JPH0235884B2 - - Google Patents

Info

Publication number
JPH0235884B2
JPH0235884B2 JP58186613A JP18661383A JPH0235884B2 JP H0235884 B2 JPH0235884 B2 JP H0235884B2 JP 58186613 A JP58186613 A JP 58186613A JP 18661383 A JP18661383 A JP 18661383A JP H0235884 B2 JPH0235884 B2 JP H0235884B2
Authority
JP
Japan
Prior art keywords
flame
gas
temperature
heat exchanger
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58186613A
Other languages
Japanese (ja)
Other versions
JPS6078247A (en
Inventor
Tsunenori Tokumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP18661383A priority Critical patent/JPS6078247A/en
Publication of JPS6078247A publication Critical patent/JPS6078247A/en
Publication of JPH0235884B2 publication Critical patent/JPH0235884B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/10Baffles or deflectors formed as tubes, e.g. in water-tube boilers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Details Of Fluid Heaters (AREA)

Description

【発明の詳細な説明】 本発明は燃焼ガスにより水を加熱して温水を得
る熱交換方法及びその装置全般に適用できるもの
で、具体的には瞬間ガス湯沸器、温水ボイラー等
における熱交換方法及びその装置である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to a heat exchange method and apparatus for heating water using combustion gas to obtain hot water. A method and apparatus thereof.

燃焼ガスにより水を加熱して温水を得る従来の
方法として代表的なものに瞬間ガス湯沸器が存在
する。この瞬間ガス湯沸器はブンゼン式ガスバー
ナにより燃焼室内の下部においてガスを燃焼さ
せ、燃焼室の上部に設けた熱交換器内を燃焼ガス
が通過する間に燃焼ガスの熱を水に吸収させて水
温を上昇させ、温水を得るという方法がある。
Instantaneous gas water heaters are a typical conventional method for heating water with combustion gas to obtain hot water. This instantaneous gas water heater uses a Bunsen gas burner to burn gas in the lower part of the combustion chamber, and while the combustion gas passes through a heat exchanger installed in the upper part of the combustion chamber, the heat of the combustion gas is absorbed into water. There is a way to obtain hot water by increasing the water temperature.

上記従来における熱交換方法の場合、バーナに
より燃焼したガスが十分に酸化反応してから熱交
換を行なわないと、排ガス中にCOが残留し、公
害或いは中毒が存在する。そこで、従来の瞬間ガ
ス湯沸器の場合には第4図に示すように、バーナ
01の上に十分に広い燃焼空間すなわち燃焼室0
2を形成し、ここにおいて空気と十分に混合して
酸化反応を行なわせてから熱交換器03にて熱交
換を行なうという方法が採られている。このた
め、従来の瞬間ガス湯沸器の場合には、その体積
の約1/2は燃焼室02の空間であり、このCOの排
出を防止する燃焼室02の空間の存在が瞬間ガス
湯沸器の小型化の最大のネツクとなている。
In the case of the conventional heat exchange method described above, unless heat exchange is performed after the gas combusted by the burner has undergone a sufficient oxidation reaction, CO remains in the exhaust gas, causing pollution or poisoning. Therefore, in the case of a conventional instantaneous gas water heater, as shown in FIG.
A method has been adopted in which a heat exchanger 03 is used to form a heat exchanger 03, after which the oxidation reaction is carried out by sufficiently mixing with air. For this reason, in the case of a conventional instantaneous gas water heater, approximately 1/2 of its volume is the space of the combustion chamber 02, and the existence of the space of the combustion chamber 02 that prevents the emission of CO is the reason why the instantaneous gas water heater This is the biggest hurdle to downsizing the vessel.

