JPH0235864B2 - - Google Patents
Info
- Publication number
- JPH0235864B2 JPH0235864B2 JP59210966A JP21096684A JPH0235864B2 JP H0235864 B2 JPH0235864 B2 JP H0235864B2 JP 59210966 A JP59210966 A JP 59210966A JP 21096684 A JP21096684 A JP 21096684A JP H0235864 B2 JPH0235864 B2 JP H0235864B2
- Authority
- JP
- Japan
- Prior art keywords
- passage
- air
- amount
- secondary air
- detection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 claims description 45
- 239000000446 fuel Substances 0.000 claims description 33
- 238000002347 injection Methods 0.000 claims description 30
- 239000007924 injection Substances 0.000 claims description 30
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 238000002485 combustion reaction Methods 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/22—Control of additional air supply only, e.g. using by-passes or variable air pump drives
- F01N3/227—Control of additional air supply only, e.g. using by-passes or variable air pump drives using pneumatically operated valves, e.g. membrane valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/22—Control of additional air supply only, e.g. using by-passes or variable air pump drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B33/00—Engines characterised by provision of pumps for charging or scavenging
- F02B33/44—Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B33/00—Engines characterised by provision of pumps for charging or scavenging
- F02B33/44—Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
- F02B33/446—Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs having valves for admission of atmospheric air to engine, e.g. at starting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、過給機で加圧された空気の一部を排
気通路に導く2次空気通路を備えるとともに、吸
気量に応じて燃料噴射装置からの燃料噴射量を制
御するようにした過給機付エンジンに関するもの
である。Detailed Description of the Invention (Industrial Application Field) The present invention includes a secondary air passage that guides a part of air pressurized by a supercharger to an exhaust passage, and also provides fuel injection in accordance with the amount of intake air. The present invention relates to a supercharged engine that controls the amount of fuel injected from the device.
(従来技術)
従来から、過給機によつてエンジンの出力向上
を図るようにし、かつ、過給機で加圧された空気
の一部を排気浄化のための2次空気として利用す
るように2次空気通路を設けた過給機付エンジン
が知られている。特にこの種のエンジンに電子制
御燃料噴射装置を具備したものとしては、例えば
特公昭59−5781号公報に示されるように、過給機
を備えた過給通路を主吸気通路から分岐させて、
その上流に第1空気量検出装置を設けるととも
に、過給通路に一端が接続されて排気通路に他端
が接続された2次空気通路に第2空気量検出装置
を設け、第1空気量検出装置の出力から第2空気
量検出装置の出力を減算した出力、つまり全吸気
量から2次空気量を差引いた燃焼室への吸気供給
量でもつて燃料噴射量を制御するようにしたもの
がある。(Prior art) Conventionally, a turbocharger has been used to improve engine output, and a portion of the air pressurized by the turbocharger has been used as secondary air for exhaust purification. A supercharged engine provided with a secondary air passage is known. In particular, this type of engine is equipped with an electronically controlled fuel injection device, for example, as shown in Japanese Patent Publication No. 59-5781, a supercharging passage equipped with a supercharger is branched from the main intake passage.
A first air amount detection device is provided upstream thereof, and a second air amount detection device is provided in a secondary air passage whose one end is connected to the supercharging passage and the other end is connected to the exhaust passage. There is a system in which the fuel injection amount is controlled by the output obtained by subtracting the output of the second air amount detection device from the output of the device, that is, the amount of intake air supplied to the combustion chamber that is obtained by subtracting the amount of secondary air from the total intake amount. .
ところで、一般にこの種のエンジンでは、2次
空気通路に流量制御弁を設け、運転状態に応じて
2次空気の流量を制御するようにしている。また
過給通路に設けられる過給機には、通常、エンジ
ンによつて駆動される容積型エアポンプが用いら
れている。このような構造において前記のように
燃料噴射量を制御する場合、2次空気の流量が比
較的多いときは第2空気量検出装置によつ2次空
気量を高精度に検出することができるが、2次空
気量が少ないときは、第2空気量検出装置による
検出値が過給機の吐出圧の脈動等による影響を受
けて誤差を生じ易いので、このようなときの燃料
噴射量の制御をより高精度に行うことができる手
段の開発が望まれていた。 Incidentally, in this type of engine, a flow control valve is generally provided in the secondary air passage to control the flow rate of the secondary air depending on the operating state. Further, the supercharger provided in the supercharging passage usually uses a positive displacement air pump driven by the engine. When controlling the fuel injection amount as described above in such a structure, when the flow rate of the secondary air is relatively large, the secondary air amount can be detected with high accuracy by the second air amount detection device. However, when the amount of secondary air is small, the value detected by the second air amount detection device is likely to be affected by the pulsation of the discharge pressure of the supercharger and cause an error, so the fuel injection amount in such a case is It has been desired to develop a means that can perform control with higher precision.
(発明の目的)
本発明はこれらの事情に鑑み、吸気通路に導入
される全吸気量から排気系に供給される2次空気
量を差引いた燃焼室への吸気量に応じて燃料噴射
量を制御する場合に、2次空気の流量が少ないと
きにも高精度に燃料噴射量を制することができる
過給機付エンジンを提供するものである。(Objective of the Invention) In view of these circumstances, the present invention provides a system for adjusting the amount of fuel injection in accordance with the amount of intake air into the combustion chamber, which is obtained by subtracting the amount of secondary air supplied to the exhaust system from the total amount of intake air introduced into the intake passage. To provide a supercharged engine that can control the fuel injection amount with high precision even when the flow rate of secondary air is small.
