゝで連続的に電気信号に変換されると共
に二波長比較光学系Bにおいては凹面反射鏡3の
中央孔、凸レンズ4及び光チヨツパ6のフイルタ
5を経て赤外線センサ7に到達する。この場合入
射赤外光はフイルタ5により二波長の光にチヨツ
プされるためセンサ7には異る二波長の赤外光が
入射されるようになる。 光学系Bのかかる異る二波長の赤外光は、赤外
線センサ7により検出され且つ電気信号に変換さ
れてその電気回路系B′の前置増幅器20に供給
され、ここで増幅されて二波長比較対数増幅器2
1に供給され、こゝで電圧増幅及びサンプルホー
ルドされた後放射率演算回路24で対数変換及び
減算処理されて放射率を算出する。放射率演算回
路24の出力即ち放射率に対応する電気信号は、
放射率表示器23で表示されると共にスイツチ2
5を経て放射率補正回路22の放射率補正演算回
路26に供給されて放射率の補正係数を算出し、
その出力を放射率設定回路27に供給し、こゝで
放射率の補正値を最終的に且つ連続的に設定し得
るようにする。スイツチ25は通常自動スイツチ
とするが、これを手動スイツチに切換えることも
できる。 又、放射率設定回路27も手動設定に切換える
ことができる。更に放射率補正演算回路26は、
A/D変換器を内蔵するマイクロコンピユータに
より構成するため雑音の導入が殆どなく長時間高
精度で安定して使用することができる。 又、光学系Aの赤外光は、赤外線センサ2によ
り連続的に検出され且つ電気信号に変換されて、
その電気回路系A′のバツフア増幅器15に供給
され、こゝで増幅されて単波長主増幅器16に供
給され、こゝで室温補償回路28により温度補償
されると共に放射率設定回路27により放射率の
補正を行う。かように温度補償され且つ放射率補
正された主増幅器16のアナログ出力である温度
信号は高速リニアライザ17及びA/D変換器1
8を経てデイジタル表示器19で温度表示される
と共に温度信号出力端子29から利用回路、例え
ば通常の温度制御回路に供給される。 次に本発明赤外温度測定装置と従来の赤外温度
計との諸特性を以下に示す。
The present invention relates to an infrared temperature measuring device used for temperature measurement in physical analysis, precision measurement, heat treatment, etc. In the semiconductor industry, temperature increases due to joule heating of electrical circuit elements are an important problem, and infrared thermometers have been used because a non-contact type is required for temperature measurement. Also, recently, the development of high-speed response elements and optoelectronics has been remarkable.
In this case, fast electronic phenomena are accompanied by fast thermal transients. Furthermore, in precision industries that use ion beams,
The beam generates heat, but when the beam fluctuates or during pulse operation (e.g. in a fusion reactor), rapid temperature changes are caused in the area irradiated by the beam, resulting in rapid temperature response. Speed is required. Traditionally, so-called monochromatic infrared thermometers have been used for this purpose, but these thermometers cannot measure the absolute value of temperature because they are greatly affected by the infrared emissivity of the object being measured. was extremely difficult. Furthermore, conventionally, a two-wavelength comparison type thermometer has been used as a thermometer that is not easily affected by emissivity, but this requires the use of a mechanical chopper when comparing the intensities of the two wavelengths. The response time is limited to 10 milliseconds, making high-speed response impossible. Therefore, in order to measure temperature without being affected by emissivity and with a fast response, it is necessary to use a single-wavelength infrared thermometer and a dual-wavelength infrared thermometer together. When performing measurements, not only is the equipment expensive, but it is difficult to calibrate the temperature of the entire system, reducing reliability. Furthermore, it is extremely difficult to match the shape and position of the light spot on the surface to be measured by two different types of measuring instruments. The present invention solves the above problems and has high-speed response of less than milliseconds by appropriately combining two optical systems and their signal processing systems, and also automatically performs emissivity correction. The object of the present invention is to provide a non-contact infrared temperature measuring device that can obtain the desired temperature. The infrared temperature measuring device of the present invention includes a single wavelength optical system,
a first electric circuit system that processes the output of this optical system;
a two-wavelength comparison optical system; a second electric circuit system for processing the output of the optical system; and a second electric circuit system capable of receiving the output of the two-wavelength comparison optical system and performing emissivity correction on the output of the single-wavelength optical system at high speed. It is characterized by comprising an emissivity correction circuit. The invention will be explained with reference to the drawings. The infrared temperature measuring device of the present invention includes a measurement main body housing two optical systems, and an electric circuit system for both optical systems. That is, as shown in FIG. 1, the main body 1 of the infrared temperature measuring device of the present invention includes a high-speed infrared sensor 2, a single-wavelength optical system A for high-speed response in a Cassegrain arrangement having a perforated concave reflector 3, a convex lens, and a filter (window). ) 5 and a two-wavelength comparison optical system B having an infrared sensor 7 for two-wavelength comparison measurement. The infrared sensor 2 is housed in a liquid nitrogen container 8 so that its operating temperature is 77 K, and its measurement wavelength is 1.8 to 5.5 μm. This infrared sensor 2 is made of, for example, indium/antimony, but it can also be made of materials such as indium/arsenic, cadmium, mercury, tellurium, or the like. The optical system B of the infrared sensor 7 chops the incident infrared light using an optical filter 5 that selects two wavelengths, for example, 2.02 μm and 2.33 μm, so that infrared light of two different wavelengths can reach the infrared sensor 7. Do it like this. The infrared sensor 7 is of a two-wavelength comparison type and is made of lead sulfide so that it can be used at room temperature. or,