一方、前記燃焼室空間を小さくして熱交換を行
ない、排ガスを酸化触媒により酸化せしめてCO
の排出を防止するという提案もある。しかし、こ
の方法によるバーナから出た燃焼ガスは直ぐに熱
交換器内に入り、急激に、そして連続して冷却さ
れるため、そのCOの殆んどは酸化せず、排ガス
と共に排出されることから、多量のCOの処理の
ために過熱し、酸化触媒の寿命が短かくなるとい
つた問題がある。このため、この触媒方式を瞬間
ガス湯沸器などに実際に適用することは不可能で
ある。
On the other hand, the combustion chamber space is made smaller to perform heat exchange, and the exhaust gas is oxidized by an oxidation catalyst to produce CO2.
There are also proposals to prevent the emission of However, since the combustion gas emitted from the burner in this method immediately enters the heat exchanger and is rapidly and continuously cooled, most of the CO is not oxidized and is emitted along with the exhaust gas. However, due to the processing of a large amount of CO, there is a problem that the oxidation catalyst becomes overheated and the life of the oxidation catalyst is shortened. For this reason, it is impossible to actually apply this catalytic method to instantaneous gas water heaters.

本発明に課せられた技術的な課題は燃焼室空間
をおかないでバーナにより形成された火焔で熱交
換器を加熱し、温水を得ながら排ガス中に残留し
ているCOを無くする熱交換方法及びその装置を
提案することである。
The technical problem faced by the present invention is a heat exchange method that heats a heat exchanger with a flame formed by a burner without leaving a combustion chamber space, and eliminates CO remaining in exhaust gas while obtaining hot water. and to propose its device.

本発明は上記課題を解決する手段として、 理論空気量以上の空気を予混合した燃焼ガス
をバーナにて高負荷燃焼させる。
The present invention, as a means to solve the above-mentioned problems, burns combustion gas premixed with air in an amount greater than the theoretical amount in a burner under high load.

高負荷燃焼により発生した火焔(燃焼ガス)
の近傍又はこれに接して冷物体を置き、火焔の
温度を火焔中のCO2が解離せず、又COの酸化
反応の進行する温度すなわち約1000℃以上、約
1500℃以下に制御する。なお、この温度制御範
囲はガスの種類、燃焼条件により多少変化する
ことがある。
Flames (combustion gas) generated by high-load combustion
A cold object is placed near or in contact with the flame, and the temperature of the flame is adjusted to a temperature above about 1000°C, at which CO 2 in the flame does not dissociate and the oxidation reaction of CO proceeds.
Control temperature below 1500℃. Note that this temperature control range may change somewhat depending on the type of gas and combustion conditions.

前記により温度制御された火焔を次に断熱
空間内に通し、この断熱空間内において火焔中
の残留COを酸化反応させてCO2に変成する。
The flame whose temperature has been controlled in the manner described above is then passed through the adiabatic space, and the residual CO in the flame is oxidized and transformed into CO 2 within the adiabatic space.

前記にてCOがCO2に変成した火焔を熱交
換器に導き、ここで水と急速に熱交換させる。
The flame in which CO has been converted to CO 2 is led to a heat exchanger, where it rapidly exchanges heat with water.

実施例 第1図は上記本発明を瞬間ガス湯沸器に実施し
た実施例図であつて、1は理論空気量以上の空気
を予混合した燃焼ガスが燃焼するガスバーナ、2
は前記ガスバーナ1の上部周囲をとり囲むように
して設置した内胴、3はこの内胴2内であつて、
前記ガスバーナ1に形成された火焔の先端に殆ん
ど接する位置に設置さた冷物体としてのフイン群
であつて、このフイン群3内には冷水が通るチユ
ーブ4が挿入してあり、火焔が通過する際にその
温度を約1000℃以上、約1500℃以下に制御するよ
うに設定してある。
Embodiment FIG. 1 is an embodiment diagram in which the present invention is implemented in an instantaneous gas water heater, in which 1 is a gas burner in which combustion gas premixed with air in an amount greater than the theoretical air amount is combusted;
3 is an inner shell installed to surround the upper part of the gas burner 1; 3 is inside the inner shell 2;
A group of fins as a cold object is installed at a position almost in contact with the tip of the flame formed in the gas burner 1. A tube 4 through which cold water flows is inserted into the fin group 3, and the flame is The temperature is set to be controlled at approximately 1000°C or higher and approximately 1500°C or lower as it passes through.

