JPH0235495B2 - - Google Patents

Info

Publication number
JPH0235495B2
JPH0235495B2 JP57230989A JP23098982A JPH0235495B2 JP H0235495 B2 JPH0235495 B2 JP H0235495B2 JP 57230989 A JP57230989 A JP 57230989A JP 23098982 A JP23098982 A JP 23098982A JP H0235495 B2 JPH0235495 B2 JP H0235495B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
reference voltage
signal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57230989A
Other languages
Japanese (ja)
Other versions
JPS59122225A (en
Inventor
Osamu Shinchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TEKISASU INSUTSURUMENTSU KK
Original Assignee
NIPPON TEKISASU INSUTSURUMENTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TEKISASU INSUTSURUMENTSU KK filed Critical NIPPON TEKISASU INSUTSURUMENTSU KK
Priority to JP57230989A priority Critical patent/JPS59122225A/en
Publication of JPS59122225A publication Critical patent/JPS59122225A/en
Publication of JPH0235495B2 publication Critical patent/JPH0235495B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • H03K5/2472Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors
    • H03K5/2481Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors with at least one differential stage

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Control Of Electrical Variables (AREA)
  • Manipulation Of Pulses (AREA)

Description

【発明の詳細な説明】 本発明は半導体集積回路に関し、特に集積回路
内で入力信号が基準電圧レベルを横切る時に出力
信号を変化させる基準電圧検出回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor integrated circuits, and more particularly to a reference voltage detection circuit that changes an output signal when an input signal crosses a reference voltage level within an integrated circuit.

種々の電子回路において入力信号が所定基準電
圧を横切る瞬間を検出する必要がある場合があ
る。特に入力信号が接地電圧(零電圧)を横切る
瞬間を検出する零クロス検出器が位相制御回路等
において需要が高い。しかし通常の集積回路
(IC)は接地電圧と電源電圧との間で作動するた
め、ICチツプ内で接地電圧や作動電圧とは逆極
性の電圧を検出できるものはなかつた。これらの
基準電圧検出器は個別部品を用いてプリント基盤
上に組んでいた為費用や信頼性、プリント基盤の
小型化等に問題が多かつた。
In various electronic circuits, it may be necessary to detect the moment when an input signal crosses a predetermined reference voltage. In particular, zero-cross detectors that detect the moment when an input signal crosses a ground voltage (zero voltage) are in high demand in phase control circuits and the like. However, since normal integrated circuits (ICs) operate between the ground voltage and the power supply voltage, there was no IC chip that could detect voltages with the opposite polarity to the ground voltage or operating voltage. Since these reference voltage detectors were assembled on a printed circuit board using individual parts, there were many problems in terms of cost, reliability, miniaturization of the printed circuit board, etc.

一般にインバータ等のロジツク回路における参
照電圧は与えられた電源電圧VSS(OV)とVDD(C
―MOS,N―MOSでは正極性、P―MOSでは
負極性)との間の作動電圧範囲内に設定される。
さらにプロセスパラメータや回路定数で決まるあ
るオーバードライブ電圧があり、入力電圧が(参
照電圧+オーバードライブ電圧)を超えないと出
力信号は反転しない。したがつて従来の回路では
参照電圧として零電圧を印加し、入力信号として
正負に変化する信号を印加しても、入力信号が零
電圧をクロスする点を正確に検出することはでき
なかつた。さらに作動電圧と逆極性の参照電圧を
用いることも集積回路の構造上不可能であつた。
In general, the reference voltage in logic circuits such as inverters is the given power supply voltage V SS (OV) and V DD (C
- Positive polarity for MOS and N-MOS, negative polarity for P-MOS).
Furthermore, there is a certain overdrive voltage determined by process parameters and circuit constants, and the output signal will not be inverted unless the input voltage exceeds (reference voltage + overdrive voltage). Therefore, in conventional circuits, even if a zero voltage is applied as a reference voltage and a signal that changes between positive and negative is applied as an input signal, it is not possible to accurately detect the point where the input signal crosses the zero voltage. Furthermore, it is also impossible to use a reference voltage with a polarity opposite to the operating voltage due to the structure of the integrated circuit.

本発明は集積回路内で入力信号が接地電圧をク
ロスする瞬間をも高精度度に検出できる基準電圧
検出回路を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a reference voltage detection circuit that can detect with high precision even the moment when an input signal crosses a ground voltage within an integrated circuit.

本発明によれば、デプレツシヨンモード絶縁ゲ
ート電界効果トランジスタ(IG―FET)を含み、
実質的に同一構成の1対の分圧回路を入力回路、
参照電圧回路として用い、各出力を比較回路で比
較増幅することにより、安定で高精度の基準電圧
検出ができる。簡単で経済的な回路構成であるに
もかかわらず電源電圧変動や温度変化に対しても
極めて安定動作が得られる。さらに全構成要素を
IG―FETで構成でき、プロセス的にも従来のま
まの工程で製造出来る。入力回路と参照電圧回路
とをデプレツシヨンモードIG―FETのみで構成
すれば製造プロセスにおけるパラメータの変動、
露光、エツチング工程のばらつき等に対しても安
定であり、製造が容易で、歩留りを高くすること
ができる。
According to the invention, a depletion mode insulated gate field effect transistor (IG-FET) is included;
an input circuit including a pair of voltage divider circuits having substantially the same configuration;
By using it as a reference voltage circuit and comparing and amplifying each output with a comparator circuit, stable and highly accurate reference voltage detection can be achieved. Despite having a simple and economical circuit configuration, extremely stable operation can be achieved even with power supply voltage fluctuations and temperature changes. Furthermore, all the components
It can be configured with IG-FETs and can be manufactured using conventional processes. By configuring the input circuit and reference voltage circuit using only depletion mode IG-FETs, parameter fluctuations during the manufacturing process can be avoided.
It is stable against variations in exposure and etching processes, is easy to manufacture, and can have a high yield.

以下実施例に沿つて説明する。第1図におい
て、零電圧検出回路は入力回路1、参照電圧回路
2、比較回路3、出力バツフア回路4を含む。入
力回路1、参照電圧回路2は入力端子5の入力電
圧VIN,VSSラインの接地電圧VG4=0を受けて、
作動電圧範囲(VSS−VDD)内の比較用電圧IN
参照電圧VREFを発生する。INはVINと逆方向に変
化する反転信号である。デプレツシヨンIG―
FET Q1,Q3は全く同等の特性を有し(Q1
Q3)、ゼロバイアスされて所定の抵抗値を示す。
デプレツシヨンIG―FET Q2,Q4も全く同等の
特性を有し(Q2=Q4)、それぞれのゲートは入力
端子5、接地VSSラインに接続され、VIN,VG4
OVに対応するインピーダンスを示す。Q1−Q2
Q3−Q4の各直列接続が分圧回路を構成する。た
とえば第2図に示すようにIG―FET Q1,Q2
Q3,Q4はIC基板内で互に近接して同一方向に沿
つて配置される。Q1,Q3は同一設計寸法であり、
Q2,Q4も同一設計寸法である。電源ライン18、
接地ライン19に接続して拡散領域11,11′,
13,13′が形成されており、中間にさらに拡
散領域12,12′が形成されている。拡散領域
間のチヤンネルとなる領域上にゲート電極15,
15′,16,16′が形成されている。番号1
1,12,13,15,16で示す部分と番号1
1′,12′,13′,15′,16′で示す部分は
同一寸法、同一材料であり、同じプロセスで作成
される。従つて露光工程やエツチ工程の過不足、
マスク合わせの誤差等のプロセスパラメータの変
動は各トランジスタに同等に影響し、電圧分割の
相対関係には影響を与えない。従つて、製造が容
易で高い歩留りが得られる。又トランジスタQ1
Q2,Q3,Q4は全てデプレツシヨンモード型であ
り、単なる分圧回路として働くので、動作条件の
変動に対しても影響を受けにくい。分圧比は各ト
ランジスタのチヤンネルの寸法比(W/L)のみ
で決定され、電源電圧の変動や温度変化等に対し
ても影響を受けにくく、極めて安定した高精度の
動作が得られる。
A description will be given below along with examples. In FIG. 1, the zero voltage detection circuit includes an input circuit 1, a reference voltage circuit 2, a comparison circuit 3, and an output buffer circuit 4. The input circuit 1 and the reference voltage circuit 2 receive the input voltage V IN of the input terminal 5 and the ground voltage V G4 of the V SS line = 0,
Comparison voltage IN within the working voltage range (V SS −V DD ),
Generates reference voltage V REF . IN is an inverted signal that changes in the opposite direction to V IN . Depression IG
FET Q 1 and Q 3 have exactly the same characteristics (Q 1 =
Q 3 ), which is zero biased and exhibits a predetermined resistance value.
Depletion IG-FETs Q 2 and Q 4 also have exactly the same characteristics (Q 2 = Q 4 ), and their gates are connected to input terminal 5 and the ground V SS line, and V IN , V G4 =
Indicates the impedance corresponding to OV. Q 1 −Q 2 ,
Each series connection of Q 3 −Q 4 constitutes a voltage divider circuit. For example, as shown in Figure 2, IG-FET Q 1 , Q 2 ,
Q 3 and Q 4 are arranged close to each other and along the same direction within the IC board. Q 1 and Q 3 have the same design dimensions,
Q 2 and Q 4 also have the same design dimensions. power line 18,
Connected to the ground line 19, the diffusion regions 11, 11',
13, 13' are formed, and a diffusion region 12, 12' is further formed in the middle. A gate electrode 15 is provided on the region that becomes the channel between the diffusion regions.
15', 16, 16' are formed. number 1
Parts indicated by 1, 12, 13, 15, 16 and number 1
The parts indicated by 1', 12', 13', 15', and 16' have the same dimensions, are made of the same material, and are made by the same process. Therefore, excessive or insufficient exposure process or etching process,
Variations in process parameters such as mask alignment errors affect each transistor equally and do not affect the relative relationship of voltage division. Therefore, manufacturing is easy and high yield can be obtained. Also, transistor Q 1 ,
Q 2 , Q 3 , and Q 4 are all of the depletion mode type and work as simple voltage divider circuits, so they are not easily affected by fluctuations in operating conditions. The voltage division ratio is determined only by the channel size ratio (W/L) of each transistor, and is not easily affected by power supply voltage fluctuations, temperature changes, etc., and extremely stable and highly accurate operation can be obtained.

デプレツシヨンIG―FET Q22,Q4は逆バイア
スを含む所定のゲードバイアスを印加したときに
有限のソース・ドレイン間インピーダンスを示す
ように設計される。さらにデプレツシヨンIG―
FET Q1―Q2,Q3―Q4の各分圧が後段の比較回
路3を動作させるのに適当な電圧となるように各
トランジスタの設計定数を選定する。比較回路3
は比較用電圧信号INと参照電圧信号VREFとを比
較する。
The depletion IG-FETs Q 22 and Q 4 are designed to exhibit a finite source-drain impedance when a predetermined gate bias including reverse bias is applied. Furthermore, depression IG-
The design constants of each transistor are selected so that the divided voltages of FETs Q 1 -Q 2 and Q 3 -Q 4 are appropriate voltages for operating the comparator circuit 3 in the subsequent stage. Comparison circuit 3
compares the comparison voltage signal IN and the reference voltage signal V REF .

デプレツシヨンIG―FET Q7、エンハンスメン
トIG―FET Q8の直列接続は、電流安定化用IG
―FET Q15に定電圧バイアスを供給する。すな
わちゲート・ドレイン直結のIG―FET Q7は定電
流をゲート・ドレイン直結のIG−FET Q8へ供給
し、定電圧素子的に働くIG―FET Q8が安定化し
たゲートバイアスをFET Q15へ供給する。FET
Q15を流れる定電流がQ11―Q12の枝とQ13―Q14
枝とに流れ、電流切換型差動アンプを構成する。
Q11,Q13はゼロバイアスされたデプレツシヨン
IG―FETであり、Q12,Q14は差動アンプへの各
入力信号を受けるエンハンンスメントIG―FET
である。電流切換型差動アンプの2出力は互に逆
方向に変化する。
The series connection of depletion IG-FET Q 7 and enhancement IG-FET Q 8 is used as a current stabilizing IG.
- Supply constant voltage bias to FET Q 15 . In other words, IG-FET Q 7 , which is directly connected to the gate and drain, supplies a constant current to IG-FET Q 8 , which is directly connected to the gate and drain, and IG-FET Q 8 , which acts as a constant voltage element, supplies the stabilized gate bias to FET Q 15. supply to FET
The constant current flowing through Q15 flows through the branches of Q11 - Q12 and Q13 - Q14 , forming a current switching type differential amplifier.
Q 11 and Q 13 are zero-biased depressions
IG-FET, Q 12 and Q 14 are enhancement IG-FETs that receive each input signal to the differential amplifier.
It is. The two outputs of the current switching type differential amplifier change in opposite directions.

出力バツフア回路4はエンハンスメントIG―
FET Q16,Q17,Q19とデプレツシヨンIG―
FETQ18とを含み、差動アンプの2出力を受けて
所望の電圧スイング巾を有する矩形波出力電圧を
発生する。
Output buffer circuit 4 is enhancement IG-
FET Q 16 , Q 17 , Q 19 and depletion IG
FETQ 18 , and receives the two outputs of the differential amplifier to generate a rectangular wave output voltage having a desired voltage swing width.

第3図を参照して、NチヤンネルMOS―ICの
場合を例にとつて説明する。入力電圧VINが負極
性から正極性にしだいに増加すると考える。VIN
が負極性の間はQ2の抵抗値がQ4の抵抗値より高
く、INはVREFよりハイレベルである。INはQ12
で反転され、Q16,Q19がオフとなり、出力端子
6の電圧VOUTをハイレベル(VDD)にする。入力
電圧が零電圧を横切ると、Q2のインピーダンス
がQ4のインピーダンスより小さくなり、Q12の出
力レベルを上げ、Q14の出力レベルを下げる。従
つてQ16がオン、Q17がオフ、Q19がオンとなり出
力電圧VOUTはVSS=OVに近いローレベルに下が
る。
Referring to FIG. 3, the case of an N-channel MOS-IC will be explained as an example. Consider that the input voltage V IN gradually increases from negative polarity to positive polarity. V IN
While Q2 has negative polarity, the resistance of Q2 is higher than the resistance of Q4 , and IN is at a higher level than V REF . IN is Q 12
Q 16 and Q 19 are turned off, and the voltage V OUT at the output terminal 6 becomes high level (V DD ). When the input voltage crosses zero voltage, the impedance of Q 2 becomes smaller than the impedance of Q 4 , raising the output level of Q 12 and lowering the output level of Q 14 . Therefore, Q16 is turned on, Q17 is turned off, and Q19 is turned on, and the output voltage V OUT falls to a low level close to V SS =OV.

つまり比較回路の参照電圧VREFはOVではない
が、VINが丁度OVをクロスした時にINがVREF
クロスし、出力反転波形が得られる。IG―
FETQ2とQ4とを全く同じ構成とし、IG―FET
Q1とQ3も全く同じ構成としてあるので、入力電
圧VINが正から負に又負から正に基準電圧OVを
横切る瞬間に比較用電圧INも参照電圧VREFを横
切る。
In other words, although the reference voltage V REF of the comparator circuit is not OV, IN crosses V REF exactly when V IN crosses OV, and an inverted output waveform is obtained. IG-
FETQ 2 and Q 4 have exactly the same configuration, and IG-FET
Since Q 1 and Q 3 have exactly the same configuration, the comparison voltage IN also crosses the reference voltage V REF at the moment the input voltage V IN crosses the reference voltage OV from positive to negative or from negative to positive.

今、入力端子5に第4図に示すように正弦波電
圧が印加されたとする。VIN>0のt1の期間は、
VIN>VREFとなりVOUTはVDDに近いハイレベルを
出力する。VINがOVをクロスして、VIN<0のt2
は期間に入る瞬間からIN<VREFとなり、比較器
が反転してVOUTはローレベルとなる。従つてt1
t2となり入力信号の位相に正確に一致した出力信
号が得られる。出力の矩形波信号は同一チツプ上
のロジツク回路やメモリ回路等のタイミング位相
制御他広い用途に用いることができる。
Assume now that a sine wave voltage is applied to the input terminal 5 as shown in FIG. The period of t 1 with V IN > 0 is
V IN > V REF , and V OUT outputs a high level close to V DD . V IN crosses OV and V IN < 0 at t 2
IN < V REF from the moment it enters the period, the comparator is inverted and V OUT becomes low level. Therefore t 1 =
t 2 , and an output signal that precisely matches the phase of the input signal is obtained. The output rectangular wave signal can be used for a wide range of purposes including timing and phase control of logic circuits and memory circuits on the same chip.

零電圧を正確に検出してすばやく出力信号を変
化できるので信号レベルが変化している間の回路
の不感時間をなくすことができ、回路設計の自由
度も大巾に増加させることができる。
Since zero voltage can be detected accurately and the output signal can be quickly changed, dead time in the circuit while the signal level is changing can be eliminated, and the degree of freedom in circuit design can be greatly increased.

本実施例の構成要素はすべてIG―FETで設計
され、ICチツプ上の他の回路の構成要素と同時
に同一工程で作成でき、一且マスクが出来上れば
製造工程は従来と同様である。
All the components of this embodiment are designed using IG-FETs, and can be manufactured in the same process as other circuit components on the IC chip, and once the mask is completed, the manufacturing process is the same as the conventional one.

上記実施例では基準電圧はOVであつたが、
OV以外の基準電圧検出も容易に行なえる。
In the above embodiment, the reference voltage was OV, but
Reference voltages other than OV can also be easily detected.

第5図に他の実施例を示す。第1図の実施例に
おけるIG―FET Q1,Q3の代わりに抵抗R1,R3
を用いIG―FET Q4のゲートを基準電圧入力端子
7へ導出した点以外は第1図の実施例と同様であ
る。この場合も抵抗R1とR3とを全く同等に、又
IG―FET Q2とQ4とを全く同等に作成すること
が重要である。抵抗R1,R3はたとえば拡散抵抗、
イオン注入抵抗、ポリシリコン抵抗で形成でき
る。VG4電圧を例えばマイナス1.0Vとかプラス
1.5Vの如く特定の反転出力を期待する値に設定
することにより自由に調整が出来るので「マイナ
ス1.0V検器」や「プラス1.5V検出器」が可能で
ある。この場合基準電圧VG4の与え方として内部
で作る方法又は外部にVG4端子を設けて外から基
準電圧を与える方法の両方が可能である。
FIG. 5 shows another embodiment. Resistors R 1 and R 3 are used instead of IG-FETs Q 1 and Q 3 in the embodiment shown in FIG.
This embodiment is the same as the embodiment shown in FIG. 1, except that the gate of IG-FET Q 4 is led to the reference voltage input terminal 7 using the following. In this case as well, resistors R 1 and R 3 should be made completely equal and
It is important to create IG-FETs Q 2 and Q 4 exactly the same. Resistors R 1 and R 3 are, for example, diffused resistors,
It can be formed using ion implantation resistor or polysilicon resistor. V G4 voltage, for example, minus 1.0V or positive
By setting a specific inverted output to the expected value, such as 1.5V, it can be freely adjusted, making it possible to use a ``minus 1.0V detector'' or a ``plus 1.5V detector.'' In this case, the reference voltage V G4 can be supplied either by creating it internally or by providing an external V G4 terminal and supplying the reference voltage from the outside.