(発明の構成)
本発明は、一端が過給機下流の吸気通路に接続
されるとともに他端がエンジンの排気通路に接続
されて、過給機で加圧された空気の一部を排気通
路に導く2次空気通路と、過給機上流の吸気通路
に設けられて該通路を流れる空気量に対応した信
号を出力する第1空気量検出装置と、上記2次空
気通路に設けられて該通路を流れる空気量に対応
した信号を出力する第2空気量検出装置と、上記
第1および第2空気量検出装置の出力を受け、第
1空気量検出装置で検出された空気量から第2空
気量検出装置で検出された空気量を減算した空気
量に対応した燃料噴射量を決定し供給する電子制
御燃料噴射装置とを備えた過給機付エンジンにお
いて、2次空気通路に排気通路へ導入される空気
量を制御する流量制御弁を設けるとともに、エン
ジン回転数と吸入空気量もしくは負荷に対応して
予め設定された2次空気流量に対応した信号を出
力する流量データ設定手段と、上記流量制御弁に
よつて制御される2次空気量が少ないとき、上記
電子制御燃料噴射装置の燃料噴射量の決定に用い
られる上記第2空気量検出装置の出力を上記流量
データ設定手段の出力に切替える切替手段とを設
けたものである。つまり、燃焼室への吸気供給量
に応じた燃料噴射量の制御のために検知する必要
のある2次空気量を、2次空気通量の流量が多い
ときには第2空気量検出装置によつて検出する
が、2次空気通路の流量が少ないときは予め設定
した流量データから求めるようにしたものであ
る。(Structure of the Invention) The present invention has one end connected to an intake passage downstream of a supercharger and the other end connected to an exhaust passage of an engine, so that a part of the air pressurized by the supercharger is transferred to the exhaust passage. a first air amount detection device provided in the intake passage upstream of the supercharger and outputting a signal corresponding to the amount of air flowing through the passage; A second air amount detection device outputs a signal corresponding to the amount of air flowing through the passage, and receives the outputs of the first and second air amount detection devices and calculates a second signal from the air amount detected by the first air amount detection device. In a supercharged engine equipped with an electronically controlled fuel injection device that determines and supplies a fuel injection amount corresponding to the air amount obtained by subtracting the air amount detected by the air amount detection device, the secondary air passage is sent to the exhaust passage. a flow rate data setting means for providing a flow rate control valve for controlling the amount of air introduced and outputting a signal corresponding to a secondary air flow rate preset in accordance with the engine speed and intake air amount or load; When the amount of secondary air controlled by the flow control valve is small, the output of the second air amount detection device used for determining the fuel injection amount of the electronically controlled fuel injection device is set as the output of the flow rate data setting means. A switching means for switching is provided. In other words, the amount of secondary air that needs to be detected to control the fuel injection amount according to the amount of intake air supplied to the combustion chamber is detected by the second air amount detection device when the flow rate of the secondary air flow is large. However, when the flow rate in the secondary air passage is low, it is determined from preset flow rate data.
(実施例)
第1図は本発明装置の一実施例を示し、この実
施例では、主吸気通路から分岐した吸気通路(過
給通路)に過給機を設けるとともに、その過給機
下流の過給通路と排気通路との間に2次空気通路
が接続された構造に本発明を適用している。この
図において、1はエンジンのシリンダ、2はピス
トン、3はシリンダ1内のピストン2の上方に形
成された燃焼室である。この燃焼室3には主吸気
ポート4、過給ポート5および排気ポート6が開
口し、これらのポート4,5,6に主吸気弁7、
過給用吸気弁8および排気弁9が装備されてい
る。(Embodiment) Fig. 1 shows an embodiment of the device of the present invention. In this embodiment, a supercharger is provided in an intake passage (supercharging passage) branching from a main intake passage, and a downstream part of the supercharger is provided. The present invention is applied to a structure in which a secondary air passage is connected between a supercharging passage and an exhaust passage. In this figure, 1 is a cylinder of an engine, 2 is a piston, and 3 is a combustion chamber formed above the piston 2 in the cylinder 1. A main intake port 4, a supercharging port 5, and an exhaust port 6 are opened in this combustion chamber 3, and a main intake valve 7,
A supercharging intake valve 8 and an exhaust valve 9 are provided.
10はエアクリーナ、11はエアクリーナ10
に接続された吸気通路である。吸気通路11は、
主吸気通路12と、この主吸気通路12から分岐
した過給通路13とからなり、主吸気通路12の
下流端側は主吸気ポート4に接続され、過給通路
13の下流端側は過給ポート5に接続されてい
る。主吸気通路12と過給通路13との分岐箇所
よりも上流の吸気通路11には、エアフローメー
タ等からなる第1空気量検出装置14が設けられ
ている。また主吸気通路12中には、アクセルペ
ダルの操作に応じて開閉される第1スロツトル弁
15が設けられるとともに、その下流に燃料噴射
装置16が装備されている。 10 is an air cleaner, 11 is an air cleaner 10
This is the intake passage connected to the The intake passage 11 is
Consisting of a main intake passage 12 and a supercharging passage 13 branched from the main intake passage 12, the downstream end of the main intake passage 12 is connected to the main intake port 4, and the downstream end of the supercharging passage 13 is connected to the supercharging passage 13. Connected to port 5. A first air amount detection device 14 including an air flow meter or the like is provided in the intake passage 11 upstream of the branch point between the main intake passage 12 and the supercharging passage 13. Further, a first throttle valve 15 is provided in the main intake passage 12 and is opened and closed in accordance with the operation of an accelerator pedal, and a fuel injection device 16 is provided downstream of the first throttle valve 15 .
一方、過給通路13には、エンジンにより駆動
されるベーン型エアポンプからなる過給機17が
設けられている。この過給機17の下流には、過
給機17から供給される過給気の密度を高めるた
めこれを冷却するインタクーラ18が設けられ、
その下流にサージタンク19が形成されている。
さらにサージタンク19の下流の過給通路13に
は第2スロツトル弁20が設けられており、この
第2スロツトル弁20は所定負荷以上のときに負
荷に応じた開度に開かれ、例えば第1スロツトル
弁15が所定開度以上に開かれたときこれに連動
して開かれるようになつている。また上記過給通
路13のサージタンク19からは、過給気の一部
を排気ガス浄化のための2次空気として排気系に
送る2次空気通路21と、余剰の過給気をリリー
フするリリーフ通路22とが分岐している。 On the other hand, the supercharging passage 13 is provided with a supercharger 17 consisting of a vane type air pump driven by the engine. An intercooler 18 is provided downstream of the supercharger 17 to cool the supercharged air supplied from the supercharger 17 in order to increase its density.
A surge tank 19 is formed downstream thereof.
Further, a second throttle valve 20 is provided in the supercharging passage 13 downstream of the surge tank 19, and this second throttle valve 20 is opened to an opening degree corresponding to the load when the load is higher than a predetermined load. When the throttle valve 15 is opened to a predetermined opening degree or more, it is opened in conjunction with this. Further, from the surge tank 19 of the supercharging passage 13, there is a secondary air passage 21 that sends a part of the supercharging air to the exhaust system as secondary air for exhaust gas purification, and a relief valve that relieves excess supercharging air. The passage 22 is branched.
上記2次空気通路21は排気系に接続されてお
り、図に示す実施例ではこの2次空気通路21が
その下流部において、通路面積が比較的大きい大
流量用通路21aと、通路面積が小さい小流量用
通路21bとに分岐し、大流量用通路21aは触
媒コンバータ23より上流の排気通路24に開口
し、小流量用通路21bは触媒コンバータ23の
中間部に開口している。このように2次空気通路
21を構成しているのは、濃混合気で運転される
アイドリング時等には比較的多量の2次空気を触
媒コンバータ23上流に供給して、触媒コンバー
タ23をHC,COの低減のための酸化触媒として
働かせ、またほぼ理論空燃比で運転されるような
ときは少量の2次空気を触媒コンバータ23の後
半部側に供給して、触媒コンバータ23をNOx
およびHC,COの低減のための三元触媒として働
かせるためである。 The secondary air passage 21 is connected to the exhaust system, and in the embodiment shown in the figure, the secondary air passage 21 has a large flow passage 21a having a relatively large passage area and a large flow passage 21a having a small passage area at its downstream portion. The large flow passage 21 a opens into an exhaust passage 24 upstream of the catalytic converter 23 , and the small flow passage 21 b opens into an intermediate portion of the catalytic converter 23 . The reason why the secondary air passage 21 is configured in this way is to supply a relatively large amount of secondary air to the upstream side of the catalytic converter 23 during idling when operating with a rich air-fuel mixture. , acts as an oxidation catalyst to reduce CO, and when operating at approximately the stoichiometric air-fuel ratio, a small amount of secondary air is supplied to the rear half of the catalytic converter 23 to reduce NOx.
This is because it functions as a three-way catalyst for reducing HC and CO.
この2次空気通路21には2次空気の流量を検
出する第2空気量検出装置25が設けられ、図で
は2次空気通路21内の絞り25aの上流側と下
流側の圧力差を検出する差圧センサ25bを用
い、その出力により後述するコントロールユニツ
ト40内で2次空気量を検出するようにし、こう
して第2空気量検出装置25を構成している。さ
らに2次空気通路21には、流量制御弁として、
第2次空気量検出装置25の下流において2次空
気通路21を開閉する開閉弁26と、大流量用通
路21aと小流量用通路21bとの分岐箇所にお
いてこの両通路21a,21bのいずれかを開く
切替弁27とが設けられている。上記開閉弁26
は弁体26aとダイヤフラム式のアクチユエータ
26bとで構成され、アクチユエータ26bに負
圧が導入されたとき2次空気通路21を開き、大
気が導入されたとき2次空気通路21を閉じるよ
うになつている。上記切替弁27も弁体27aと
ダイヤフラム式のアクチユエータ27bとで構成
され、アクチユエータ27bに負圧が導入された
とき大流量用通路21aを開き、大気が導入され
たとき小流量用通路21bを開くようにしてい
る。上記開閉弁27のアクチユエータ27bは、
一端が第1スロツトル弁15の下流の主吸気通路
12に接続された負圧通路28に、通路29およ
び第1の三方電磁弁30を介して接続されてお
り、切替弁27のアクチユエータ27bは、上記
負圧通路28に、通路31および第2の三方電磁
弁32を介して接続されている。この各三方電磁
弁30,32はそれぞれ、上記各アクチユエータ
26b,27bを負圧通路28または大気への開
口部30a,32aに選択的に連通させるように
なつている。 This secondary air passage 21 is provided with a second air amount detection device 25 that detects the flow rate of the secondary air, and in the figure, detects the pressure difference between the upstream side and the downstream side of the throttle 25a in the secondary air passage 21. The differential pressure sensor 25b is used to detect the amount of secondary air in a control unit 40, which will be described later, based on its output, thereby forming a second air amount detection device 25. Furthermore, in the secondary air passage 21, as a flow control valve,
An on-off valve 26 opens and closes the secondary air passage 21 downstream of the secondary air amount detection device 25, and at a branch point between the large flow passage 21a and the small flow passage 21b, one of the passages 21a and 21b is connected. A switching valve 27 that opens is provided. The above on-off valve 26
is composed of a valve body 26a and a diaphragm type actuator 26b, and opens the secondary air passage 21 when negative pressure is introduced into the actuator 26b, and closes the secondary air passage 21 when the atmosphere is introduced. There is. The switching valve 27 is also composed of a valve body 27a and a diaphragm type actuator 27b, and when negative pressure is introduced into the actuator 27b, the large flow passage 21a is opened, and when the atmosphere is introduced, the small flow passage 21b is opened. That's what I do. The actuator 27b of the on-off valve 27 is
The actuator 27b of the switching valve 27 is connected to a negative pressure passage 28 whose one end is connected to the main intake passage 12 downstream of the first throttle valve 15 via a passage 29 and a first three-way solenoid valve 30. It is connected to the negative pressure passage 28 via a passage 31 and a second three-way solenoid valve 32. The three-way solenoid valves 30 and 32 selectively connect the actuators 26b and 27b to the negative pressure passage 28 or the openings 30a and 32a to the atmosphere, respectively.
また前記リリーフ通路22は、余剰の過給気を
主吸気通路12または過給機17より上流の過給
通路13に還流させるように配設され、例えば第
1空気量検出装置14の下流の主吸気通路12に
接続されている。このリリーフ通路22には、主
として高負荷時に最高過給圧を制御する過給圧制
御弁33と、2次空気通路21の開閉弁26が開
かれたときにリリーフ通路22を開いて、排気系
に2次空気が過剰供給されることを防止するリリ
ーフ制御弁34とが並設されている。上記過給圧
制御弁33は、サージタンク19に対するリリー
フ通路22の開口部35に配置された弁体33a
と、この弁体33aに連結されたダイヤフラム3
3bと、その片側に形成された圧力制御室33c
と、上記弁体33aを閉弁方向に付勢するスプリ
ング33dとを備え、上記弁体33aに加わる過
給圧が過度に高くなつたときこの弁体33aが開
いて過給気をリリーフすることにより、最高過給
圧を制御するようになつている。そして上記圧力
制御室33cが前記負圧通路28に接続されるこ
とにより、吸気負圧が大きい低負荷時には最高過
給圧がある程度低く抑えられ、吸気負圧が小さい
高負荷時には最高過給圧が高められるようにして
いる。 Further, the relief passage 22 is arranged so as to recirculate surplus supercharging air to the main intake passage 12 or the supercharging passage 13 upstream of the supercharger 17. It is connected to the intake passage 12. This relief passage 22 includes a boost pressure control valve 33 that mainly controls the maximum boost pressure during high loads, and a boost pressure control valve 33 that opens the relief passage 22 when the on-off valve 26 of the secondary air passage 21 is opened, and A relief control valve 34 for preventing excessive supply of secondary air is arranged in parallel with the air conditioner. The supercharging pressure control valve 33 has a valve body 33a disposed at an opening 35 of the relief passage 22 with respect to the surge tank 19.
and the diaphragm 3 connected to this valve body 33a.
3b and a pressure control chamber 33c formed on one side thereof.
and a spring 33d that biases the valve body 33a in the valve closing direction, and when the supercharging pressure applied to the valve body 33a becomes excessively high, the valve body 33a opens to relieve supercharging air. This controls the maximum boost pressure. By connecting the pressure control chamber 33c to the negative pressure passage 28, the maximum boost pressure can be suppressed to a certain level during low loads where the intake negative pressure is large, and the maximum boost pressure can be suppressed to a certain level during high loads where the intake negative pressure is small. I'm trying to improve it.
また前記リリーフ制御弁34は、リリーフ通路
22とサージタンク19との間の連通孔36に配
置された弁体34aと、ダイヤフラム式のアクチ
ユエータ34bとで構成され、上記アクチユエー
タ34bは通路37および前記第1の三方電磁弁
30を介して負圧通路28に接続されている。従
つてこのリリーフ制御弁34は、2次空気通路2
1の開閉弁26に対応して開閉作動されるように
なつている。 The relief control valve 34 includes a valve body 34a disposed in a communication hole 36 between the relief passage 22 and the surge tank 19, and a diaphragm type actuator 34b. It is connected to the negative pressure passage 28 via one three-way solenoid valve 30 . Therefore, this relief control valve 34 is connected to the secondary air passage 2.
It is designed to be opened and closed in response to the opening and closing valve 26 of No. 1.
前記燃料噴射装置16および前記各三方電磁弁
30,32はマイクロコンピユータ等を用いたコ
ントロールユニツト40により制御され、このコ
ントロールユニツト40には、前記第1空気量検
出装置14と前記差圧センサ25bによる第2空
気量検出装置とからの各検出信号に加え、回転数
センサ41からのエンジン回転数検出信号と、第
1スロツトル弁15の開度を検出するスロツトル
開度センサ42からの負荷に対応したスロツトル
開度検出信号とが入力されている。 The fuel injection device 16 and the three-way solenoid valves 30, 32 are controlled by a control unit 40 using a microcomputer or the like, and the control unit 40 includes a control unit 40 including the first air amount detection device 14 and the differential pressure sensor 25b. In addition to each detection signal from the second air amount detection device, the engine rotation speed detection signal from the rotation speed sensor 41 and the load from the throttle opening sensor 42 that detects the opening degree of the first throttle valve 15 are detected. A throttle opening detection signal is input.
このコントロールユニツト40は、運転状態に
応じた2次空気供給の制御を行うため、予め、第
2図に示すようにエンジン回転数および負荷がそ
れぞれ所定値以下の運転領域を2次空気供給領
域、それ以外をエアカツト領域(2次空気の供給
を停止する領域)と設定し、さらに2次空気供給
領域のうちでとくに低回転領域および低負荷領域
を2次空気多量領域、それ以外を2次空気少量領
域と設定している。そして、エンジン回転数とス
ロツトル開度(負荷)とをもつて検出された運転
状態が2次空気多量領域にあるときは前記大流量
用通路21aを開通させ、2次空気少量領域にあ
るときは前記小流量用通路21bを開通させ、エ
アカツト領域にあるときは2次空気通路21を閉
じるように、前記各三方電磁弁30,32を介し
て開閉弁26および切替弁27を制御している。 In order to control the secondary air supply according to the operating state, the control unit 40 preliminarily sets the operating region where the engine speed and the load are below predetermined values as the secondary air supply region, as shown in FIG. The rest of the area is set as the air cut area (area where the supply of secondary air is stopped), and of the secondary air supply area, the low rotation area and low load area are set as the secondary air large area, and the other areas are set as the secondary air cut area. It is set as a small amount area. When the operating state detected from the engine speed and the throttle opening (load) is in a high secondary air volume region, the large flow passage 21a is opened, and when the operating state is in a low secondary air volume region, the high flow passage 21a is opened. The on-off valve 26 and the switching valve 27 are controlled via the three-way solenoid valves 30 and 32 so that the small flow passage 21b is opened and the secondary air passage 21 is closed when in the air cut region.
また燃料噴射装置16に対してこのコントロー
ルユニツト40は、基本的には第1空気量検出装
14の出力から第2空気量検出装25の出力を減
算した出力でもつて燃料噴射量を制御するが、こ
のほかに、エンジン回転数と吸入空気量もしくは
負荷に対応して予め設定された2次空気流量に対
応した信号を出力する流量データ設定手段と、流
量制御弁によつて制御される2次空気供給量が少
ないとき、燃料噴射量の決定に用いられる2空気
検出装置25の出力を流量データ設定手段の出力
に切替える切替手段とを含んでいる。つまりこの
コントロールユニツト40は、後に詳述するよう
に、第1空気量検出装置14によつて検出される
吸気空気量から2次空気量を差引いた燃焼室3へ
の吸気供給量に応じて燃料噴射量を制御するよう
にし、この場合に、2次空気多量領域にあるとき
は2次空気量を第2空気量検出装置25によつて
検出し、2次空気少量領域にあるときは2次空気
量を流量データから求めるようにしている。この
流量データは、種々のエンジン回転数、負荷状態
において小流量用通路21bを通して排気系に供
給される2次空気の流量を予め実験的に調べお
き、これをエンジン回転数と負荷とに対応づけた
流量マツプとしてコントロールユニツト40内の
メモリに記憶させたものである。 Furthermore, this control unit 40 for the fuel injection device 16 basically controls the fuel injection amount using the output obtained by subtracting the output of the second air amount detection device 25 from the output of the first air amount detection device 14. In addition to this, there is also a flow rate data setting means that outputs a signal corresponding to a preset secondary air flow rate corresponding to the engine speed and intake air amount or load, and a secondary air flow rate controlled by a flow rate control valve. It includes switching means for switching the output of the two-air detection device 25 used for determining the fuel injection amount to the output of the flow rate data setting means when the air supply amount is small. In other words, the control unit 40 controls the amount of fuel supplied to the combustion chamber 3, which is calculated by subtracting the secondary air amount from the intake air amount detected by the first air amount detection device 14, as will be described in detail later. In this case, the secondary air amount is detected by the second air amount detection device 25 when the injection amount is in the secondary air amount region, and the secondary air amount is detected by the second air amount detection device 25 when the secondary air amount is in the secondary air amount region. The amount of air is determined from the flow rate data. This flow rate data is obtained by experimentally determining the flow rate of secondary air supplied to the exhaust system through the small flow passage 21b under various engine speeds and load conditions, and then correlating this with the engine speed and load. This map is stored in the memory within the control unit 40 as a flow rate map.
なお、後述する制御の具体例では、小流量用通
路21bを通して排気系に送られる2次空気の流
量をより正確に求めるため、流量マツプから読出
される値をさらに吐出圧のばらつきに応じて補正
するようにしている。つまり、第3図に示すよう
に、2次空気通路21に作用する過給機17の吐
出圧は、ある程度まではエンジン回転数が高くな
るにつれて上昇し、高回転域では上限圧力に保た
れるが、このようなエンジン回転数に応じた吐出
圧変化の特性は、過給機17の性能のばらつき等
によつて変動する場合がある。そして、例えば吐
出圧変化がこの図に実線で示すような特性となる
条件下で予め調べられた値をもつて前記流量マツ
プを設定しおくと、吐出圧変化の特性がこの図に
破線で示すように変動した場合、上記流量マツプ
から求められる値と実際の流量とに多少のずれが
生じる。そこで、後述するように、吐出圧が上限
値に達する臨界回転数R0(2000rpm程度)以下の
低回転域用の補正係数(後記K1)と上記臨界回
転数R0よりも高い高回転域用の補正係数(後記
K2)とを、それぞれの回転域内の特定回転数R1,
R2において基準圧力(予め実線で示す吐出圧特
性のもとで調べた圧力)P1,P2と現実圧力とを
比較することによつて求め、この補正係数によ
り、流量マツプから求められる値を補正するよう
にしている。 In addition, in a specific example of control described later, in order to more accurately determine the flow rate of secondary air sent to the exhaust system through the small flow passage 21b, the value read from the flow rate map is further corrected according to variations in discharge pressure. I try to do that. In other words, as shown in FIG. 3, the discharge pressure of the supercharger 17 acting on the secondary air passage 21 increases to a certain extent as the engine speed increases, and is maintained at the upper limit pressure in the high speed range. However, the characteristics of the discharge pressure change depending on the engine speed may vary due to variations in the performance of the supercharger 17 and the like. For example, if the flow rate map is set with values that have been investigated in advance under conditions where the discharge pressure change has the characteristics shown by the solid line in this figure, the characteristics of the discharge pressure change will be shown by the broken line in this figure. If the flow rate fluctuates in this way, there will be some deviation between the value determined from the flow rate map and the actual flow rate. Therefore, as will be described later, a correction coefficient (K 1 below) for the low rotational speed range below the critical rotational speed R 0 (approximately 2000 rpm) at which the discharge pressure reaches the upper limit value, and a correction coefficient for the high rotational speed range higher than the critical rotational speed R 0 mentioned above. Correction coefficient for (see below)
K 2 ) and the specific rotation speed R 1 within each rotation range,
At R2 , the reference pressure (pressures previously investigated under the discharge pressure characteristics shown by the solid line) P1 , P2 is found by comparing with the actual pressure, and this correction coefficient is used to find the value from the flow rate map. I am trying to correct it.
上記コントロールユニツト40による燃料噴射
量の制御の具体例をフローチヤートによつて次に
説明する。 A specific example of the control of the fuel injection amount by the control unit 40 will be explained below using a flowchart.
このフローチヤートにおいては、先ずステツプ
S1で、回転数センサ41によつて検出されるエン
ジン回転数Rおよびスロツトル開度センサ42に
よつて検出されるスロツトル開度を読込み、さら
にステツプS2で、前記第1空気量検出装置14に
よつて検出される吸入空気量Qaを読込む。次に
ステツプS3でエンジン回転数およびスロツトル開
度(負荷)をもつて検出された運転状態が2次空
気供給領域にあるか否かを判定する。このステツ
プS3での判定結果がNOであれば現実の運転状態
がエアカツト領域にあり、従つて前記開閉弁26
によつて2次空気通路21が閉じられた状態にあ
る。このときは2次空気量Qbを零とする(ステ
ツプS4)。また、ステツプS3での判定結果がYES
であれば、ステツプS5で2次空気少量領域にある
か否かを判定する。 In this flowchart, we will first
In step S1 , the engine rotation speed R detected by the rotation speed sensor 41 and the throttle opening detected by the throttle opening sensor 42 are read, and further in step S2 , the first air amount detection device 14 is read. Read the intake air amount Qa detected by . Next, in step S3 , it is determined whether the operating state detected from the engine speed and throttle opening (load) is in the secondary air supply region. If the determination result in step S3 is NO, the actual operating state is in the air cut region, and therefore the on-off valve 26
As a result, the secondary air passage 21 is in a closed state. At this time, the secondary air amount Qb is set to zero (step S 4 ). Also, the judgment result in step S3 is YES.
If so, it is determined in step S5 whether or not the secondary air amount is in a small amount region.
ステツプS5での判定結果がNOであれば現実の
運転状態が前記の2次空気多量領域にあり、従つ
て前記開閉弁26および切替弁27によつて2次
空気通路21の大流量用通路21aが開かれた状
態にある。このときはステツプS6で差圧センサ2
5bの出力を読込み、ステツプS13,S14で差圧セ
ンサ25bの出力に基づいて検出した流量Qb2を
2次空気量Qbとする。またこの2次空気多量領
域にあるときに、上記ステツプS6とステツプS13
との間のステツプS7〜S12により、後述する2次
空気少量領域において流量想定量Qb1を補正する
ための補正係数K1,K2を演算しておく。すなわ
ちこの補正係数の演算処理としては、エンジン回
転数Rが前記臨界回転数R0よりも低い特定回転
数R1にあるとき、差圧センサ25bによつて検
出された圧力Pと予め調べられたこの特定回転数
R1での基準圧力P1との比を低回転域用の補正係
数K1とする(ステツプS7,S8)。またエンジン回
転数Rが前記臨界回転数R0よりも高い特定回転
数R2にあるとき、吸入空気量から排圧Pexを演算
し、差圧センサ25bによつて検出された圧力P
と排圧Pexとを加えた圧力P′を求め、この圧力
P′と基準圧力P2との比を高回転域用の補正係数
K2とする(ステツプS9〜S12)。 If the determination result in step S5 is NO, the actual operating state is in the secondary air large amount region, and therefore the opening/closing valve 26 and the switching valve 27 control the high flow rate passage of the secondary air passage 21. 21a is in an open state. At this time, in step S6 , the differential pressure sensor 2 is
5b is read, and the flow rate Qb 2 detected based on the output of the differential pressure sensor 25b in steps S 13 and S 14 is set as the secondary air amount Qb. Also, when the secondary air is in the large amount region, step S6 and step S13 are performed.
Through steps S 7 to S 12 between , correction coefficients K 1 and K 2 are calculated for correcting the expected flow rate Qb 1 in the secondary air small amount region, which will be described later. In other words, in the calculation process of this correction coefficient, when the engine rotation speed R is at a specific rotation speed R1 lower than the critical rotation speed R0 , the pressure P detected by the differential pressure sensor 25b and the pressure P detected in advance are calculated. This specific rotation speed
The ratio of R 1 to the reference pressure P 1 is set as a correction coefficient K 1 for the low rotation range (steps S 7 and S 8 ). Further, when the engine speed R is at a specific speed R2 higher than the critical speed R0 , the exhaust pressure Pex is calculated from the intake air amount, and the pressure P detected by the differential pressure sensor 25b is calculated.
Find the pressure P′ by adding the pressure Pex and the exhaust pressure Pex, and calculate this pressure
The ratio of P′ and reference pressure P 2 is the correction coefficient for high rotation range.
K2 (steps S9 to S12 ).
また、前記ステツプS5での判定結果がYESで
あれば、前記開閉弁26および切替弁27によつ
て2次空気通路21の小流量用通路21bが開か
れた状態にある。このときは前記流量マツプか
ら、エンジン回転数および負荷に応じた2次空気
通路21の流量の想定値Qb1を求める(ステツプ
S15)。さらに、エンジン回転数Rが前記臨界回転
数R0以下であれば上記想定値Qb1に低回転域用の
補正係数K1を乗算することによつて2次空気量
Qbを求め、臨界回転数R0よりも高回転であれば、
上記想定値Qb1に高回転域用の補正係数K2を乗算
することによつて2次空気量Qbを求める。 If the determination result in step S5 is YES, the small flow passage 21b of the secondary air passage 21 is opened by the on-off valve 26 and the switching valve 27. At this time, from the flow rate map, an assumed value Qb 1 of the flow rate of the secondary air passage 21 according to the engine speed and load is determined (step 1).
S15 ). Furthermore, if the engine rotation speed R is below the critical rotation speed R 0 , the secondary air amount is calculated by multiplying the above assumed value Qb 1 by a correction coefficient K 1 for the low rotation range.
Find Qb, and if the rotation is higher than the critical rotation speed R 0 ,
The secondary air amount Qb is determined by multiplying the above assumed value Qb 1 by a correction coefficient K 2 for the high rotation range.
こうしてステツプS4,S14,S17,S18のいずれ
かで、2次空気量Qb求めた後、前記吸入空気量
Qaから2次空気供給量Qbを減算することにより
燃焼室3への吸気供給量Qを求め(ステツプ
S19)、この吸気供給量Qに応じて燃料噴射量を制
御する(ステツプS20)。 After obtaining the secondary air amount Qb in any of steps S 4 , S 14 , S 17 , and S 18 in this way, the intake air amount
The intake air supply amount Q to the combustion chamber 3 is determined by subtracting the secondary air supply amount Qb from Qa (step
S 19 ), and the fuel injection amount is controlled according to this intake air supply amount Q (step S 20 ).
このフローチヤートに従つた制御により、2次
空気通路21の大流量用通路21aを通して比較
的多量の2次空気が排気系に供給されているとき
は、前記差圧センサ25bを用いた第2空気量検
出装置25による2次空気量の検出が行われ、第
1空気量検出装置14による吸入空気量の検出値
と2次空気量の検出値とに基づいて燃焼室3への
吸気供給量の演算およびそれに応じた燃料噴射量
の制御が行われる。また、小流量用通路21bを
通して少量の2次空気が排気系に供給されている
ときは、第2空気量検出装置25による2次空気
量の検出値に代え、エンジン回転数および負荷に
応じて流量マツプから求めた値に基づいて2次空
気量が検出される。こうすることにより、2次空
気量が少ないときに、過給機の吐出圧の脈動等に
よる影響で誤差が生じ易い第2空気量検出装置2
5の検出値よりも正確に2次空気量が求められ、
燃焼室3への吸気供給量の演算およびそれに応じ
た燃料噴射量の制御が高精度に行われることとな
る。 By controlling according to this flowchart, when a relatively large amount of secondary air is being supplied to the exhaust system through the large flow passage 21a of the secondary air passage 21, the second air The secondary air amount is detected by the amount detection device 25, and the amount of intake air supplied to the combustion chamber 3 is determined based on the detected value of the intake air amount by the first air amount detection device 14 and the detected value of the secondary air amount. The calculation and the fuel injection amount are controlled accordingly. Furthermore, when a small amount of secondary air is supplied to the exhaust system through the small flow passage 21b, instead of using the detected value of the secondary air amount by the second air amount detection device 25, the The amount of secondary air is detected based on the value determined from the flow rate map. By doing this, when the amount of secondary air is small, the second air amount detection device 2, which is prone to errors due to the influence of pulsations in the discharge pressure of the supercharger, etc.
The secondary air amount can be determined more accurately than the detected value in step 5.
Calculation of the amount of intake air supplied to the combustion chamber 3 and control of the fuel injection amount accordingly are performed with high precision.
なお、2次空気通路21およびこの通路に設け
られる流量制御弁の構造は上記実施例に限定され
ず、2次空気通路21の流量を運転状態に応じて
変えることができるような構造であればよい。ま
た、流量制御弁によつて2次空気通路21の流量
が少なくされているときに2次空気量を求めるた
めの流量マツプ(流量データ)は、予めエンジン
回転数と吸入空気量とに対応づけて設定したもの
であつてもよく、この場合、エンジン回転数と第
1空気量検出装置14によつて検出される吸入空
気量とに応じて上記流量マツプから流量を求めれ
ばよい。 Note that the structure of the secondary air passage 21 and the flow rate control valve provided in this passage is not limited to the above-mentioned embodiment, and any structure can be used as long as the flow rate of the secondary air passage 21 can be changed depending on the operating state. good. Furthermore, the flow rate map (flow rate data) for determining the amount of secondary air when the flow rate of the secondary air passage 21 is reduced by the flow rate control valve is mapped in advance to the engine speed and the amount of intake air. In this case, the flow rate may be determined from the flow rate map according to the engine speed and the intake air amount detected by the first air amount detection device 14.
(発明の効果)
以上のように本発明の過給機付エンジンは、第
1空気量検出装置によつて検出される全吸気量か
ら2次空気量を減算した値に応じて燃料噴射量を
制御する場合に、比較的多量の2次空気が排気系
に供給されているときは第2空気量検出装置によ
つて2次空気量を検出するが、2次空気の流量が
少ないときは、第2空気量検出装置の出力をエン
ジン回転数と吸入空気量まは負荷とによつて予め
設定した流量データの読取り出力を切替えること
により、予め調べた上記流量データから2次空気
量が求められるようにしている。従つて、2次空
気の流量が少なくて第2空気量検出装置による2
次空気量の検出値に誤差が生じ易いときにも、正
確に2次空気量を求めることができ、燃料噴射量
を高精度に制御することができるものである。(Effects of the Invention) As described above, the supercharged engine of the present invention adjusts the fuel injection amount according to the value obtained by subtracting the secondary air amount from the total intake air amount detected by the first air amount detection device. When controlling, when a relatively large amount of secondary air is supplied to the exhaust system, the secondary air amount is detected by the second air amount detection device, but when the flow rate of secondary air is small, By switching the output of the second air amount detection device to read out the flow rate data set in advance depending on the engine speed and intake air amount or load, the secondary air amount can be determined from the flow rate data checked in advance. That's what I do. Therefore, the flow rate of the secondary air is small and the second air amount detection device detects the
Even when errors are likely to occur in the detected value of the secondary air amount, the secondary air amount can be determined accurately and the fuel injection amount can be controlled with high precision.
第1図は本発明の一実施例を示す概略図、第2
図は排気系に対する2次空気の多量供給、少量供
給および供給停止が行われる運転領域を示す説明
図、第3図はエンジン回転数と過給機の吐出圧と
の関係を示す説明図、第4図は燃料噴射量の制御
のためのフローチヤートである。
12……主吸気通路、13……過給通路、14
……第1空気量検出装置、16……燃料噴射装
置、21……2次空気通路、25……第2空気量
検出装置、26……開閉弁、27……切替弁、4
0……コントロールユニツト。
FIG. 1 is a schematic diagram showing one embodiment of the present invention, and FIG.
The figure is an explanatory diagram showing the operating range in which a large amount of secondary air is supplied to the exhaust system, a small amount is supplied, and the supply is stopped. FIG. 4 is a flowchart for controlling the fuel injection amount. 12... Main intake passage, 13... Supercharging passage, 14
...First air amount detection device, 16...Fuel injection device, 21...Secondary air passage, 25...Second air amount detection device, 26...Opening/closing valve, 27...Switching valve, 4
0...Control unit.
Claims (1)
ともに他端がエンジンの排気通路に接続されて、
過給機で加圧された空気の一部を排気通路に導く
2次空気通路と、過給機上流の吸気通路に設けら
れて該通路を流れる空気量に対応した信号を出力
する第1空気量検出装置と、上記2次空気通路に
設けられて該通路を流れる空気量に対応した信号
を出力する第2空気量検出装置と、上記第1およ
び第2空気量検出装置の出力を受け、第1空気量
検出装置で検出された空気量から第2空気量検出
装置で検出された空気量を減算した空気量に対応
した燃料噴射量を決定し供給する電子制御燃料噴
射装置とを備えた過給機付エンジンにおいて、2
次空気通路に排気通路へ導入される空気量を制御
する流量制御弁を設けるとともに、エンジン回転
数と吸入空気量もしくは負荷に対応して予め設定
された2次空気流量に対応した信号を出力する流
量データ設定手段と、上記流量制御弁によつて制
御される2次空気量が少ないとき、上記電子制御
燃料噴射装置の燃料噴射量の決定に用いられる上
記第2空気量検出装置の出力を上記流量データ設
定手段の出力に切替える切替手段とを設けたこと
を特徴とする過給機付エンジン。1 One end is connected to the intake passage downstream of the supercharger, and the other end is connected to the exhaust passage of the engine,
A secondary air passage that guides a portion of the air pressurized by the turbocharger to the exhaust passage, and a primary air passage that is provided in the intake passage upstream of the turbocharger and outputs a signal corresponding to the amount of air flowing through the passage. an amount detection device, a second air amount detection device provided in the secondary air passage and outputting a signal corresponding to the amount of air flowing through the passage, and receiving outputs from the first and second air amount detection devices, an electronically controlled fuel injection device that determines and supplies a fuel injection amount corresponding to the air amount obtained by subtracting the air amount detected by the second air amount detection device from the air amount detected by the first air amount detection device; In a supercharged engine, 2
A flow control valve is provided in the secondary air passage to control the amount of air introduced into the exhaust passage, and a signal corresponding to the secondary air flow rate that is preset according to the engine speed and intake air amount or load is output. When the amount of secondary air controlled by the flow rate data setting means and the flow control valve is small, the output of the second air amount detection device used for determining the fuel injection amount of the electronically controlled fuel injection device is set as described above. 1. A supercharged engine characterized by comprising: switching means for switching to the output of the flow rate data setting means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59210966A JPS6187929A (en) | 1984-10-08 | 1984-10-08 | Engine with supercharger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59210966A JPS6187929A (en) | 1984-10-08 | 1984-10-08 | Engine with supercharger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6187929A JPS6187929A (en) | 1986-05-06 |
JPH0235864B2 true JPH0235864B2 (en) | 1990-08-14 |
Family
ID=16598063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59210966A Granted JPS6187929A (en) | 1984-10-08 | 1984-10-08 | Engine with supercharger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6187929A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009156222A (en) * | 2007-12-27 | 2009-07-16 | Yamaha Motor Co Ltd | Secondary air supply system and vehicle |
-
1984
- 1984-10-08 JP JP59210966A patent/JPS6187929A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6187929A (en) | 1986-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3366399B2 (en) | Supercharging pressure control device for turbocharged engine | |
EP1643102A2 (en) | Engine boost pressure control | |
US6615812B2 (en) | Method and arrangement for operating an internal combustion engine | |
JP3154038B2 (en) | Apparatus for estimating intake pressure of internal combustion engine and fuel supply apparatus | |
JPH03229948A (en) | Fuel control device for engine | |
JPS58104316A (en) | Secondary air control for internal-combustion engine | |
JPH0235864B2 (en) | ||
JPH04183949A (en) | Engine fuel control device | |
JP3815959B2 (en) | Electronic control device for internal combustion engine | |
JP3907262B2 (en) | Evaporative fuel purge system for engine | |
JPH0235866B2 (en) | KAKYUKITSUKI ENJIN | |
JP2897426B2 (en) | Engine fuel control device | |
JPH0235865B2 (en) | ||
JP3835167B2 (en) | Control device for internal combustion engine | |
JP2858285B2 (en) | Fuel supply control device for internal combustion engine | |
JPS6313390Y2 (en) | ||
JPH07269403A (en) | Engine control device | |
JP3463519B2 (en) | Control device for internal combustion engine | |
JPH0734194Y2 (en) | Auxiliary air amount control device for internal combustion engine | |
JPS61178539A (en) | Flow rate detecting device for engine | |
JPH07217475A (en) | Engine control device | |
JPH02201027A (en) | Supercharge pressure control device for engine with supercharger | |
JPS6193242A (en) | Fuel controller for engine with supercharger | |
JPS62191628A (en) | Intake path device for multicylinder internal combustion engine | |
JPS6196179A (en) | Electronic ignition control device of engine with supercharger |