5はフイン群3の上部において、熱交換器6と
の間に形成した断熱空間にして、前記温度制御さ
れた火焔(燃焼ガス)はこの断熱空間5内におい
てその温度が維持されて酸化反応が進行し、火焔
中に残留したCOをCO2に酸化させるものである。
なお、この断熱空間5は前記酸化反応に必要な時
間すなわち燃焼ガスの進行速度と距離によつて決
定されるものであるが、小型の瞬間ガス湯沸器で
は燃焼ガスの滞留時間が数msec前後となるよう
に設定される。
5 is an adiabatic space formed between the upper part of the fin group 3 and the heat exchanger 6, and the temperature of the temperature-controlled flame (combustion gas) is maintained within this adiabatic space 5 and the oxidation reaction takes place. As the flame progresses, the CO remaining in the flame is oxidized to CO 2 .
Note that this insulation space 5 is determined by the time required for the oxidation reaction, that is, the traveling speed and distance of the combustion gas, but in a small instantaneous gas water heater, the residence time of the combustion gas is around several milliseconds. It is set so that

なお、前記実施例において、フイン群3には冷
水が通るチユーブ4を通し、このチユーブ4は熱
交換器6に連通しているが、もし他に適当な冷物
体すなわち火焔温度を前記制御範囲に冷却する手
段が存するならばそれでもよいが、高負荷燃焼す
る火焔の温度約1800℃前後を前記範囲に制御する
手段としては、フイン群3に冷水チユーブ4を通
すのが最も簡単な方法である。
In the above embodiment, a tube 4 through which cold water passes is passed through the fin group 3, and this tube 4 is connected to a heat exchanger 6. However, if an appropriate cold object, ie, flame temperature is brought into the control range, If there is a cooling means, it is fine, but the simplest way to control the temperature of the flame that burns under high load to about 1800°C within the above range is to pass the cold water tube 4 through the fin group 3.

実施例は以上の如き構成から成り、理論空気量
以上の空気が予混合されたガスは、ガスバーナ1
において高負荷燃焼を行なう。なお実施例の場合
における火焔温度は1800℃である。通常、火焔温
度がこのように高温の場合、火焔中のCO2が解離
して生成した高濃度のCOは、熱交換器6におい
て直接、急速に冷却されると共にこの冷却(吸
熱)が連続すると、残留COの酸化反応は進行せ
ず、熱交換器6から出る排ガス中には高濃度の
COが含有されることになるが、高負荷燃焼によ
りガスバーナ1に形成された火焔は、先ずフイン
群3内を通過する際に約1000℃以上、1500℃以下
に冷却され、この温度範囲を持続しながら断熱空
間5を通過する。このため、この断熱空間5内を
通過するときの条件は、COがCO2に酸化する最
良の条件となり、COは速やかに酸化され、該火
焔の温度における平衡値まで低下する。COの平
衡値は、温度に極めて強い相関を有しており、本
発明の条件である約1000℃以上、約1500℃以下に
おいては極めて低い値である。かくして該断熱空
間5を通過した火焔(燃焼ガス)中には極めて低
い濃度のCOしか含有されていないので、該燃焼
ガスを次に熱交換器6に導いて吸熱するに当り、
いかなる急速な冷却があつても熱交換器6から出
る排ガス中にCOが残留することはない。
The embodiment has the above-mentioned configuration, and the gas premixed with air in an amount greater than the theoretical amount is supplied to the gas burner 1.
High-load combustion is performed at In addition, the flame temperature in the case of the example is 1800°C. Normally, when the flame temperature is this high, the highly concentrated CO generated by dissociation of CO 2 in the flame is rapidly cooled directly in the heat exchanger 6, and this cooling (endothermic) is continuous. , the oxidation reaction of the residual CO does not proceed, and a high concentration of CO remains in the exhaust gas coming out of the heat exchanger 6.
Although it will contain CO, the flame formed in the gas burner 1 due to high-load combustion is first cooled to approximately 1000°C or more and 1500°C or less when passing through the fin group 3, and maintains this temperature range. while passing through the heat insulating space 5. Therefore, the conditions when passing through the heat insulating space 5 are the best conditions for CO to oxidize to CO 2 , and the CO is quickly oxidized and lowered to the equilibrium value at the temperature of the flame. The equilibrium value of CO has an extremely strong correlation with temperature, and is an extremely low value under the conditions of the present invention of about 1000°C or more and about 1500°C or less. In this way, the flame (combustion gas) that has passed through the heat insulating space 5 contains only an extremely low concentration of CO, so when the combustion gas is then led to the heat exchanger 6 to absorb heat,
No matter how rapid the cooling is, no CO remains in the exhaust gas coming out of the heat exchanger 6.