なお、作動電圧に対し逆極性の電圧を含む入力
信号をICチツプに入力するための保護手段とし
てはたとえば第6図のような構成をとればよい。
図示のNチヤンネルMOS―ICにおいて、VIN
VDDとの間にN領域21,22P基板から成るラ
テラルバイポーラトランジスタが形成されてい
る。VINが負電圧になると、N領域21から注入
される電子は基板内に拡がることなくN領域22
に収集され、負電圧であるVINはそのまま入力用
IG―FET Q2のゲートに印加され、そのソース・
ドレイン間抵抗を調整する。第5図の実施例の場
合は、入力端子5、基準電圧端子7の各々に第6
図の保護手段を設ければ作動電圧と逆極性の基準
電圧も入力できる。
Incidentally, as a protection means for inputting an input signal including a voltage having a polarity opposite to the operating voltage to the IC chip, a configuration as shown in FIG. 6 may be adopted, for example.
In the N-channel MOS-IC shown in the figure, V IN and
A lateral bipolar transistor made of N regions 21 and 22P substrates is formed between the N region and V DD . When V IN becomes a negative voltage, the electrons injected from the N region 21 do not spread into the substrate and move to the N region 21.
The negative voltage V IN is collected as is for input.
Applied to the gate of IG-FET Q 2 , its source
Adjust the drain-to-drain resistance. In the case of the embodiment shown in FIG.
If the protective means shown in the figure is provided, a reference voltage with the opposite polarity to the operating voltage can also be input.

以上実施例に沿つて本発明を説明したが種々の
変形、組合わせ、変更が可能なことは当業者に自
明であろう。
Although the present invention has been described above with reference to the embodiments, it will be obvious to those skilled in the art that various modifications, combinations, and changes can be made.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の回路図、第2図は
第1図の回路を組み込むICチツプの部分上面図、
第3図、第4図は第1図の回路の特性図、第5図
は他の実施例の回路図、第6図は入力端子の保護
手段を示す断面図である。 符号の説明、1…入力回路、2…参照電圧回
路、3…比較回路、4…出力バツフア回路、5…
入力端子、6…出力端子。
FIG. 1 is a circuit diagram of one embodiment of the present invention, FIG. 2 is a partial top view of an IC chip incorporating the circuit of FIG. 1,
3 and 4 are characteristic diagrams of the circuit shown in FIG. 1, FIG. 5 is a circuit diagram of another embodiment, and FIG. 6 is a sectional view showing protection means for the input terminal. Explanation of symbols, 1... Input circuit, 2... Reference voltage circuit, 3... Comparison circuit, 4... Output buffer circuit, 5...
Input terminal, 6...output terminal.

Claims (1)

【特許請求の範囲】 1 所定の電源電圧VDD、接地電圧VSSを与え
られ、両電圧間の電圧範囲で、作動する集積回路
において、 (a) 上記電圧範囲を越える電圧レベルを含む入力
回路と、選択された基準電圧信号を受けるため
の参照電圧回路とであつて、両回路はデプレツ
シヨンモード電界効果トランジスタを含む実質
的に同一構成の電圧分割型回路を含み、 (b) 上記入力回路は、入力信号に応じて上記電圧
範囲(VSS,VDD)内の比較用電圧信号を発
生し上記入力信号が直列接続されたデプレツシ
ヨンモード電界効果トランジスタの1つのゲー
トに印加される入力回路であり、 (c) 上記参照電圧回路は、基準電圧信号に応じて
上記電圧範囲(VSS,VDD)内の比較用電圧
信号を発生し上記基準電圧信号が直列接続され
たデプレツシヨンモード電界効果トランジスタ
の1つのゲートに印加される参照電圧回路であ
り、かつ (d) 上記比較用電圧信号と上記参照電圧信号とを
受け、上記入力信号の電圧が上記基準電圧を横
切つた瞬間これを検知増幅し上記電圧範囲内の
矩形波を発生する増幅回路を含む、 ことを特徴とする基準電圧検出器。
[Claims] 1. In an integrated circuit that is supplied with a predetermined power supply voltage VDD and a ground voltage VSS and operates in a voltage range between the two voltages, (a) an input circuit that includes a voltage level exceeding the above voltage range; a reference voltage circuit for receiving a selected reference voltage signal, both circuits including voltage dividing circuits of substantially the same configuration including depletion mode field effect transistors; (b) the input circuit is , an input circuit that generates a comparison voltage signal within the voltage range (VSS, VDD) according to an input signal, and the input signal is applied to one gate of a depletion mode field effect transistor connected in series. (c) The reference voltage circuit generates a comparison voltage signal within the voltage range (VSS, VDD) according to the reference voltage signal, and includes a depletion mode field effect transistor connected in series with the reference voltage signal. A reference voltage circuit that is applied to one gate, and (d) receives the comparison voltage signal and the reference voltage signal, and detects and amplifies the moment the voltage of the input signal crosses the reference voltage. A reference voltage detector comprising: an amplifier circuit that generates a rectangular wave within the above voltage range.
JP57230989A 1982-12-28 1982-12-28 Detecting circuit of reference voltage Granted JPS59122225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57230989A JPS59122225A (en) 1982-12-28 1982-12-28 Detecting circuit of reference voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57230989A JPS59122225A (en) 1982-12-28 1982-12-28 Detecting circuit of reference voltage

Publications (2)

Publication Number Publication Date
JPS59122225A JPS59122225A (en) 1984-07-14
JPH0235495B2 true JPH0235495B2 (en) 1990-08-10

Family

ID=16916485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57230989A Granted JPS59122225A (en) 1982-12-28 1982-12-28 Detecting circuit of reference voltage

Country Status (1)

Country Link
JP (1) JPS59122225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661677A (en) * 1992-08-06 1994-03-04 Fujitsu Ltd Structure of printed board containing shelf

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870277B2 (en) * 1991-01-29 1999-03-17 日本電気株式会社 Dynamic random access memory device
JPH052037A (en) * 1991-06-25 1993-01-08 Mitsubishi Electric Corp Zero cross detecting circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661677A (en) * 1992-08-06 1994-03-04 Fujitsu Ltd Structure of printed board containing shelf

Also Published As

Publication number Publication date
JPS59122225A (en) 1984-07-14

Similar Documents

Publication Publication Date Title
JP2788843B2 (en) Reference voltage generator
US5394026A (en) Substrate bias generating circuit
US7592862B2 (en) Digital temperature sensing device using temperature depending characteristic of contact resistance
US7728574B2 (en) Reference circuit with start-up control, generator, device, system and method including same
US7208998B2 (en) Bias circuit for high-swing cascode current mirrors
EP0369530A2 (en) Temperature sensing circuit
KR950010048B1 (en) Semiconductor ic device having substrate potential detection circuit
US5191233A (en) Flip-flop type level-shift circuit
US6429705B1 (en) Resetting circuit independent of a transistor&#39;s threshold
KR100278486B1 (en) Capacitive structure in an integrated circuit
JPH0679262B2 (en) Reference voltage circuit
JP2809768B2 (en) Reference potential generation circuit
US7385437B2 (en) Digitally tunable high-current current reference with high PSRR
JP3269676B2 (en) Circuit device
JPH0235495B2 (en)
US4268764A (en) Zero crossover detector
US6522591B2 (en) Semiconductor memory circuit
JPS6070822A (en) Semiconductor integrated circuit
US20020075056A1 (en) Subthreshold cmos integrator
JPH08148580A (en) Semiconductor integrated circuit device
JPH11312930A (en) Differential amplifier
JP2549729B2 (en) Semiconductor integrated circuit
KR900008541B1 (en) Bios circuit for generating precise current in ic circuit
US20050104571A1 (en) Power-up signal generating circuit
JP2871309B2 (en) Power supply voltage detection circuit