It is assumed that this sensor 7 has a sufficiently faster response than the chopping time of the optical filter. Both of these optical systems A and B are housed in an outer case 9 and are arranged so that their optical axes and the light spots 11 on the surface of the object to be measured 10 coincide with each other.
A viewing window 12 is provided for sighting, which makes it possible to position and adjust the light spot 11 on the surface of the object 10 to be measured. Therefore, infrared light information from the same point can be input to both optical systems A and B and their electrical circuits. In addition, two conductive wires 13 and 1 lead out from the output side of the outer box 9.
4 to electrical circuit systems A' and B' (second
(see figure) respectively. That is, as shown in FIG. 2, the electric circuit system A' includes a buffer amplifier 15 connected to the output conductor 13 of the main body 1, a single wavelength main amplifier 16, a linearizer 17, and an A/D converter 18. , and a digital display 19. The electric circuit system B' includes a preamplifier 20, a logarithmic amplifier 21 for comparing two wavelengths, an emissivity correction circuit 22, and an emissivity display 23.
This emissivity correction circuit 22 includes the logarithmic amplifier 21
The emissivity calculation circuit 24 includes an emissivity calculation circuit 24 built in, an emissivity correction calculation circuit 26 connected to the output side of the emissivity calculation circuit 24 via an automatic switch 25, and an emissivity setting circuit 27. Further, a room temperature compensation circuit 28 is provided between the main amplifier 16 of the electric circuit system A' and the two-wavelength comparison logarithmic amplifier 21 of the electric circuit system B', so that the temperature of the entire apparatus can be calibrated. The operation of the infrared temperature measuring device of the present invention constructed in this manner is as follows. Now, while looking at the sight glass 12, the measurement spot 11 on the surface of the object to be measured 10 is positioned. In this way, the radiation at the infrared temperature of the measurement spot 11 is reflected by the perforated concave reflector 3 in the fast-response single-wavelength optical system A, and reaches the infrared sensor 2, where it is continuously converted into electricity. The signal is converted into a signal and reaches the infrared sensor 7 through the central hole of the concave reflector 3, the convex lens 4, and the filter 5 of the optical chopper 6 in the two-wavelength comparison optical system B. In this case, the incident infrared light is chopped into light of two wavelengths by the filter 5, so that infrared light of two different wavelengths is incident on the sensor 7. The infrared light of the two different wavelengths of the optical system B is detected by the infrared sensor 7, converted into an electrical signal, and supplied to the preamplifier 20 of the electrical circuit system B', where it is amplified and converted into two wavelengths. Comparison logarithmic amplifier 2
1, where it is voltage amplified and sampled and held, and then subjected to logarithmic conversion and subtraction processing in the emissivity calculation circuit 24 to calculate the emissivity. The output of the emissivity calculation circuit 24, that is, the electrical signal corresponding to the emissivity is as follows:
It is displayed on the emissivity display 23 and the switch 2
5 to the emissivity correction calculation circuit 26 of the emissivity correction circuit 22 to calculate an emissivity correction coefficient,
The output is supplied to the emissivity setting circuit 27, which allows the emissivity correction value to be finally and continuously set. The switch 25 is normally an automatic switch, but it can also be changed to a manual switch. Furthermore, the emissivity setting circuit 27 can also be switched to manual setting. Furthermore, the emissivity correction calculation circuit 26
Since it is constructed using a microcomputer with a built-in A/D converter, it introduces almost no noise and can be used stably for a long time with high precision. Further, the infrared light of the optical system A is continuously detected by the infrared sensor 2 and converted into an electric signal.
The signal is supplied to the buffer amplifier 15 of the electric circuit system A', where it is amplified and supplied to the single wavelength main amplifier 16, where it is temperature compensated by the room temperature compensation circuit 28 and the emissivity is adjusted by the emissivity setting circuit 27. Make corrections. The temperature signal, which is the analog output of the main amplifier 16 which has been temperature compensated and emissivity corrected in this way, is sent to the high speed linearizer 17 and the A/D converter 1.
8, the temperature is displayed on a digital display 19, and the temperature signal is supplied from a temperature signal output terminal 29 to a circuit to be used, for example, a normal temperature control circuit. Next, various characteristics of the infrared temperature measuring device of the present invention and a conventional infrared thermometer are shown below.