第2図は従来型の瞬間ガス湯沸器における火焔
の温度低下と距離すなわち各部位(高さ)との関
係を示したもので、火焔は燃焼室内を上昇すると
きにその壁面によりゆるやかに冷却されてその温
度が低下したのちに熱交換器に導かれている。一
方第3図に示す本発明を実施した瞬間ガス湯沸器
の場合には、冷物体すなわちフイン群により直ち
に火焔温度を約1000℃以上、約1500℃以下に制御
して断熱空間を通過させ、次に熱交換器に導く方
式のため、ガスバーナから熱交換器を出るまでの
距離は従来方式の約1/5〜1/10となる。
Figure 2 shows the relationship between the flame temperature drop and the distance, or each part (height), in a conventional instantaneous gas water heater.As the flame rises inside the combustion chamber, it is slowly cooled by the wall surface. After the temperature has dropped, it is introduced into a heat exchanger. On the other hand, in the case of the instantaneous gas water heater according to the present invention shown in FIG. 3, the flame temperature is immediately controlled to be about 1000°C or more and about 1500°C or less using a cold object, that is, a group of fins, and the flame temperature is passed through an insulated space. Since the gas is then led to the heat exchanger, the distance from the gas burner to the exit from the heat exchanger is approximately 1/5 to 1/10 of the conventional method.

本発明は以上のように、理論空気量以上の空気
を予混合して高負荷燃焼させた火焔を冷物体によ
り約1000℃以上、約1500℃以下に制御して断熱空
間内を通過させ、COの酸化を行なつてから熱交
換器に導く方式を採用したため、次の如き効果を
期待することができる。
As described above, the present invention allows a flame obtained by premixing air in an amount greater than the theoretical air amount and performing high-load combustion to be controlled by a cold object to a temperature of about 1000°C or more and about 1500°C or less, and then passes through an adiabatic space. The following effects can be expected because the system adopts a method in which the heat exchanger is introduced after oxidizing the water.

高負荷燃焼により発生した火焔を冷物体によ
り約1500℃以下に制御するため、CO2の解離に
より生ずるCOの濃度を低くすることができる。
Since the flame generated by high-load combustion is controlled to below approximately 1500℃ using a cold object, the concentration of CO produced by dissociation of CO 2 can be lowered.

温度制御された火焔を断熱空間内に通過させ
てここで酸化反応(CO→CO2反応)を起こさ
せるため、直ちに熱交換器に火焔を導き、急速
に吸熱(冷却)しても、排ガス中にCOが残留
することはない。
The temperature-controlled flame is passed through the adiabatic space to cause the oxidation reaction (CO→CO 2 reaction). No CO remains.

従来のようなブンゼン火焔とは異なり、空気
との混合の必要のない予混合ガスをガスバーナ
にて高負荷燃焼させるので、火焔が空気と混合
する空間すなわち燃焼室空間は不要となり、冷
物体及び熱交換器を高負荷燃焼するガスバーナ
に可及的に接近させることが可能である。
Unlike conventional Bunsen flames, premixed gas that does not need to be mixed with air is burned under high load in a gas burner, so there is no need for a space where the flame mixes with air, that is, a combustion chamber space, and it is possible to burn cold objects and heat. It is possible to place the exchanger as close as possible to the gas burner that performs high-load combustion.

