JPH0235783Y2 - - Google Patents

Info

Publication number
JPH0235783Y2
JPH0235783Y2 JP4285U JP4285U JPH0235783Y2 JP H0235783 Y2 JPH0235783 Y2 JP H0235783Y2 JP 4285 U JP4285 U JP 4285U JP 4285 U JP4285 U JP 4285U JP H0235783 Y2 JPH0235783 Y2 JP H0235783Y2
Authority
JP
Japan
Prior art keywords
reaction
methanol
reaction tube
reactor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4285U
Other languages
Japanese (ja)
Other versions
JPS61116730U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4285U priority Critical patent/JPH0235783Y2/ja
Publication of JPS61116730U publication Critical patent/JPS61116730U/ja
Application granted granted Critical
Publication of JPH0235783Y2 publication Critical patent/JPH0235783Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、メタノールを分解して水素ガス、あ
るいは水素と一酸化炭素の混合ガスを製造するメ
タノール分解反応装置の改良に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an improvement in a methanol decomposition reactor that decomposes methanol to produce hydrogen gas or a mixed gas of hydrogen and carbon monoxide.

(従来の技術) 従来、この種の反応装置は、第3図に示すよう
に、触媒層1を充填した反応管2の群、反応熱を
供給する熱媒を保持する熱媒室3、及び反応原料
供給管4、原料室5、反応生成物室6、反応生成
物排出管7、熱媒供給管8、熱媒排出管9、反応
器鏡板10、管板11、反応器外殻12から構成
されている。このような反応装置では、原料供給
管4から供給された反応原料は、触媒層1で、製
品として水素ガスのみを得たい時には、下記(1)式
に示すようなスチームとの反応により分解し、ま
た、水素と一酸化炭素の混合ガスを製品とする場
合には、(2)式に示すようなメタノールのみの分解
の反応が進行する。
(Prior Art) Conventionally, this type of reaction apparatus, as shown in FIG. 3, includes a group of reaction tubes 2 filled with a catalyst layer 1, a heating medium chamber 3 holding a heating medium that supplies reaction heat, and From the reaction raw material supply pipe 4, the raw material chamber 5, the reaction product chamber 6, the reaction product discharge pipe 7, the heat medium supply pipe 8, the heat medium discharge pipe 9, the reactor end plate 10, the tube plate 11, the reactor outer shell 12 It is configured. In such a reactor, the reaction raw material supplied from the raw material supply pipe 4 is decomposed in the catalyst layer 1 by reaction with steam as shown in equation (1) below when it is desired to obtain only hydrogen gas as a product. In addition, when a mixed gas of hydrogen and carbon monoxide is used as a product, a reaction of decomposition of only methanol proceeds as shown in equation (2).

CH3OH+H2O→CO2+3H2 …(1) CH3OH→CO+2H2 …(2) 反応後、反応生成物は排出管7から排出され、
化学反応に要する熱は、反応管2の壁面を通して
熱媒により供給される。
CH 3 OH + H 2 O → CO 2 + 3H 2 ... (1) CH 3 OH → CO + 2H 2 ... (2) After the reaction, the reaction product is discharged from the discharge pipe 7,
The heat required for the chemical reaction is supplied by a heating medium through the wall of the reaction tube 2.

このメタノール分解反応装置において、上記(1)
式又は(2)式のいずれの反応も大きな吸熱を伴う反
応である。すなわち、(1)式のメタノールから水素
を製造する反応は、メタノール1モルあたり約
12Kcal、(2)式のメタノールから水素と一酸化炭
素の混合ガスを製造する反応は、メタノール1モ
ルあたり約22Kcalの熱量を管外の熱媒から供給
する必要がある。
In this methanol decomposition reactor, the above (1)
The reaction in either formula or formula (2) is a reaction accompanied by a large endotherm. In other words, the reaction of formula (1) to produce hydrogen from methanol is approximately
The reaction of producing a mixed gas of hydrogen and carbon monoxide from methanol in formula (2) requires approximately 22 Kcal of heat per mole of methanol to be supplied from a heating medium outside the tube.

第3図に示す反応器において、反応管2の入口
近傍で反応が激しく起こつた場合、反応に必要な
熱の供給が不足し、第4図に示すように、反応管
2の入口近傍の触媒温度、すなわち、反応温度が
低くなる欠点がある。このことは、反応温度の不
均一な分布による不必要な副反応の発生につなが
つたり、反応温度の低下による反応速度の低下に
つながる。このため、所定の反応量(率)を確保
するためには、反応管2の長さを、より長くする
必要につながつてくる。
In the reactor shown in FIG. 3, if a reaction occurs violently near the inlet of reaction tube 2, the supply of heat necessary for the reaction will be insufficient, and as shown in FIG. There is a drawback that the temperature, that is, the reaction temperature is low. This may lead to the occurrence of unnecessary side reactions due to non-uniform distribution of reaction temperatures, or may lead to a decrease in reaction rate due to a decrease in reaction temperature. Therefore, in order to ensure a predetermined reaction amount (rate), it becomes necessary to increase the length of the reaction tube 2.

(考案が解決しようとする問題点) 本考案の目的は、上記従来装置の欠点を解消し
たメタノール分解反応装置を提供することであ
る。
(Problems to be Solved by the Invention) An object of the present invention is to provide a methanol decomposition reaction apparatus that eliminates the drawbacks of the conventional apparatus described above.

(問題点を解決するための手段) 本考案は、メタノールを分解して水素ガス、あ
るいは水素と一酸化炭素の混合ガスを製造する反
応装置において、触媒を充填した反応管群を長さ
方向に複数に分割し、各分解部に電磁誘導式加熱
コイルを設けたことを特徴とするメタノール分解
反応装置に関する。
(Means for solving the problem) The present invention is a reaction device that decomposes methanol to produce hydrogen gas or a mixed gas of hydrogen and carbon monoxide. The present invention relates to a methanol decomposition reaction apparatus characterized in that it is divided into a plurality of parts and each decomposition part is provided with an electromagnetic induction heating coil.

(作用) 以下に、本考案装置を図面に基づき説明する。(effect) The device of the present invention will be explained below based on the drawings.

第1図は、本考案によるメタノール分解反応装
置の概略図である。
FIG. 1 is a schematic diagram of a methanol decomposition reactor according to the present invention.

第1図は、本考案反応装置において、熱供給を
分割コントロールするための1次コイル12を3
個設置した場合の具体例である。すなわち、反応
管2の外側に断熱材13がつめられ、その外部に
3段の1次コイル12が設置されている。この一
次コイル12に流れる1次電流によつて、反応管
2の壁の金属材に2次電流が流れて、反応管2が
発熱し、外部の断熱材13にさえぎられて、熱は
外部へとは放散せず、ほとんどが反応管2内部へ
それぞれ流れて、メタノールの分解に寄与するこ
ととなる。14は、反応装置外壁である。
FIG. 1 shows that the primary coil 12 for dividing and controlling heat supply is used in the reactor of the present invention.
This is a specific example of a case where two units are installed. That is, a heat insulating material 13 is packed on the outside of the reaction tube 2, and three stages of primary coils 12 are installed outside the heat insulating material 13. Due to the primary current flowing through the primary coil 12, a secondary current flows through the metal material on the wall of the reaction tube 2, causing the reaction tube 2 to generate heat, which is blocked by the external heat insulating material 13, and the heat is transferred to the outside. Most of them flow into the reaction tube 2 without dissipating, and contribute to the decomposition of methanol. 14 is the outer wall of the reactor.

なお、第1図では、1次コイル12の数が3段
の場合を示したが、この数は何ら限定されるもの
ではなく、また、一次コイル12の設置方法も、
第1図に示した方法に限定されるものではない。
Although FIG. 1 shows the case where the number of primary coils 12 is three, this number is not limited in any way, and the method of installing the primary coils 12 can also be changed.
The method is not limited to the method shown in FIG.

本考案装置では、反応管2を長さ方向に分割加
熱することにより、反応が特に激しく生起して、
触媒層温度が低下する部分の加熱を、他の部分に
比べて増大することにより、伝熱律速による反応
速度低下を防止し、反応温度分布を均一にして、
しかも、メタノールが所定の分解率に到達するた
めに必要な反応管2の長さを短縮することができ
る。
In the device of the present invention, by heating the reaction tube 2 in parts in the length direction, the reaction occurs particularly violently.
By increasing the heating in the part where the catalyst layer temperature decreases compared to other parts, the reaction rate decrease due to heat transfer rate control is prevented, and the reaction temperature distribution is made uniform.
Moreover, the length of the reaction tube 2 necessary for methanol to reach a predetermined decomposition rate can be shortened.

また、運転が長期になるにしたがつて、反応が
激しく起る部分、すなわち第3図で温度分布の谷
ができる部分は、反応管2の入口近傍から出口方
向へと徐々に移行するが、本考案では、反応管2
の加熱を複数に分割しているため、触媒層温度を
検出して、常に反応の最も激しい部分の加熱を任
意に強くでき、反応器の性能を向上させることが
可能である。
Furthermore, as the operation becomes longer, the part where the reaction occurs intensely, that is, the part where the valley in the temperature distribution appears in FIG. 3, gradually shifts from near the inlet of the reaction tube 2 toward the outlet. In this invention, reaction tube 2
Since the heating is divided into multiple parts, it is possible to detect the temperature of the catalyst layer and increase the heating of the part where the reaction is most intense at any time, improving the performance of the reactor.

第3図に示した従来のメタノール分解反応装置
では、熱媒の選定に大きな難があつた。すなわ
ち、メタノール分解用熱媒としては、350〜400℃
が必要であるが、常温で液状の熱媒の最高使用温
度は380℃程度で、それ以上に温度を上げると分
解するため、使用温度範囲としてほとんど限界で
ある。一方、金属溶融塩タイプの熱媒は、上記温
度範囲では安定であるが、少しでも温度が降下す
ると、固化してラインが閉塞するなど、ハンドリ
ングがきわめて困難である。これに対し、本考案
の加熱方式では、熱媒を用いないために、このよ
うな問題がなく、低温から高温まで任意に温度制
御が可能である。
In the conventional methanol decomposition reactor shown in FIG. 3, there was a major difficulty in selecting a heating medium. In other words, as a heating medium for methanol decomposition, 350 to 400℃
However, the maximum operating temperature of a liquid heating medium at room temperature is approximately 380°C, and it decomposes if the temperature is raised higher than that, so this is almost the limit of the operating temperature range. On the other hand, a metal molten salt type heating medium is stable in the above temperature range, but if the temperature drops even a little, it solidifies and the line is blocked, making it extremely difficult to handle. On the other hand, the heating method of the present invention does not use a heating medium, so there is no such problem, and the temperature can be controlled arbitrarily from low to high temperatures.

また、熱媒使用の場合には、熱媒温度を種々変
えて、部分的、時間的に加熱の強弱をつけること
は不可能であるが、電磁誘導加熱の場合には、反
応管2の流れ方向に複数個の1次コイル12を巻
くことにより、各コイル間の二次電流は絶縁され
て、部分的に任意に加熱を制御することができる
ため、前述のように、反応管2の長さを短縮する
ことができ、また、触媒の活性、反応の生起具合
に最適な運転をすることができる。
In addition, when using a heating medium, it is impossible to vary the temperature of the heating medium to vary the heating strength locally or temporally, but in the case of electromagnetic induction heating, the flow of the reaction tube 2 By winding a plurality of primary coils 12 in the same direction, the secondary current between each coil is insulated, and heating can be partially controlled as desired. In addition, it is possible to operate optimally depending on the activity of the catalyst and the degree of reaction occurrence.

さらにまた、従来の方式では不可欠であつた熱
媒加熱装置が、本考案では不要となるため、装置
製作費、運転費が低減され、また、反応管2の配
列ピツチも狭めることができるため、反応器容積
も小さくできるなど、本考案の持つ効果はきわめ
て大きい。
Furthermore, since the heat medium heating device, which was indispensable in the conventional method, is not necessary in the present invention, the device manufacturing cost and operating cost are reduced, and the arrangement pitch of the reaction tubes 2 can also be narrowed. The effects of this invention are extremely large, such as being able to reduce the reactor volume.

なお、第2図Aに、本考案装置における反応管
2内の温度分布、Bに、本考案装置と従来装置と
の反応に要する反応管2の長さの比較を示す。第
2図より、本考案装置では、反応管2内の温度分
布がほぼ均一であり、また、反応に要する反応管
2の長さも従来装置に比べ、短縮することができ
ることがわかる。
FIG. 2A shows the temperature distribution inside the reaction tube 2 in the device of the present invention, and FIG. 2B shows a comparison of the length of the reaction tube 2 required for reaction between the device of the present invention and the conventional device. From FIG. 2, it can be seen that in the apparatus of the present invention, the temperature distribution within the reaction tube 2 is substantially uniform, and the length of the reaction tube 2 required for the reaction can be shortened compared to the conventional apparatus.

(考案の効果) 本考案装置により、反応管内の温度分布を均一
にコントロールすることができるので、長期の運
転に最適である。また、反応に要する反応管の長
さを短縮することができ、また、触媒の活性、反
応の生起具体に最適な運転を行うことができる。
さらには、従来装置では不可欠であつた熱媒加熱
装置が不要のため、装置製作費、運転費が低減さ
れ、また、反応管配列のピツチも狭めることがで
きるので、反応器容積を小さくすることができ
る。
(Effects of the invention) The device of the invention allows uniform control of temperature distribution within the reaction tube, making it ideal for long-term operation. Furthermore, the length of the reaction tube required for the reaction can be shortened, and the operation can be optimized for catalyst activity and reaction occurrence.
Furthermore, since there is no need for a heating medium heating device, which was indispensable in conventional equipment, equipment manufacturing costs and operating costs are reduced, and the pitch of the reaction tube arrangement can be narrowed, so the reactor volume can be reduced. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本考案によるメタノール分解反応装
置の概略図であり、第2図Aは、本考案装置にお
ける反応管内の温度分布、Bは、本考案装置と従
来装置との反応に要する反応管長さの比較図であ
る。第3図は、従来のメタノール分解反応装置の
概略図である。また、第4図は、従来装置におけ
る反応管内の温度分布を示す。図中の各記号は、
以下の意味を示す。 1……触媒層、2……反応管、3……熱・冷媒
室、4……反応原料供給管、5……原料室、6…
…反応生成物室、7……反応生成物排出管、8…
…熱・冷媒供給管、9……熱・冷媒排出管、10
……反応器鏡板、11……管板、12……1次コ
イル、13……断熱材、14……反応装置外壁。
Figure 1 is a schematic diagram of the methanol decomposition reactor according to the present invention, Figure 2 A is the temperature distribution inside the reaction tube in the apparatus of the present invention, and B is the length of the reaction tube required for the reaction between the apparatus of the present invention and the conventional apparatus. FIG. FIG. 3 is a schematic diagram of a conventional methanol decomposition reactor. Moreover, FIG. 4 shows the temperature distribution inside the reaction tube in the conventional apparatus. Each symbol in the diagram is
The following meanings are shown. DESCRIPTION OF SYMBOLS 1... Catalyst layer, 2... Reaction tube, 3... Heat/refrigerant chamber, 4... Reaction raw material supply pipe, 5... Raw material chamber, 6...
...Reaction product chamber, 7...Reaction product discharge pipe, 8...
...Heat/refrigerant supply pipe, 9...Heat/refrigerant discharge pipe, 10
... Reactor end plate, 11 ... Tube sheet, 12 ... Primary coil, 13 ... Heat insulating material, 14 ... Reactor outer wall.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] メタノールを分解して水素ガス、あるいは水素
と一酸化炭素の混合ガスを製造する反応装置にお
いて、触媒を充填した反応管群を長さ方向に複数
に分割し、各分解部に電磁誘導式加熱コイルを設
けたことを特徴とするメタノール分解反応装置。
In a reaction device that decomposes methanol to produce hydrogen gas or a mixed gas of hydrogen and carbon monoxide, a group of reaction tubes filled with catalyst is divided into multiple lengthwise sections, and each decomposition section is equipped with an electromagnetic induction heating coil. A methanol decomposition reaction device characterized by being provided with.
JP4285U 1985-01-07 1985-01-07 Expired JPH0235783Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4285U JPH0235783Y2 (en) 1985-01-07 1985-01-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4285U JPH0235783Y2 (en) 1985-01-07 1985-01-07

Publications (2)

Publication Number Publication Date
JPS61116730U JPS61116730U (en) 1986-07-23
JPH0235783Y2 true JPH0235783Y2 (en) 1990-09-28

Family

ID=30471570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4285U Expired JPH0235783Y2 (en) 1985-01-07 1985-01-07

Country Status (1)

Country Link
JP (1) JPH0235783Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274803A (en) * 2001-03-13 2002-09-25 Sekisui Chem Co Ltd Hydrogen storage and supply means

Also Published As

Publication number Publication date
JPS61116730U (en) 1986-07-23

Similar Documents

Publication Publication Date Title
US6409974B1 (en) Water gas shift process and apparatus for purifying hydrogen for use with fuel cells
JP3262354B2 (en) Reformer for non-adiabatic catalytic reaction
WO2010087791A1 (en) Distributively cooled, integrated water-gas shift reactor and vaporizer
US6306354B1 (en) Shift converter
US4355003A (en) Two pass endothermic generator
WO2009075692A2 (en) High efficiency reactor and process
EP0199878A2 (en) Apparatus for hydrocarbon fuel processing
JPH0326326A (en) Modifying equipment for fuel cell
GB1604750A (en) Process for providing metal oxides using an arc heater system and an arc heater system for producing metal oxides
JPH0235783Y2 (en)
KR100934716B1 (en) Reactor and Reaction Method
GB1565824A (en) Exothermic process and apparatus therefor
JP5812781B2 (en) Method and apparatus for producing gasoline and hydrogen from methanol
JPH045487B2 (en)
US2248993A (en) Apparatus for controlling chemical reactions
JP2937656B2 (en) Fuel cell power generation system
US3622266A (en) Method and apparatus for reaction heat recovery in catalytic high-pressure synthesis, particularly in ammonia and methanol synthesis
US3208830A (en) Atmosphere gas generator
JP2817236B2 (en) Methanol reforming reactor
CN109798508B (en) Steam reformer integrated with raw material preheating unit and hydrogen production system including the same
KR100498159B1 (en) Methanol autothermal reformer for hydrogen production
JPS63156532A (en) Vertical vapor-phase chemical reactor
JP3924039B2 (en) Reactor
CN219922890U (en) Heat absorption type gas generator
JP2003183003A (en) Multi-tube reactor