JPH0235630B2 - - Google Patents

Info

Publication number
JPH0235630B2
JPH0235630B2 JP58116358A JP11635883A JPH0235630B2 JP H0235630 B2 JPH0235630 B2 JP H0235630B2 JP 58116358 A JP58116358 A JP 58116358A JP 11635883 A JP11635883 A JP 11635883A JP H0235630 B2 JPH0235630 B2 JP H0235630B2
Authority
JP
Japan
Prior art keywords
mold
ferrite
content
relationship
cast iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58116358A
Other languages
Japanese (ja)
Other versions
JPS609572A (en
Inventor
Tatsuhiko Kato
Masayuki Kagitani
Tamotsu Ito
Hideto Matsukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP11635883A priority Critical patent/JPS609572A/en
Publication of JPS609572A publication Critical patent/JPS609572A/en
Publication of JPH0235630B2 publication Critical patent/JPH0235630B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金型鋳造における鋳放しフエライトを
基地組織とする球状黒鉛鋳鉄の製造方法に関す
る。一般に、砂型鋳造においては、基地組織が鋳
放しフエライトである球状黒鉛鋳鉄の製造法は確
立されているが、しかし鋳鉄、鋼等の材質からな
る従来の金型に溶湯を鋳込む金型鋳造において
は、溶湯は急冷効果によつて白銑化したり、或い
はパーライト化するため、鋳込み品を取り出した
あと、焼鈍処理して基地組織をフエライト化し、
引張り強さ、伸び等の機械的性質を高める必要が
あつた。しかし、焼鈍処理すると、スケールが発
生し、金型鋳造の長所である製品の寸法精度を損
う恐れがあり、また焼鈍工程を経るため、経済的
にも不利であるとともに、生産性向上の観点から
も問題とされていた。 本発明はこれらの問題点に鑑みて成されたもの
であつて焼鈍工程を経ることなしに、高い伸びと
耐力を有し、かつ衝撃力に強い機械的性質を備え
た金型鋳造における鋳放しフエライトを基地組織
とする球状黒鉛鋳鉄の製造方法を提供することを
目的とするものである。 すなわち、本発明の特徴とするところは、熱伝
導率の高い銅合金製金型(0.2〜0.8cal/cm2
sec・℃)に注湯後、金型を急冷することにより、
金型キヤビテイ内における製品の冷却速度を早め
て、製品の成分中に存在する炭素原子(C)を球状黒
鉛化して球状黒鉛の核数を増加するとともに、チ
ル、即ちセメンタイト(Fe3C)となる炭素原子
量を極力少なくなるようにしたものである。 以下に本発明を具体的に説明する。マンガン
(Mn)は炭化物安定化元素で、炭素原子と鉄
(Fe)を結合させてセメンタイト(Fe3C)として
安定化させる作用があるため、極力少なくする必
要があり、従つてマンガン含有量は0.6%以下で
あることが望ましい。また、硫黄(S)は黒鉛の
球状化を阻害する元素であるため0.03%以下の含
有量が良い。さらにマグネシユーム(Mg)は球
状化促進元素であると同時に、強力な炭化物安定
化元素であるため、0.015〜0.03%程度の含有量
にするのが良い。すなわち、マグネシユームの含
有量を0.015%以下にすると、黒鉛の球状化不良
が発生する傾向があり、また0.03%以上にする
と、炭化物安定化元素として作用して基地組織中
にパーライト或いはセメンタイトが形成されやす
くなり問題がある。そしてカルシユーム(Ca)、
希土類元素量(Re)もできるだけ少ない方が良
い。また、シリコン(Si)含有量は2.7%以下に
すると、黒鉛化が減少するため、2.7%以上が望
ましい。また、注湯する直前に接種する接種剤は
精製Fe−Si系を使用する。金型は熱伝導率の高
い銅合金製金型(0.2〜0.8cal/cm2sec・℃)を使
用し、注湯完了と同時に、冷却水を金型に通水し
て金型を強制冷却する。すなわち、金型の熱伝導
率が高いため、金型キヤビテイ内に注湯された溶
湯の熱は金型側に熱移動し、また、冷却水によつ
て金型は冷却されるため、一層、溶湯熱は金型側
に移動し、金型キヤビテイ内の溶湯は急冷され、
過冷現象を起こす。その結果、黒鉛粒数が著しく
増加することにより、黒鉛粒子間同志の距離が減
少し、Ar1変態時における炭素原子の黒鉛粒子へ
の析出が容易となり、フエライト化が促進され
る。 次に、本発明の実施例について説明する。 実施例 1 100重量部の元湯に、第1表の化学成分から成
る球状化処理剤を1.2重量%添加して、球状化処
理するとともに、第2表に示す化学成分の接種剤
を0.6重量%接種、溶解した第3表の含有成分か
ら成る注湯用の溶湯を、熱伝導率0.6cal/cm2
sec・℃の銅合金製金型に鋳込んで第1図のよう
な鋳造品を得た場合におけるSi(%)とフエライ
ト面積率(%)の関係を第2図に、またSi(%)
と伸び(%)、及び耐力(Kg/mm2)、並びに衝撃値
(Kg・m/cm2)の関係を、第3図、第4図及び第
5図にそれぞれ示す。 尚、第3表の含有成分率において、Siの含有成
分率が3.04%の場合の組織写真を第6図に示す。
The present invention relates to a method for manufacturing spheroidal graphite cast iron using as-cast ferrite as a base structure in die casting. In general, in sand casting, the manufacturing method of spheroidal graphite cast iron whose base structure is as-cast ferrite has been established. Because the molten metal turns white or becomes pearlite due to the rapid cooling effect, after the cast product is removed, it is annealed to turn the base structure into ferrite.
There was a need to improve mechanical properties such as tensile strength and elongation. However, annealing generates scale, which may impair the dimensional accuracy of the product, which is an advantage of die casting.Also, since it requires an annealing process, it is economically disadvantageous, and from the perspective of improving productivity. It was also considered a problem. The present invention has been developed in view of these problems, and is an as-cast material in die casting that has high elongation and yield strength, and has mechanical properties that are resistant to impact forces, without going through an annealing process. The object of the present invention is to provide a method for manufacturing spheroidal graphite cast iron having ferrite as a base structure. In other words, the feature of the present invention is that the mold made of copper alloy with high thermal conductivity (0.2 to 0.8 cal/cm 2
By rapidly cooling the mold after pouring the metal to
By accelerating the cooling rate of the product in the mold cavity, the carbon atoms (C) present in the components of the product are turned into spheroidal graphite, increasing the number of spheroidal graphite nuclei. The amount of carbon atoms is reduced as much as possible. The present invention will be specifically explained below. Manganese (Mn) is a carbide stabilizing element and has the effect of binding carbon atoms and iron (Fe) to stabilize them as cementite (Fe 3 C), so it must be kept as low as possible. It is desirable that it be 0.6% or less. Furthermore, since sulfur (S) is an element that inhibits the spheroidization of graphite, the content is preferably 0.03% or less. Furthermore, since magnesium (Mg) is an element that promotes spheroidization and at the same time is a strong carbide stabilizing element, the content is preferably about 0.015 to 0.03%. That is, if the magnesium content is less than 0.015%, graphite tends to become spheroidized, and if it is more than 0.03%, it acts as a carbide stabilizing element and pearlite or cementite is formed in the matrix structure. It becomes easier and there is a problem. and calcium (Ca),
The amount of rare earth elements (Re) should also be as small as possible. Furthermore, if the silicon (Si) content is 2.7% or less, graphitization will decrease, so it is desirable that the silicon (Si) content be 2.7% or more. In addition, a purified Fe-Si based inoculant is used as the inoculant to be inoculated immediately before pouring. The mold is made of a copper alloy with high thermal conductivity (0.2 to 0.8 cal/cm 2 sec・℃), and as soon as the pouring is complete, cooling water is forced to cool the mold by passing it through the mold. do. In other words, because the mold has high thermal conductivity, the heat of the molten metal poured into the mold cavity transfers to the mold side, and the mold is cooled by cooling water, so The heat of the molten metal moves to the mold side, and the molten metal in the mold cavity is rapidly cooled.
Causes overcooling phenomenon. As a result, the number of graphite particles increases significantly, which reduces the distance between graphite particles, facilitates precipitation of carbon atoms into graphite particles during Ar 1 transformation, and promotes ferrite formation. Next, examples of the present invention will be described. Example 1 To 100 parts by weight of the base water, 1.2% by weight of a spheroidizing agent consisting of the chemical components shown in Table 1 was added for spheroidizing treatment, and 0.6 weight % of an inoculant with the chemical components shown in Table 2 was added. % inoculation, the melted metal for pouring consisting of the dissolved ingredients listed in Table 3 has a thermal conductivity of 0.6 cal/ cm2 .
Figure 2 shows the relationship between Si (%) and ferrite area ratio (%) when a cast product as shown in Figure 1 is obtained by casting into a copper alloy mold at sec/°C.
The relationships among the elongation (%), yield strength (Kg/mm 2 ), and impact value (Kg·m/cm 2 ) are shown in FIGS. 3, 4, and 5, respectively. Incidentally, FIG. 6 shows a photograph of the structure when the Si content ratio is 3.04% in Table 3.

【表】【table】

【表】【table】

【表】 実施例 2 前記実施例1とMnの含有量のみ異にし、他元
素は第3表と同じ含有成分から成る第4表に示す
注湯用の溶湯を、熱伝導率0.6cal/cm2・sec・℃
の銅合金製金型に鋳込んで第1図のような鋳造品
を得た場合におけるSi(%)とフエライト面積率
(%)の関係を、第2図に、またSi(%)と伸び
(%)、及び耐力(Kg/mm2)、並びに衝撃値(Kg・
m/cm2)の関係を、第3図、第4図及び第5図
に、それぞれ示す。
[Table] Example 2 The molten metal for pouring shown in Table 4, which differed from Example 1 in the content of Mn only and had the same content as in Table 3 for other elements, was heated to a thermal conductivity of 0.6 cal/cm. 2・sec・℃
Figure 2 shows the relationship between Si (%) and ferrite area ratio (%) when casting into a copper alloy mold as shown in Figure 1, and the relationship between Si (%) and elongation. (%), proof stress (Kg/mm 2 ), and impact value (Kg・
m/cm 2 ) are shown in FIGS. 3, 4, and 5, respectively.

【表】 即ち、上記第2図は、Mnの含有率が0.12%で、
Si(%)の含有成分率が2.7%以上の場合、フエラ
イト地の面積率が85%以上占めていることを示し
ている。そして、この場合のSi(%)と伸び(%)
の関係を第3図に、Si(%)と耐力(Kg/mm2)の
関係を第4図に、またSi(%)と衝撃値(Kg・
m/cm2)の関係を第5図に、それぞれ示す。これ
らの第3図、第4図、及び第5図のグラフより、
鋳鉄品は高い伸びと高い耐力値を有し、かつ衝撃
力に強いことがわかる。一方、Mnの含有率が
0.35%になると、第2図〜第5図のグラフより、
フエライト地の面積率は若干少なくなるととも
に、伸び及び衝撃値とも若干低くなり、また耐力
は高くなりすぎるため、脆くなつて加工性が悪く
なるなどの問題がある。 以上の説明によつて明らかなように、本発明に
おける鋳鉄品は焼鈍工程を経ることなしに、高い
伸びと耐力を備え、かつ強い衝撃力を有するた
め、焼鈍によるスケールの発生がなく寸法精度が
維持できるとともに、経済的にも有利で、かつ生
産性が向上するなどの効果を有し、この種の業界
に寄与する効果は著大である。
[Table] That is, in Figure 2 above, the Mn content is 0.12%,
When the content ratio of Si (%) is 2.7% or more, it indicates that the area ratio of ferrite area is 85% or more. And Si (%) and elongation (%) in this case
Figure 3 shows the relationship between Si (%) and proof stress (Kg/mm 2 ), and Figure 4 shows the relationship between Si (%) and impact value (Kg/mm 2 ).
m/cm 2 ) is shown in FIG. 5. From these graphs in Figures 3, 4, and 5,
It can be seen that cast iron products have high elongation, high yield strength, and are resistant to impact forces. On the other hand, the Mn content
When it reaches 0.35%, from the graphs in Figures 2 to 5,
The area ratio of the ferrite base is slightly lower, the elongation and impact value are also slightly lower, and the yield strength is too high, resulting in problems such as brittleness and poor workability. As is clear from the above explanation, the cast iron products of the present invention have high elongation, proof strength, and strong impact force without undergoing an annealing process, so there is no scale generation due to annealing and dimensional accuracy is maintained. It can be maintained, is economically advantageous, and has the effect of improving productivity, making it a significant contribution to this type of industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いた鋳鉄品の断面図、第2
図はSi(%)とフエライト面積率(%)の関係を
示すグラフ、第3図はSi(%)と伸び(%)の関
係を示すグラフ、第4図はSi(%)と耐力(Kg/
mm2)の関係を示すグラフ、第5図はSi(%)と衝
撃値(Kg・m/cm2)の関係を示すグラフ、第6図
は本発明における鋳鉄品の組織写真である。
Figure 1 is a sectional view of the cast iron product used in the present invention, Figure 2 is a cross-sectional view of the cast iron product used in the present invention;
The figure is a graph showing the relationship between Si (%) and ferrite area ratio (%), Figure 3 is a graph showing the relationship between Si (%) and elongation (%), and Figure 4 is a graph showing the relationship between Si (%) and proof stress (Kg /
mm 2 ), FIG. 5 is a graph showing the relationship between Si (%) and impact value (Kg·m/cm 2 ), and FIG. 6 is a photograph of the structure of the cast iron product according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 化学成分がC:3.4〜4.0%、Si≧2.7%、Mn
≦0.3%、P≦0.1%、S≦0.02%、Mg≦0.03%及
び残部Feから成る溶湯を、材質が銅合金(熱伝
導率:0.2〜0.8cal/cm2・S・℃)製の水冷金型
に、鋳込むことを特徴とする金型鋳造における鋳
放しフエライトを基地組織とする球状黒鉛鋳鉄の
製造方法。
1 Chemical composition: C: 3.4-4.0%, Si≧2.7%, Mn
A molten metal consisting of ≦0.3%, P≦0.1%, S≦0.02%, Mg≦0.03%, and the balance Fe is cooled with water made of a copper alloy (thermal conductivity: 0.2 to 0.8 cal/ cm2・S・℃). A method for manufacturing spheroidal graphite cast iron using as-cast ferrite as a base structure in mold casting, characterized by casting into a mold.
JP11635883A 1983-06-28 1983-06-28 Production of spheroidal graphite cast iron containing as-cast ferrite as base structure in die casting Granted JPS609572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11635883A JPS609572A (en) 1983-06-28 1983-06-28 Production of spheroidal graphite cast iron containing as-cast ferrite as base structure in die casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11635883A JPS609572A (en) 1983-06-28 1983-06-28 Production of spheroidal graphite cast iron containing as-cast ferrite as base structure in die casting

Publications (2)

Publication Number Publication Date
JPS609572A JPS609572A (en) 1985-01-18
JPH0235630B2 true JPH0235630B2 (en) 1990-08-13

Family

ID=14684980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11635883A Granted JPS609572A (en) 1983-06-28 1983-06-28 Production of spheroidal graphite cast iron containing as-cast ferrite as base structure in die casting

Country Status (1)

Country Link
JP (1) JPS609572A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105689692B (en) * 2014-11-29 2018-07-10 中国科学院金属研究所 A kind of method for preparing congruent axialite casting in bronze base

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728669A (en) * 1980-07-28 1982-02-16 Takaoka Kogyo Kk Method for manufacturing thin as-cated spheroidal graphite cast iron casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728669A (en) * 1980-07-28 1982-02-16 Takaoka Kogyo Kk Method for manufacturing thin as-cated spheroidal graphite cast iron casting

Also Published As

Publication number Publication date
JPS609572A (en) 1985-01-18

Similar Documents

Publication Publication Date Title
JPH0239563B2 (en)
US4904447A (en) Low thermal expansion casting alloy having excellent machinability
US4002502A (en) Aluminum base alloys
JP3597211B2 (en) Spheroidal graphite cast iron with excellent high-temperature strength
JPH0235630B2 (en)
US3762915A (en) Method for casting gray cast iron composition
JP2634707B2 (en) Manufacturing method of spheroidal graphite cast iron
US4131456A (en) Chill-free foundry iron
JPS63483B2 (en)
JP2777028B2 (en) Manufacturing method of spheroidal graphite cast iron
JP2659352B2 (en) Manufacturing method of Bamikiura graphite cast iron
JPH0146562B2 (en)
JP2002146468A (en) Cast iron having high vibration damping capacity and its production method
JPS59197345A (en) Production of cv cast iron
JPH0776753A (en) Thin spheroidal graphite cast iron product and production thereof
US3132936A (en) Refining of irons and steels
JP2001321917A (en) Method for manufacturing thick spheroidal graphite cast iron product
JPS6240403B2 (en)
JP2659353B2 (en) Manufacturing method of tough gray cast iron
US3297430A (en) Method for producing ledeburitic steel showing a globular solidified structure
JPS62161909A (en) Additive for manufacturing spheroidal graphite cast iron and vermicular cast iron
JPH08176656A (en) Production of cast iron with high ductility
US1017906A (en) Method of producing wrought shapes of manganese steel.
JPS6052516A (en) Manufacture of tough and hard gray cast iron
JPS5946285B2 (en) Alloy for cast iron inoculation