よつて、従来の瞬間ガス湯沸器或いは温水ボ
イラーの場合、その高さは巾よりも数倍高くな
るのが普通であつたが、本発明によると偏平な
瞬間ガス湯沸器或いは温水ボイラーの製品化が
可能になる。
Therefore, in the case of conventional instantaneous gas water heaters or hot water boilers, the height is usually several times higher than the width, but according to the present invention, the height of the flat instantaneous gas water heater or hot water boiler is several times higher than the width. Commercialization becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した瞬間ガス湯沸器の要
部を示す側面図、第2図は従来の瞬間ガス湯沸器
における火焔温度の低下状況と各部位との関係を
示す説明図、第3図は本発明を実施した瞬間ガス
湯沸器における火焔温度の低下状況と各部位との
関係を示す説明図、第4図は従来の瞬間ガス湯沸
器の説明図である。 1…ガスバーナ、2…内胴、3…フイン群(冷
物体)、5…断熱空間、6…熱交換器。
FIG. 1 is a side view showing the main parts of an instantaneous gas water heater according to the present invention, and FIG. 2 is an explanatory diagram showing the relationship between the flame temperature drop and each part in a conventional instantaneous gas water heater. FIG. 3 is an explanatory diagram showing the relationship between the decrease in flame temperature and each part in an instantaneous gas water heater according to the present invention, and FIG. 4 is an explanatory diagram of a conventional instantaneous gas water heater. 1... Gas burner, 2... Inner shell, 3... Fin group (cold object), 5... Heat insulation space, 6... Heat exchanger.

Claims (1)

【特許請求の範囲】 1 理論空気量以上の空気を予混合して得られた
火焔(燃焼ガス)の先端近傍に冷物体を置いて該
火焔の温度を約1000℃以上、約1500℃以下の温度
に制御し、次にこの温度制御された火焔を断熱空
間内に通し、次に熱交換器に導いて熱交換を行な
うことによりCOの発生を抑制しながら高負荷燃
焼により熱交換を行なう方法。 2 冷物体が熱交換器の一部から成る特許請求の
範囲第1項記載のCOの発生を抑制しながら高負
荷燃焼により熱交換を行なう方法。 3 理論空気量以上の空気を予混合したガスを燃
焼させるためのガスバーナと、このガスバーナ上
に配置された冷物体と、この冷物体上において、
断熱空間を置いて配置された熱交換器と、から成
るCOの発生を抑制しながら高負荷燃焼により熱
交換を行なうための装置。
[Claims] 1. A cold object is placed near the tip of a flame (combustion gas) obtained by premixing air in an amount greater than the theoretical amount, and the temperature of the flame is lowered to about 1000°C or more and about 1500°C or less. A method of controlling the temperature, then passing this temperature-controlled flame into an insulated space, and then leading it to a heat exchanger to exchange heat. This method performs heat exchange through high-load combustion while suppressing the generation of CO. . 2. A method for performing heat exchange by high-load combustion while suppressing the generation of CO, as set forth in claim 1, wherein the cold object is a part of a heat exchanger. 3. A gas burner for burning gas premixed with air in an amount greater than the theoretical amount, a cold object placed on this gas burner, and on this cold object,
A device that exchanges heat through high-load combustion while suppressing the generation of CO, consisting of a heat exchanger placed in an insulated space.
JP18661383A 1983-10-04 1983-10-04 Heat exchange under high intensity combustion while suppressing generation of carbon monoxide and device thereof Granted JPS6078247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18661383A JPS6078247A (en) 1983-10-04 1983-10-04 Heat exchange under high intensity combustion while suppressing generation of carbon monoxide and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18661383A JPS6078247A (en) 1983-10-04 1983-10-04 Heat exchange under high intensity combustion while suppressing generation of carbon monoxide and device thereof

Publications (2)

Publication Number Publication Date
JPS6078247A JPS6078247A (en) 1985-05-02
JPH0235884B2 true JPH0235884B2 (en) 1990-08-14