【表】 上表からも明らかなように本発明赤外温度測定
装置によれば上述したように構成したので、被測
定物体の表面の赤外放射率が時間的に変化しても
自動的に放射率の補正を行うことができ、しかも
高速応答で正確に温度を測定することができる。 例えば、被測定物体の表面酸化や表面状態の変
化が進行しててもその温度を正確に測定すること
ができる。 又、被測定物体の放射率が場所によつて異る場
合でも、スポツトサイズの分解能の範囲で正確に
且つ高速応答で温度を測定することができる。例
えば放射率の異なる物質の混合物や複合体の高速
応答測定が可能ととなる。 更に、本発明赤外温度測定装置は、高速応答温
度計と放射率測定器とを兼用し、且つ全体として
温度較正がなされているため、信頼性が高く、し
かも廉価である。 本発明は上述した例にのみ限定されるものでは
なく、種々の変更を行うことができる。例えば上
述した例では2個の赤外線センサを用いたが、1
個の赤外線センサを両光学系に兼用することもで
きる。この場合には温度計測が時間的に分割して
行われ従つて放射率補正も間欠的となる。
[Table] As is clear from the above table, since the infrared temperature measuring device of the present invention is configured as described above, even if the infrared emissivity of the surface of the object to be measured changes over time, Emissivity can be corrected and temperature can be measured accurately with high-speed response. For example, even if the surface of the object to be measured is undergoing surface oxidation or changes in surface condition, the temperature of the object can be accurately measured. Furthermore, even if the emissivity of the object to be measured differs depending on the location, the temperature can be measured accurately and with a high-speed response within the resolution of a spot size. For example, it becomes possible to perform high-speed response measurements of mixtures or composites of substances with different emissivities. Further, the infrared temperature measuring device of the present invention is highly reliable and inexpensive because it functions as both a fast response thermometer and an emissivity measuring device, and the temperature is calibrated as a whole. The present invention is not limited to the above-mentioned examples, and various modifications can be made. For example, in the example described above, two infrared sensors were used, but one
It is also possible to use two infrared sensors for both optical systems. In this case, the temperature measurement is performed in temporally divided manner, and therefore the emissivity correction is also made intermittently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明赤外温度測定装置の光学系を示
す断面図、第2図は光学系からの出力を処理する
電気回路を示すブロツク図である。 1……装置本体、2,7……赤外線センサ、3
……有孔凹面反射鏡、4……凸レンズ、5……フ
イルタ(6)、6……光チヨツパ、8……液体窒素容
器、9……装置外匣、10……被測定物体、11
……測定スポツト、12……照準用のぞき窓、1
3,14……出力導線、15……バツフア増幅
器、16……単波長式主増幅器、17……リニア
ライザー、18……A/D変換器、19……デイ
ジタル表示器、20……前置増幅器、21……二
波長比較対数増幅器、22……放射率補正回路、
23……放射率表示器、24……放射率演算回
路、25……スイツチ、26……放射率補正演算
回路、27……放射率設定回路、28……室温補
償回路、29……温度信号出力端子。
FIG. 1 is a sectional view showing an optical system of an infrared temperature measuring device of the present invention, and FIG. 2 is a block diagram showing an electric circuit for processing the output from the optical system. 1... Device body, 2, 7... Infrared sensor, 3
... Concave reflective mirror with holes, 4 ... Convex lens, 5 ... Filter (6), 6 ... Optical chopper, 8 ... Liquid nitrogen container, 9 ... Device outer box, 10 ... Object to be measured, 11
...Measuring spot, 12...Peephole for aiming, 1
3, 14... Output conductor, 15... Buffer amplifier, 16... Single wavelength main amplifier, 17... Linearizer, 18... A/D converter, 19... Digital display, 20... Front amplifier, 21... dual wavelength comparison logarithmic amplifier, 22... emissivity correction circuit,
23...Emissivity display, 24...Emissivity calculation circuit, 25...Switch, 26...Emissivity correction calculation circuit, 27...Emissivity setting circuit, 28...Room temperature compensation circuit, 29...Temperature signal Output terminal.

Claims (1)

【特許請求の範囲】 1 単波長光学系と、該光学系の出力信号を処理
する電気回路系と、二波長比較光学系と、該光学
系の出力信号を処理する電気回路系と、前記二波
長光学系の出力を受け、前記単波長光学系の出力
に対し放射率の補正を高速で行い得る放射率補正
回路とを具えることを特徴とする赤外線温度測定
装置。 2 単波長光学系は、カセグレン配置された有孔
凹面反射鏡と、高速応答赤外線センサとを具える
ことを特徴とする特許請求の範囲第1項記載の赤
外線温度測定装置。 3 二波長比較光学系は、凸レンズと、フイルタ
付光チヨツパと、赤外線センサとを具えることを
特徴とする特許請求の範囲第1項記載の赤外線温
度測定装置。 4 単波長光学系の電気回路系は、赤外線センサ
の出力を受けるバツフア増幅器と、単波長式主増
幅器と、該主増幅器の出力を温度変化に対し直線
性とするリニアライザと、該リニアライザのアナ
ログ出力をデイジタル値に変換するA/D変換器
と、該変換器の出力を表示するデイジタル表示器
とを具えることを特徴とする特許請求の範囲第1
項記載の赤外温度測定装置。 5 二波長比較光学系の電気回路系は、赤外線セ
ンサの出力を受ける前記増幅器と、該増幅器の出
力を受ける二波長比較対数増幅器と、該対数増幅
器に組込まれた放射率演算回路と、放射率表示器
とを具えることを特徴とする特許請求の範囲第1
項記載の赤外温度測定装置。 6 放射率補正回路は、放射率演算回路の出力を
受ける放射率補正演算回路と、該演算回路の出力
を受ける放射率設定回路とを具えることを特徴と
する特許請求の範囲第1項又は第5項記載の赤外
温度測定装置。 7 単波長光学系及び二波長比較光学系を単一容
器に収納することを特徴とする特許請求の範囲第
1項記載の赤外温度測定装置。
[Scope of Claims] 1. A single wavelength optical system, an electric circuit system that processes the output signal of the optical system, a two-wavelength comparison optical system, an electric circuit system that processes the output signal of the optical system, and An infrared temperature measuring device comprising: an emissivity correction circuit that receives the output of the wavelength optical system and can perform emissivity correction on the output of the single wavelength optical system at high speed. 2. The infrared temperature measuring device according to claim 1, wherein the single wavelength optical system includes a concave reflecting mirror with a hole arranged in a Cassegrain arrangement and a high-speed response infrared sensor. 3. The infrared temperature measuring device according to claim 1, wherein the two-wavelength comparison optical system includes a convex lens, an optical chopper with a filter, and an infrared sensor. 4. The electric circuit system of the single wavelength optical system includes a buffer amplifier that receives the output of the infrared sensor, a single wavelength main amplifier, a linearizer that makes the output of the main amplifier linear with respect to temperature changes, and an analog output of the linearizer. Claim 1, characterized in that it comprises an A/D converter for converting into a digital value, and a digital display for displaying the output of the converter.
The infrared temperature measuring device described in Section 1. 5. The electric circuit system of the two-wavelength comparison optical system includes the amplifier that receives the output of the infrared sensor, the two-wavelength comparison logarithmic amplifier that receives the output of the amplifier, the emissivity calculation circuit incorporated in the logarithmic amplifier, and the emissivity Claim 1 characterized in that it comprises a display device.
The infrared temperature measuring device described in Section 1. 6. The emissivity correction circuit includes an emissivity correction calculation circuit that receives the output of the emissivity calculation circuit, and an emissivity setting circuit that receives the output of the calculation circuit. The infrared temperature measuring device according to item 5. 7. The infrared temperature measuring device according to claim 1, wherein the single wavelength optical system and the dual wavelength comparison optical system are housed in a single container.
JP57230405A 1982-12-24 1982-12-24 Infrared ray temperature measuring device Granted JPS59116517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57230405A JPS59116517A (en) 1982-12-24 1982-12-24 Infrared ray temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57230405A JPS59116517A (en) 1982-12-24 1982-12-24 Infrared ray temperature measuring device

Publications (2)

Publication Number Publication Date
JPS59116517A JPS59116517A (en) 1984-07-05
JPH0236171B2 true JPH0236171B2 (en) 1990-08-15

Family

ID=16907364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57230405A Granted JPS59116517A (en) 1982-12-24 1982-12-24 Infrared ray temperature measuring device

Country Status (1)

Country Link
JP (1) JPS59116517A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677376B (en) * 2017-09-08 2019-09-10 北京农业信息技术研究中心 A kind of plant temperature measuring equipment and method

Also Published As

Publication number Publication date
JPS59116517A (en) 1984-07-05

Similar Documents

Publication Publication Date Title
US6129673A (en) Infrared thermometer
KR100668025B1 (en) Temperature correction processing apparatus
US5826982A (en) Temperature sensing module
US2837917A (en) Radiation systems for measuring temperature
EP0801926A1 (en) Clinical radiation thermometer
US4689483A (en) Fiber optical temperature measuring apparatus
US3611805A (en) Radiation thermometer
AU548358B2 (en) I.r.radiation pyrometer
US2674155A (en) Pyrometer
US5764684A (en) Infrared thermocouple improvements
US2737809A (en) Double beam radiation pyrometer
US3187574A (en) Optical pyrometer
US3422678A (en) Apparatus and method for measuring temperatures
US3448283A (en) Radiation pyrometer system substantially independent of ambient temperature changes
US3765779A (en) Calibration technique and apparatus
JPH0236171B2 (en)
US2627530A (en) Ambient-temperature compensated device
US4605314A (en) Spectral discrimination pyrometer
JPH07301679A (en) Human body detecting device
JPH01110225A (en) Infrared radiation meter
KR890001689B1 (en) Irradiation thermometer
JPH05288611A (en) Temperature measuring apparatus
JPH08278203A (en) Infrared ray radiation thermometer
Sapritsky et al. Radiation Thermometry of Blackbodies
Barron Application design features for non-contact temperature measurement