JPH0235738B2 - TETORAKARUBON SANNOSEIZOHOHO - Google Patents

TETORAKARUBON SANNOSEIZOHOHO

Info

Publication number
JPH0235738B2
JPH0235738B2 JP12104683A JP12104683A JPH0235738B2 JP H0235738 B2 JPH0235738 B2 JP H0235738B2 JP 12104683 A JP12104683 A JP 12104683A JP 12104683 A JP12104683 A JP 12104683A JP H0235738 B2 JPH0235738 B2 JP H0235738B2
Authority
JP
Japan
Prior art keywords
crystallization
weight
stage
acid
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12104683A
Other languages
Japanese (ja)
Other versions
JPS6013740A (en
Inventor
Hitoshi Oka
Shiro Shimazaki
Yoshinori Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP12104683A priority Critical patent/JPH0235738B2/en
Publication of JPS6013740A publication Critical patent/JPS6013740A/en
Publication of JPH0235738B2 publication Critical patent/JPH0235738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、テトラカルボン酸の製造方法に関
し、さらに詳しくはヒドロキシ−ジシクロペンタ
ジエンから、テトラカルボン酸である2,3,5
−トリカルボキシ−シクロペンチル酢酸(以下、
TCAと略称する)と1,2,3,4−シクロペ
ンタンテトラカルボン酸(以下、CTCと略称す
る)とを同時に効率よく製造する方法に関する。 一般にテトラカルボン酸は、ポリアミドまたは
ポリイミドの原料として、またエポキシ樹脂の硬
化剤等として有用な化合物であり、具体的にはピ
ロリメツト酸等の芳香族テトラカルボン酸、ブタ
ンテトラカルボン酸等の脂肪族テトラカルボン酸
がよく知られている。また前記TCAは次の式で
示される脂環族テトラカルボン酸である。 従来、このTCAの製造方法としては、工業的
に安価に得られるジシクロペンタジエンをオゾン
分解し、更に過酸化水素により酸化する方法(英
国特許第872355号明細書またはJ.Org.Chem.第28
巻、10号、2537〜2541頁、1963年)またはジシク
ロペンタジエンを水和して得られるヒドロキシ−
ジシクロペンタジエン(以下、H−DCPと略称
する)を硝酸酸化する方法(ドイツ特許第
1078120号明細書)が知られている。 本発明者らは、H−DCPから、硝酸酸化によ
りTCAを製造する方法について詳細に研究した
結果、その生成物はTCAとCTCと混合物である
ことを見出し、各有効成分を粉末として回収する
ことを目的として、更に鋭意研究を重ねた結果、
酸化後の反応液中のカルボン酸濃度を30〜60重量
%に調整して、第1段および第2段2段階の晶析
を行なうことにより、第1段目の晶析物から
TCA含量の高いテトラカルボン酸を更に第2段
目の晶析物からCTC含量の高いテトラカルボン
酸を、共に粉末として回収できることを見出し、
本発明に到達した。 本発明は、(a)ヒドロキシ−ジシクロペンタジエ
ンを硝酸溶液中に滴下して酸化反応を行わせる工
程、(b)酸化反応液をそのまま、または硝酸を一部
留去してカルボン酸濃度を30〜60重量%に調整
し、第1段目の晶析を行つて2,3,5−トリカ
ルボキシ−シクロペンチル酢酸の含量が80%以上
のテトラカルボン酸を回収する工程、および(c)第
1段目の晶析濾液から更に硝酸を一部留去して、
そのカルボン酸濃度を30〜60重量%に調整し、第
2段目の晶析を行つて1,2,3,4−シクロペ
ンタンテトラカルボン酸の含量が60%以上のテト
ラカルボン酸を回収する工程からなることを特徴
とする。 本発明の方法においては、まずH−DCPを硝
酸溶液中に滴下して、所望により触媒の存在下に
酸化反応を行なう。上記H−DCPは、通常ジシ
クロペンタジエンと水とを、硝酸、酸性陽イオン
交換樹脂等の触媒の存在下で反応させることによ
つて得られる。また酸化剤である硝酸は、通常30
重量%以上、好ましくは40〜90重量%の濃度のも
のが用いられる。H−DCPと硝酸の反応は、発
熱反応であるため、前述のように硝酸中にH−
DCPを滴下し、除熱しながら反応させるのが一
般的である。反応濃度は一般に20〜100℃が好ま
しい。この温度範囲内では温度が高い程、副生す
るCTCの割合が多くなり、一方温度が低い程
TCAの生成する割合が多くなる。なお、温度が
低すぎると反応速度が遅く、酸化に誘導期を生じ
る恐れがある。 前記反応において所望により用いられる触媒と
しては、例えばメタバナジン酸アンモニウム、五
酸化バナジウム、亜硝酸ソーダ、硝酸銅等の金属
塩が好ましいものとしてあげられる。これらはH
−DCPに対して一般に0.01〜5モル%の割合で添
加される。さらに前記酸化工程においては、反応
系の酸素分圧を0.5Kg/cm2G以上に保つて反応を
行なうことが好ましい。このように酸化反応を行
つた反応液中のカルボン酸濃度は、反応させる硝
酸量、更に反応系の酸素分圧により異なるが、通
常20〜50重量%である。 次いで、この反応液をそのまま、または硝酸を
一部留去して、そのカルボン酸濃度を30〜60重量
%、好ましくは40〜55重量%に調整し、第1段目
の晶析を行なう。このカルボン酸濃度が30重量%
未満の場合は、TCAの晶析量が少なく、分離効
率が悪くなり、一方、このカルボン酸濃度が60重
量%を越える場合は、粘度が高くなり、晶析しに
くくなる。晶析温度は、低すぎるとその速度が遅
く、時間がかかり、高すぎると溶解度が高くなつ
て晶析量が少なくなるが、一般には5〜50℃の間
が好ましい。なお、第1段目の晶析によつて、
TCAの含量が80%以上のテトラカルボン酸が得
られる。第1段目の晶析濾液のカルボン酸濃度は
通常40重量%以下である。 次いでこの晶析濾液から更に硝酸を一部留去し
て、そのカルボン酸濃度を30〜60重量%、好まし
くは40〜55重量%に調整し、第2段目の晶析を行
なう。第1段目の晶析と同様、このカルボン酸濃
度が30重量%未満の場合は、テトラカルボン酸の
晶析量が少なく、CTCが効率よく回収出来ず、
一方このテトラカルボン酸濃度が60重量%を越え
る場合は、粘度が高くなり晶析しにくくなる。晶
析温度は第1段目の晶析の場合と同様に5〜50℃
の間が好ましい。この第2段目の晶析によつて、
CTCの含量が60%以上のテトラカルボン酸が得
られる。 第2段目の晶析濾液は母液として、前記の酸化
反応に循環させて使用することが好ましい。この
第2段目の晶析濾液の循環使用により、生成した
テトラカルボン酸をより効率よく回収することが
できる。 本発明によればヒドロキシ−ジシクロペンタジ
エン(H−DCP)を、硝酸酸化し、得られる反
応液中のカルボン酸濃度を一定の濃度に調整し
て、2段階の晶析を行なうことにより、第1段目
および第2段目の晶析物から、それぞれ2,3,
5−トリカルボキシ−シクロペンチル酢酸
(TCA)および1,2,3,4−シクロペンタン
テトラカルボン酸(CTC)含量の高いテトラカ
ルボン酸を、共に粉末として効率よく回収するこ
とができる。 以下、本発明を実施例により更に具体的に説明
するが、本発明は、下記の実施例に制約されるも
のではない。 実施例 酸化反応器に72%硝酸22Kgおよびメタバナジン
酸アンモニウム5gを仕込み、50℃に昇温後、H
−DCPを700g/時で供給すると共に、反応液を
循環させ、該循環液を冷却しながら、反応器内の
温度を60℃に保つた。5時間H−DCPを供給し
た後、さらに6時間、反応で生成するガスが出な
くなるまで反応を続けた。 反応終了後の反応液中のカルボン酸濃度を測定
したところ、37重量%であつた。次いで硝酸を一
部留去してカルボン酸濃度を46重量%に調整し、
第1段目の晶析器に移して、20℃で16時間晶析を
行つた。この晶析液を濾過して得られた粉末をメ
チルイソブチルケトンで洗浄後、乾燥してテトラ
カルボン酸3.9Kgを得た。 第1段目の晶析濾液のカルボン酸濃度は35重量
%であつた。次にこの晶析濾液から更に硝酸を一
部留去して、カルボン酸濃度を45重量%に調整
し、第2段目の晶析器に移して、20℃で32時間晶
析を行つた。この晶析液を濾過して得られた粉末
をメチルイソブチルケトンで洗浄後、乾燥してテ
トラカルボン酸1.0Kgを得た。第2段目の晶析
濾液10.9Kgは、前述の酸化反応器に循環させ使用
した。 このようにして得られたテトラカルボン酸お
よびを、ジアゾメタンでメチルエステル化して
ガス・クロマトグラフ分析を行つた。得られた結
界を第1表に示す。表中の数字はピーク面積の%
を示す。
The present invention relates to a method for producing a tetracarboxylic acid, and more specifically, from hydroxy-dicyclopentadiene to a tetracarboxylic acid, 2,3,5
-tricarboxy-cyclopentyl acetic acid (hereinafter referred to as
The present invention relates to a method for simultaneously and efficiently producing 1,2,3,4-cyclopentanetetracarboxylic acid (hereinafter abbreviated as CTC). In general, tetracarboxylic acids are compounds useful as raw materials for polyamides or polyimides, and as curing agents for epoxy resins. Carboxylic acids are well known. Further, the TCA is an alicyclic tetracarboxylic acid represented by the following formula. Conventionally, this TCA has been produced by ozonolysis of dicyclopentadiene, which can be obtained industrially at low cost, and further oxidation with hydrogen peroxide (British Patent No. 872355 or J.Org.Chem. No. 28).
Vol. 10, pp. 2537-2541, 1963) or hydroxy-obtained by hydrating dicyclopentadiene.
A method of oxidizing dicyclopentadiene (hereinafter abbreviated as H-DCP) with nitric acid (German patent no.
1078120) is known. As a result of detailed research on the method of producing TCA from H-DCP by nitric acid oxidation, the present inventors discovered that the product is a mixture of TCA and CTC, and recovered each active ingredient as a powder. As a result of further intensive research,
By adjusting the carboxylic acid concentration in the reaction solution after oxidation to 30 to 60% by weight and performing two stages of crystallization, the first stage and the second stage, the crystallized product of the first stage is
We discovered that both tetracarboxylic acid with a high TCA content and tetracarboxylic acid with a high CTC content can be recovered as powder from the second stage crystallized product.
We have arrived at the present invention. The present invention involves (a) a step of dropping hydroxy-dicyclopentadiene into a nitric acid solution to perform an oxidation reaction, and (b) using the oxidation reaction solution as it is or by partially distilling off nitric acid to reduce the carboxylic acid concentration to 30%. to 60% by weight, and performing a first stage crystallization to recover a tetracarboxylic acid containing 80% or more of 2,3,5-tricarboxy-cyclopentyl acetic acid, and (c) a first step. Part of the nitric acid is further distilled off from the crystallization filtrate in the second stage,
The carboxylic acid concentration is adjusted to 30 to 60% by weight, and a second stage of crystallization is performed to recover a tetracarboxylic acid containing 60% or more of 1,2,3,4-cyclopentanetetracarboxylic acid. It is characterized by consisting of a process. In the method of the present invention, H-DCP is first added dropwise into a nitric acid solution, and an oxidation reaction is carried out in the presence of a catalyst if desired. The above H-DCP is usually obtained by reacting dicyclopentadiene and water in the presence of a catalyst such as nitric acid or an acidic cation exchange resin. In addition, nitric acid, which is an oxidizing agent, is usually
A concentration of at least 40% by weight, preferably 40 to 90% by weight is used. The reaction between H-DCP and nitric acid is an exothermic reaction, so as mentioned above, H-DCP is present in nitric acid.
Generally, DCP is added dropwise and reacted while removing heat. The reaction concentration is generally preferably 20 to 100°C. Within this temperature range, the higher the temperature, the higher the proportion of by-product CTC, while the lower the temperature
The proportion of TCA generated increases. Note that if the temperature is too low, the reaction rate will be slow and there is a possibility that an induction period will occur in the oxidation. Preferred examples of the catalyst optionally used in the reaction include metal salts such as ammonium metavanadate, vanadium pentoxide, sodium nitrite, and copper nitrate. These are H
- It is generally added in a proportion of 0.01 to 5 mol% relative to DCP. Further, in the oxidation step, it is preferable to carry out the reaction while maintaining the oxygen partial pressure in the reaction system at 0.5 kg/cm 2 G or more. The concentration of carboxylic acid in the reaction solution subjected to the oxidation reaction as described above varies depending on the amount of nitric acid to be reacted and the oxygen partial pressure of the reaction system, but is usually 20 to 50% by weight. Next, this reaction solution is used as it is or by partially distilling off the nitric acid, the carboxylic acid concentration is adjusted to 30 to 60% by weight, preferably 40 to 55% by weight, and the first stage crystallization is performed. This carboxylic acid concentration is 30% by weight
If it is less than 60% by weight, the amount of TCA crystallized will be small and the separation efficiency will be poor. On the other hand, if the carboxylic acid concentration exceeds 60% by weight, the viscosity will be high and crystallization will be difficult. If the crystallization temperature is too low, the speed will be slow and it will take time; if it is too high, the solubility will increase and the amount of crystallization will decrease; however, it is generally preferred to be between 5 and 50°C. In addition, by the first stage crystallization,
A tetracarboxylic acid with a TCA content of 80% or more is obtained. The carboxylic acid concentration of the first stage crystallization filtrate is usually 40% by weight or less. Next, a portion of nitric acid is further distilled off from this crystallization filtrate to adjust the carboxylic acid concentration to 30 to 60% by weight, preferably 40 to 55% by weight, and a second stage of crystallization is performed. As in the first stage of crystallization, if the carboxylic acid concentration is less than 30% by weight, the amount of tetracarboxylic acid crystallized is small and CTC cannot be efficiently recovered.
On the other hand, if the tetracarboxylic acid concentration exceeds 60% by weight, the viscosity becomes high and crystallization becomes difficult. The crystallization temperature is 5 to 50℃ as in the first stage crystallization.
Preferably between. Through this second stage crystallization,
A tetracarboxylic acid with a CTC content of 60% or more is obtained. The second-stage crystallization filtrate is preferably used as a mother liquor by being recycled to the oxidation reaction. By recycling the second-stage crystallization filtrate, the produced tetracarboxylic acid can be recovered more efficiently. According to the present invention, hydroxy-dicyclopentadiene (H-DCP) is oxidized with nitric acid, the carboxylic acid concentration in the resulting reaction solution is adjusted to a constant concentration, and two-stage crystallization is performed. From the first and second stage crystallized products, 2, 3,
Tetracarboxylic acids with high contents of 5-tricarboxy-cyclopentyl acetic acid (TCA) and 1,2,3,4-cyclopentanetetracarboxylic acid (CTC) can both be efficiently recovered as powder. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples. Example: Charge 22 kg of 72% nitric acid and 5 g of ammonium metavanadate into an oxidation reactor, raise the temperature to 50°C, and then
-DCP was fed at a rate of 700 g/hour, the reaction solution was circulated, and the temperature inside the reactor was maintained at 60° C. while cooling the circulating solution. After supplying H-DCP for 5 hours, the reaction was continued for another 6 hours until no more gas was produced by the reaction. After the reaction was completed, the carboxylic acid concentration in the reaction solution was measured and found to be 37% by weight. Next, part of the nitric acid was distilled off to adjust the carboxylic acid concentration to 46% by weight.
The mixture was transferred to the first stage crystallizer and crystallized at 20°C for 16 hours. The powder obtained by filtering this crystallized liquid was washed with methyl isobutyl ketone and then dried to obtain 3.9 kg of tetracarboxylic acid. The carboxylic acid concentration of the first stage crystallization filtrate was 35% by weight. Next, part of the nitric acid was further distilled off from this crystallization filtrate to adjust the carboxylic acid concentration to 45% by weight, and the mixture was transferred to a second stage crystallizer and crystallized at 20°C for 32 hours. . The powder obtained by filtering this crystallized liquid was washed with methyl isobutyl ketone and dried to obtain 1.0 kg of tetracarboxylic acid. 10.9 kg of the second stage crystallization filtrate was used by being circulated to the oxidation reactor described above. The tetracarboxylic acid thus obtained was methyl esterified with diazomethane and analyzed by gas chromatography. The obtained barrier is shown in Table 1. Numbers in the table are % of peak area
shows.

【表】 * 全シス型でなく、一部トランス型。
第1表の結果から、第1段目の晶析物からは
TCA含量の高いテトラカルボン酸が、また第2
段目の晶析物からはCTC含量の高いテトラカル
ボン酸が得られるのがわかる。 比較例 1 酸化反応器に70%硝酸28Kgおよびメタバナジン
酸5gを仕込み、50℃に昇温後、H−DCPを700
g/時で供給すると共に、反応液を循環させ、該
循環液を冷却しながら反応器内の温度を60℃に保
つた。5時間H−DCPを供給した後、さらに6
時間、反応で生成するガスが出なくなるまで反応
を続けた。 反応終了後の反応液中のカルボン酸濃度を測定
したところ、23重量%であり、硝酸を一部留去し
てカルボン酸濃度を29重量%に調整した後、第1
段目の晶析器に移して、20℃で16時間晶析を行つ
た。この晶析液をろ過して得られた粉末をメチル
イソブチルケトンで洗浄後、乾燥して、TCA純
度97%(実施例と同様にメチルエステル化してガ
ス・クロマトグラフ分析を行つた結果による、以
下の比較例の場合も同じ)のテトラカルボン酸
1.2Kgを得た。 比較例 2 比較例1と同様に反応を行つた後、硝酸を一部
留去してカルボン酸濃度を62重量%に調整し、第
1段目の晶析器に移して20℃で16時間晶析を行つ
たが、晶析液の粘度が高くテトラカルボン酸が晶
析しなかつた。 比較例 3 比較例1と同様に反応を行つた後、硝酸を一部
留去してカルボン酸濃度を45重量%に調整し、第
1段目の晶析器に移して、20℃で16時間晶析を行
つた。この晶析液をろ過して粉末をメチルイソブ
チルケトンで洗浄後、乾燥してTCA純度の95%
のテトラカルボン酸を2.9Kg得た。なお、第1段
目の晶析濾液のカルボン酸濃度は33重量%であつ
た。 次にこの晶析濾液からさらに硝酸を一部留去し
てカルボン酸濃度を62重量%に調整し、第2段目
の晶析器に移して、20℃で32時間晶析を行つた
が、晶析液の粘度が高く、テトラカルボン酸が晶
析しなかつた。 比較例 4 比較例1と同様に反応を行つた後、硝酸を一部
留去してカルボン酸濃度を45重量%に調整し、第
1段目の晶析器に移して20℃で16時間晶析を行つ
た。この晶析液をろ過して得られた粉末をメチル
イソブチルケトンで洗浄後、乾燥してTCA純度
95%のテトラカルボン酸を2.9Kg得た。第1段目
の晶析濾液のカルボン酸濃度は33重量%であつ
た。 次にこの晶析濾液からさらに硝酸を一部留去し
てカルボン酸濃度29重量%に調整し、第2段目の
晶析を行つたが、結果として純度の高いCTCの
テトラカルボン酸が得られなかつた。
[Table] * Not all cis type, but some trans type.
From the results in Table 1, from the first stage crystallized product,
Tetracarboxylic acids with high TCA content are also
It can be seen that a tetracarboxylic acid with a high CTC content can be obtained from the crystallized product in the first step. Comparative Example 1 28 kg of 70% nitric acid and 5 g of metavanadate were charged into an oxidation reactor, and after raising the temperature to 50°C, 700 kg of H-DCP was charged.
The reactor was supplied at a rate of 1 g/hour, and the reaction solution was circulated, and the temperature inside the reactor was maintained at 60° C. while cooling the circulating solution. After feeding H-DCP for 5 hours, an additional 6
The reaction was continued for several hours until no more gas was produced. The carboxylic acid concentration in the reaction solution after the reaction was measured and found to be 23% by weight. After partially distilling off nitric acid to adjust the carboxylic acid concentration to 29% by weight, the first
The mixture was transferred to a second stage crystallizer and crystallized at 20°C for 16 hours. The powder obtained by filtering this crystallization solution was washed with methyl isobutyl ketone, dried, and the TCA purity was 97% (according to the results of methyl esterification and gas chromatography analysis in the same manner as in the example). The same applies to the comparative example of ) tetracarboxylic acid
Obtained 1.2Kg. Comparative Example 2 After carrying out the reaction in the same manner as in Comparative Example 1, part of the nitric acid was distilled off to adjust the carboxylic acid concentration to 62% by weight, and the mixture was transferred to the first stage crystallizer and heated at 20°C for 16 hours. Crystallization was performed, but the viscosity of the crystallization solution was high and the tetracarboxylic acid did not crystallize. Comparative Example 3 After carrying out the reaction in the same manner as in Comparative Example 1, part of the nitric acid was distilled off to adjust the carboxylic acid concentration to 45% by weight, and the mixture was transferred to the first stage crystallizer and heated at 20°C for 16% by weight. Time crystallization was performed. This crystallized solution was filtered and the powder was washed with methyl isobutyl ketone and dried to achieve a TCA purity of 95%.
2.9 kg of tetracarboxylic acid was obtained. The carboxylic acid concentration of the first stage crystallization filtrate was 33% by weight. Next, part of the nitric acid was further distilled off from this crystallization filtrate to adjust the carboxylic acid concentration to 62% by weight, and the mixture was transferred to a second stage crystallizer and crystallized at 20°C for 32 hours. The viscosity of the crystallization solution was high, and the tetracarboxylic acid did not crystallize. Comparative Example 4 After carrying out the reaction in the same manner as in Comparative Example 1, part of the nitric acid was distilled off to adjust the carboxylic acid concentration to 45% by weight, and the mixture was transferred to the first stage crystallizer and heated at 20°C for 16 hours. Crystallization was performed. The powder obtained by filtering this crystallization solution was washed with methyl isobutyl ketone and dried to obtain TCA purity.
2.9 kg of 95% tetracarboxylic acid was obtained. The carboxylic acid concentration of the first stage crystallization filtrate was 33% by weight. Next, part of the nitric acid was further distilled off from this crystallization filtrate to adjust the carboxylic acid concentration to 29% by weight, and a second stage of crystallization was performed, resulting in highly pure CTC tetracarboxylic acid. I couldn't help it.

Claims (1)

【特許請求の範囲】[Claims] 1 (a)ヒドロキシ−ジシクロペンタジエンを硝酸
溶液中に滴下して酸化反応を行わせる工程、(b)酸
化反応液をそのまま、または硝酸を一部留去して
カルボン酸濃度を30〜60重量%に調整し、第1段
目の晶析を行つて2,3,5−トリカルボキシ−
シクロペンチル酢酸を主成分とするテトラカルボ
ン酸を回収する工程、および(c)第1段目の晶析濾
液から更に硝酸を一部留去して、そのカルボン酸
濃度を30〜60重量%に調整し、第2段目の晶析を
行つて1,2,3,4−シクロペンタンテトラカ
ルボン酸を主成分とするテトラカルボン酸を回収
する工程を含むことを特徴とするテトラカルボン
酸の製造方法。
1 (a) Step of dropping hydroxy-dicyclopentadiene into a nitric acid solution to perform an oxidation reaction, (b) Using the oxidation reaction solution as it is or by partially distilling off nitric acid to reduce the carboxylic acid concentration to 30 to 60% by weight % and perform the first stage crystallization to obtain 2,3,5-tricarboxy-
A step of recovering tetracarboxylic acid whose main component is cyclopentyl acetic acid, and (c) further distilling off a portion of nitric acid from the first-stage crystallization filtrate to adjust the carboxylic acid concentration to 30 to 60% by weight. A method for producing a tetracarboxylic acid, comprising the step of performing a second stage of crystallization to recover a tetracarboxylic acid whose main component is 1,2,3,4-cyclopentanetetracarboxylic acid. .
JP12104683A 1983-07-05 1983-07-05 TETORAKARUBON SANNOSEIZOHOHO Expired - Lifetime JPH0235738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12104683A JPH0235738B2 (en) 1983-07-05 1983-07-05 TETORAKARUBON SANNOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12104683A JPH0235738B2 (en) 1983-07-05 1983-07-05 TETORAKARUBON SANNOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS6013740A JPS6013740A (en) 1985-01-24
JPH0235738B2 true JPH0235738B2 (en) 1990-08-13

Family

ID=14801481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12104683A Expired - Lifetime JPH0235738B2 (en) 1983-07-05 1983-07-05 TETORAKARUBON SANNOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0235738B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631734U (en) * 1992-01-30 1994-04-26 龍本 玲子 Acupoint display type electric therapy device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238214A (en) * 1985-08-12 1987-02-19 Takara Kogyo Kk Filter apparatus
JP3492325B2 (en) 2000-03-06 2004-02-03 キヤノン株式会社 Method of manufacturing image display device
WO2011131649A1 (en) 2010-04-23 2011-10-27 Rolic Ag Photoaligning material
EP2739601B1 (en) 2011-08-02 2016-03-16 Rolic AG Photoaligning material
KR102193256B1 (en) 2011-08-25 2020-12-23 롤리크 아게 Photoreactive compounds
CN103889944A (en) 2011-10-03 2014-06-25 罗利克股份公司 Photoaligning materials
JP6145453B2 (en) 2011-10-03 2017-06-14 ロリク アーゲーRolic Ag Optical aligning material
US10696795B2 (en) 2015-11-11 2020-06-30 Rolic Technologies AG Photoaligning materials
KR20190067847A (en) 2016-10-11 2019-06-17 롤릭 테크놀로지스 아게 Photo-oriented copolymer material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631734U (en) * 1992-01-30 1994-04-26 龍本 玲子 Acupoint display type electric therapy device

Also Published As

Publication number Publication date
JPS6013740A (en) 1985-01-24

Similar Documents

Publication Publication Date Title
US2557282A (en) Adipic acid process
JPH0231681B2 (en) TETORAKARUBON SANNOSEIZOHOHO
JPH0235738B2 (en) TETORAKARUBON SANNOSEIZOHOHO
JP3085776B2 (en) How to recover adipic acid
JP2911626B2 (en) Preparation of carboxylic acid chloride
JP3303173B2 (en) Method for producing trimellitic acid
US2286559A (en) Oxidation of alicyclic ketones
JP3057876B2 (en) Preparation of biphenyltetracarboxylic dianhydride
JPH10114734A (en) Production of highly pure fluoroalkylsulfonic acid anhydride
JPH08225485A (en) Method of obtaining adipic acid
US3592847A (en) Process for the purification of terephthalic acid
US3444194A (en) Process for the preparation of adipic acid
US5523472A (en) Process for the preparation of 5-fluoroanthranilic acid
JP3218778B2 (en) Method for purifying N-methyl-2-pyrrolidone
EP0431589B1 (en) Process for producing copper formate
JPH029568B2 (en)
US3048628A (en) Oxidation process
EP0789682B1 (en) Catalyst recovery and dialkyl ester synthesis from an adipic acid synthesis waste stream
JPS58120507A (en) Continuous manufacture of hydrazine
JPH0316937B2 (en)
JPS6338983B2 (en)
JPS603057B2 (en) Method for producing P-nitrobenzoic acid
US4123443A (en) Process for the preparation of bromoacetic acid and esters thereof
JPH10101603A (en) Production of 1,2-indanediols
JPS5819655B2 (en) Method for producing methylglyoxal