Family

ID=16191637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18661383A Granted JPS6078247A (en) 1983-10-04 1983-10-04 Heat exchange under high intensity combustion while suppressing generation of carbon monoxide and device thereof

Country Status (1)

Country Link
JP (1) JPS6078247A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774629A2 (en) 1995-11-20 1997-05-21 Tokyo Gas Co., Ltd. Water tube boiler and its combustion method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081283B2 (en) * 1985-06-20 1996-01-10 松下電器産業株式会社 Combustion device
AT391191B (en) * 1987-12-17 1990-08-27 Vaillant Gmbh DEVICE FOR COOLING A LONG-TERM BURNER
JPH02272207A (en) * 1988-09-10 1990-11-07 Kansai Electric Power Co Inc:The Water tube boiler and burning method therefor
JP2583337B2 (en) * 1989-11-28 1997-02-19 株式会社ガスター Method of burning fuel gas in domestic gas combustion device and combustion device
JPH0729365Y2 (en) * 1990-08-21 1995-07-05 株式会社ノーリツ Low NO ▲ Lower x ▼ Combustion device
JP2628237B2 (en) * 1991-05-31 1997-07-09 株式会社ヒラカワガイダム Boiler with water tube group
JPH0525129U (en) * 1991-08-30 1993-04-02 リンナイ株式会社 Water heater
JP2847227B2 (en) * 1992-09-02 1999-01-13 リンナイ株式会社 Hot water heater combustion control method
JP3221582B2 (en) * 1992-09-09 2001-10-22 株式会社三浦研究所 Low NOx and low CO combustion device
US6116196A (en) * 1997-02-28 2000-09-12 Miura Co., Ltd. Water-tube boiler
JPH11108308A (en) * 1997-09-30 1999-04-23 Miura Co Ltd Water tube boiler and burner
JPH11132404A (en) * 1997-10-31 1999-05-21 Miura Co Ltd Water-tube boiler
JP2000314502A (en) 1999-04-30 2000-11-14 Miura Co Ltd Water tube boiler
JP2000314501A (en) 1999-04-30 2000-11-14 Miura Co Ltd Water tube boiler
CN112815304B (en) * 2020-12-31 2022-04-08 新兴铸管股份有限公司 Combustion device and annealing furnace combustion system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149513A (en) * 1980-04-21 1981-11-19 Nippon Kokan Kk <Nkk> Combustion controlling method for heat equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149513A (en) * 1980-04-21 1981-11-19 Nippon Kokan Kk <Nkk> Combustion controlling method for heat equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774629A2 (en) 1995-11-20 1997-05-21 Tokyo Gas Co., Ltd. Water tube boiler and its combustion method

Also Published As

Publication number Publication date
JPS6078247A (en) 1985-05-02

Similar Documents

Publication Publication Date Title
JPH0235884B2 (en)
US3810732A (en) Method and apparatus for flameless combustion of gaseous or vaporous fuel-air mixtures
US5938427A (en) Combustion apparatus
US5458481A (en) Burner for combusting gas with low NOx production
KR100257551B1 (en) Combustion apparatus
CN211260775U (en) Low-nitrogen gas boiler
JP4614515B2 (en) Fuel cell reformer
US2763476A (en) Two stage combustion furnace
JPS60175925A (en) Catalytic combustion
US3917238A (en) Oven apparatus
JP2673640B2 (en) Hot water heater combustion control method
JP2529473B2 (en) Heating device
JPH1151310A (en) Catalytic combustion equipment
JPH0222285B2 (en)
JPS59167621A (en) Catalyst burner
JP2855664B2 (en) Infrared heater
JPS6347770B2 (en)
JPS6448379A (en) Starting method for fuel cell
US1747771A (en) Art of combustion
SU861879A1 (en) Fire preheater
JPH10300027A (en) Catalytic combustion apparatus
JPH10185111A (en) Flue and smoke tube boiler and low nox combustion method in the same boiler
SU142669A1 (en) Methodical recuperative furnace for metal heating
RU2078284C1 (en) Method of burning fuel
JPH01111161A (en) Combustion device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees