JPH0235379A - Locating method of ground fault point - Google Patents

Locating method of ground fault point

Info

Publication number
JPH0235379A
JPH0235379A JP18354388A JP18354388A JPH0235379A JP H0235379 A JPH0235379 A JP H0235379A JP 18354388 A JP18354388 A JP 18354388A JP 18354388 A JP18354388 A JP 18354388A JP H0235379 A JPH0235379 A JP H0235379A
Authority
JP
Japan
Prior art keywords
zero
point
transmission line
sequence
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18354388A
Other languages
Japanese (ja)
Inventor
Shigeru Narita
茂 成田
Masanori Toi
雅則 戸井
Isao Chihara
千原 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Facom Corp
Original Assignee
Fuji Electric Co Ltd
Fuji Facom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Facom Corp filed Critical Fuji Electric Co Ltd
Priority to JP18354388A priority Critical patent/JPH0235379A/en
Publication of JPH0235379A publication Critical patent/JPH0235379A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To locate a fault point in a non-synchronous manner by utilizing that the amounts of zero-phase voltages at the fault point are equal when viewed from the opposite ends of a section of a transmission line which is an object of location, and by regarding as the fault point a point whereat the amounts are equal and whereat the sum of distances from the opposite ends becomes the full length of a line in the section being the object of location. CONSTITUTION:The opposite ends of a section which is an object of location are taken as reference points of points of computation, and the respective amounts VOA and VOB of zero- phase voltages at the two points A and B of computation are compared with each other. The point of computation whereat the value of said amount is smaller is shifted by a unit length in the direction of the opposite end. The amount of zero-phase voltage at the new point of computation is set to be the sum of the amount of zero-phase voltage at the old point of computation and the product of zero-phase impedance and zero-phase current for the unit length. In addition, a charging current is calculated from the amount of zero-phase voltage and zero-phase earthing capacity at the new point, and the amount of zero-phase current is thereby corrected. This process is repeated until the sum of distances from the opposite ends of a transmission line being the object of location to the two points of computation becomes the full line length of the transmission line, and when the sum of the distances becomes the full line length of the transmission line, the relevant point of computation is regarded as a fault point.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力の供給信頼度上確保すべく、送電11に
発生した地絡故障点全送電線両端子において測定された
故障発生時の零相電流、零相電圧量により標定し、故障
復旧の迅速化を図るための故障点標定方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] In order to ensure the reliability of power supply, the present invention provides ground fault fault points that occur in the power transmission 11, measured at both terminals of the power transmission line. The present invention relates to a method for locating a fault point using zero-sequence current and zero-sequence voltage to speed up fault recovery.

〔従来の技術〕[Conventional technology]

送電線の両端の電圧量・電流量を取り込んで地絡故障を
標定する方法はいくつか存在するが、その中で入力点数
の少ない方法として、例えば「故障点標定方式」(特開
昭58−168976号公報)がある。この方法は、送
電線両端の零相電圧・零相電流を用いて標定する方法で
ある。第3図の送電系統を考えてみる。送電線の標定対
象区間内に故障が発生した場合、送電線の両端に現れる
零相電流量・零相電圧量を取り込み装置IA、IBを用
いて取り込み、これをA/D変換した意を中実装置に伝
送するか、相手の取り込み装置に伝送する。中実装置ま
たは取り込み装置は、集められた送電線両端の零相電圧
量・零相電流11t−用い、次式(1) 、 (2)に
て故障点を標定する。
There are several methods for locating ground faults by capturing the voltage and current amounts at both ends of a power transmission line, but among them, one method that requires fewer input points is the "fault point locating method" (Japanese Unexamined Patent Application Publication No. 1983-1992). 168976). This method is a method of locating using zero-sequence voltage and zero-sequence current at both ends of the power transmission line. Consider the power transmission system shown in Figure 3. If a fault occurs within the target section of the transmission line, the zero-sequence current and zero-sequence voltage that appear at both ends of the transmission line will be captured using devices IA and IB, and this will be A/D converted. Transmit to the actual device or to the other import device. The solid device or acquisition device uses the collected zero-sequence voltage and zero-sequence current 11t- at both ends of the power transmission line to locate the fault point using the following equations (1) and (2).

・・・・・・ (1) x −・・・・・・ (2) ZO(’OA+’OB ) (Zo=単位長当りの零相インピーダンス)この方法は
、故障点の零相電圧(ベクトル)voFが、A端から見
てもB端から見ても同じになる地点を解とする方法であ
る。
...... (1) x -... (2) ZO ('OA+'OB) (Zo = zero-sequence impedance per unit length) This method calculates the zero-sequence voltage (vector ) This is a method in which the solution is a point where voF is the same whether viewed from the A end or the B end.

〔発明が解決しようとするll!題〕[This is what the invention is trying to solve! Title]

しかしながら、(1) 、 (21式はベクトル演算で
あるため、送電線両端の零相電圧量・零相電流量の取り
込みに同時性が要求される。そこで、取り込みの同時性
を必要としない方法として、次の(3)式の方法が存在
する。この方法は、等式両辺の絶対値を取ることにより
ベクトルスカラ比較の式となり、取り込みの同期を必要
とする位相成分は見なくても良いと云う利点がある。
However, since Equations (1) and (21) are vector calculations, simultaneity is required to capture the zero-sequence voltage and zero-sequence current at both ends of the transmission line.Therefore, a method that does not require simultaneity of capture As such, there is a method using the following equation (3).This method becomes a vector-scalar comparison equation by taking the absolute values of both sides of the equation, and there is no need to look at the phase component that requires synchronization of acquisition. There is an advantage to this.

・・・・・・ (3) なお、(3)式中のV、Iは地絡故障発生相の相電圧量
・相電流量であり、VFは故障点の相電圧量である。し
かし、この方式は各相の相電圧量・相電流量の取り込み
が必要となり、大規模となる難点がある。さらに、この
ような電圧量・電流量を用いるため、微地絡故障や故障
電流に対し潮流が大きいときには故障電流の検出が充分
でなく、標定結果の精度が悪くなるという問題もある。
(3) In equation (3), V and I are the phase voltage amount and phase current amount of the phase where the ground fault occurred, and VF is the phase voltage amount at the fault point. However, this method requires the acquisition of the phase voltage amount and phase current amount for each phase, and has the disadvantage of being large-scale. Furthermore, since such amounts of voltage and current are used, when there is a slight ground fault or the current is large compared to the fault current, there is a problem that the detection of the fault current is insufficient and the accuracy of the location result deteriorates.

したがって、本発明は送電S両端の零相電圧量・零相電
流量のみを取り込み、潮流・故障点抵抗・充電電流の影
響を受けず、さらにベクトル演算のスカラ量のみに着目
することにより、データ取り込みの同期全不要とした地
絡故障点標定方法を提供することを目的とする。
Therefore, the present invention captures only the zero-sequence voltage amount and zero-sequence current amount at both ends of the power transmission S, is not affected by power flow, fault point resistance, and charging current, and furthermore, by focusing only on the scalar amount of vector calculation, data The purpose of this invention is to provide a method for locating ground fault points that does not require synchronization of capture.

〔課題を解決するための手段〕[Means to solve the problem]

標定の対象となる送電線の両端の零相電圧、零相電流を
取り込み、これらと既知の量である零相インピーダンス
、零相対地容il、送電線の線路亘長とから、下記(イ
)〜(ニ)の手順で地絡故障点の位置を算出する。
Incorporate the zero-sequence voltage and zero-sequence current at both ends of the transmission line that is the target of location, and from these and the known quantities zero-sequence impedance, zero relative ground capacity il, and the transmission line's track length, calculate the following (a): Calculate the location of the ground fault point by following the steps from ~(d).

(イ)標定対象区間両端を演算地点の基点とする。(b) Both ends of the orientation target section are used as the base points of the calculation point.

(ロ)2つの演算地点の各零相電圧量を比較する。(b) Compare each zero-sequence voltage amount at the two calculation points.

(ハ)値の小さい方の演算地点を単位要分だけ相手端方
向へ移動させる。新しい演算地点での零相電圧量は、古
い演算地点での零相電圧量と、単位長当りの零相インピ
ーダンスと零相電流との積の和とする。また、新しい地
点の零相電圧量と零相対地容量から充電々流を算出し、
零相電流量を補正する。
(c) Move the calculation point with the smaller value toward the other end by the unit amount. The zero-sequence voltage amount at the new calculation point is the sum of the zero-sequence voltage amount at the old calculation point, the product of the zero-sequence impedance per unit length, and the zero-sequence current. In addition, the charging current is calculated from the zero-sequence voltage and zero-relative ground capacity at the new point,
Correct the zero-sequence current amount.

(ニ)標定の対象となる送電線の両端から2つの演算地
点までの距離の和が送電線の線路亘長になるまで前記(
0)、(ハ)を繰り返し、距離の和が送電線の線路亘長
になったところで、その演算地点を故障点とする。
(d) Until the sum of the distances from both ends of the transmission line that is the target of orientation to the two calculation points becomes the track length of the transmission line (
0) and (c) are repeated, and when the sum of the distances reaches the length of the transmission line, the calculated point is determined as the failure point.

〔作用〕[Effect]

送電線の標定対象区間両端から見た故障点での零相電圧
量が等しくなることを利用して、区間両端の零相電圧量
を基準に送電線の零相インピーダンス、零相対地容量お
よび区間両端の零相電流から区間内各地点の零相電圧を
算出し、その大きさが等しくかつ両端からの距離の和が
標定対象区間の線路亘長になる地点を故障点とみなすこ
とにより、非同期式で故障点を精度良く標定可能とする
By using the fact that the zero-sequence voltage at the fault point seen from both ends of the transmission line is equal, the zero-sequence impedance, zero-to-ground capacity, and section of the transmission line can be determined based on the zero-sequence voltage at both ends of the section. The zero-sequence voltage at each point within the section is calculated from the zero-sequence current at both ends, and the point where the magnitude is equal and the sum of the distances from both ends is the track length of the section to be located is regarded as the fault point. It is possible to accurately locate the failure point using the formula.

〔実施列〕[Implementation row]

第1図は本発明の実施例を示すフローチャート、第2図
は本発明が適用される故障点標定システムの概要と本発
明による標定演算方法を説明するための説明図である。
FIG. 1 is a flowchart showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram for explaining an overview of a fault location system to which the present invention is applied and a location calculation method according to the present invention.

こ−で、本発明を実施するには第2図(イ)の如く、送
電線1回線の標定対象区間両端に零相電圧量・零相電流
量の2量を取り込む端末装置IA。
In order to carry out the present invention, as shown in FIG. 2(a), a terminal device IA is used which takes in two quantities, zero-sequence voltage and zero-sequence current, at both ends of the target section of one power transmission line.

IBまたはその他この2ftを検出する装置を必要とす
る。取り込んだ両端の211は、第2図(イ)に示す中
実装置2もしくは端末装置IA、IBに伝送され、装置
内で標定演算される。両端の2:1の取り込みのタイミ
ングは地絡故障が継続している時刻内であれば、かなら
ずしも両端で厳密な同期取りは必要としない。装置内で
の演算は上述した通りであるが、これを式にて表すと次
のようになる。
Requires IB or other device to detect this 2ft. The captured data 211 at both ends are transmitted to the solid device 2 or terminal devices IA and IB shown in FIG. 2(A), and are subjected to orientation calculations within the device. Strict synchronization at both ends is not necessarily required as long as the timing of 2:1 capture at both ends is within the time when the ground fault continues. The calculations within the device are as described above, but this can be expressed in the following equation.

VOA−xZO’0Al=l■OB  (L−X)Zo
’on=1vOF ・・・・・・ (4) (4)式中の各記号は第2図に従うものとする。この(
4)式は基本式で、これに第2図(イ)に示す零相対地
容11coに流入する零相電流分を加えると、仮にA端
からnX(単位長)PB端からmX(単位長)での零相
電圧v。A(n)、voB(m)は、’oA(n)−?
。A(n−1) Z。(n−1)roA(n−1)・・
・・・・ (5) roA(n)=i。A(n 1)  J ωCo(n)
VOA(”)・・・・・・ (6) ?oB(m)−?。n(m−x)−i、 (L−m+l
 )ioB(m−1)・・・・・・ (7) の如く示される。なお、 ・・・・・・ (9) とする。また、L−(標定区間線路亘長)÷(単位長)
であり、jは虚数記号をそれぞれ示す。さらに、ZO(
”) r Co(n)は、A11lよりnX(単位長)
地点での零相インピーダンス、零相対地容量を示し、予
め与えられている値とする。そして、地絡故障の発生点
は、 VoA(n) l−I VoB(m) ・・・・・・ Ql かつ、 m +n = L ・・・・・・ aυ を満たす地点とする。このために、例えば第1図の如き
処理が行なわれる。
VOA-xZO'0Al=l■OB (L-X)Zo
'on=1vOF (4) Each symbol in formula (4) shall be as shown in FIG. this(
Equation 4) is a basic equation, and if we add to it the zero-sequence current flowing into the zero-relative earth volume 11co shown in Figure 2 (a), we get nX (unit length) from the A end and mX (unit length) from the PB end. ) at zero-sequence voltage v. A(n), voB(m) are 'oA(n)-?
. A(n-1) Z. (n-1)roA(n-1)...
... (5) roA(n)=i. A(n 1) J ωCo(n)
VOA('')... (6) ?oB(m)-?.n(m-x)-i, (L-m+l
)ioB(m-1)... (7) It is expressed as follows. In addition, ...... (9). Also, L - (Length of the track in the specified section) ÷ (Unit length)
, and j represents an imaginary number symbol. Furthermore, ZO(
”) r Co(n) is nX (unit length) from A11l
Indicates the zero-sequence impedance and zero-to-earth capacitance at the point, and assumes the values given in advance. Then, the point where the ground fault occurs is a point that satisfies VoA(n) l-I VoB(m) . . . Ql and m + n = L . . . aυ. For this purpose, for example, processing as shown in FIG. 1 is performed.

すなわち、ステップ■では変数m、niそれぞれ0”に
し、(9)式に示す初期値V。A(0)1’0A(0)
 l vOB(0)およびI。B(0)t−求める(■
参照)。次いで、VoA(n)とV。B(m)とを比較
しく■参照)、値の小さい方の()内の値(VoA(n
)>VoB(m)のときはm、VoA(n)<v。B(
m)のときはn)を増やしく■、■参照)、値が増えた
方について(5) 、 (6)式または(71、(8)
式を演算して(■、■参照)、ステップ■に戻る。なお
、この間に(11)式が成立するか否か全判断しく■、
■参照)、成立すればA点よりnX(単位長)9B点よ
QmX(単位長)の点が故障点であると判定する([相
]参照)。以上の方法を概念的に示すと、第2図(ロ)
に示す如くなる。
That is, in step ■, the variables m and ni are each set to 0'', and the initial value V.A(0)1'0A(0) shown in equation (9) is set.
l vOB(0) and I. B(0)t-find (■
reference). Then VoA(n) and V. Compare with B(m) (see ■), the smaller value in parentheses (VoA(n
)>VoB(m), then m, VoA(n)<v. B(
If m), increase n) (see ■, ■), and for the increased value, use formulas (5), (6) or (71, (8))
Calculate the expression (see ■, ■) and return to step ■. In addition, during this time, it is necessary to make a complete judgment as to whether or not equation (11) holds.■
(Refer to (2)), if it holds, it is determined that the points from A point to nX (unit length) 9B point to QmX (unit length) are the failure points (refer to [Phase]). The above method is conceptually shown in Figure 2 (b).
The result will be as shown below.

以上で送電線が1回線の場合について説明したが、こ\
で平行2回線の場合について説明する。
Above, we explained the case where there is only one power transmission line, but this
The case of two parallel lines will be explained below.

つまり、第2図(イ)に示すような1回線の送電線につ
いては、(5)〜αυ式の処理をもって標定できるが、
平行2回線の送電線については、両端の零相電圧量およ
び1,2回線の各々両端の零相電流量を取り込むことで
同様の演算が成立する。
In other words, for a single power transmission line as shown in Figure 2 (a), it can be located using equations (5) to αυ, but
Regarding a power transmission line with two parallel circuits, a similar calculation can be performed by taking in the zero-sequence voltage amount at both ends and the zero-sequence current amount at both ends of each of the first and second circuits.

すなわち、(5)式は、 マ。A 1(n )−立。A1(n−1) z。1.c
n 1)IoAl(n 1)”rn(” 1 ) ■O
A 2 (n−1)・・・・・・ 住2 と変形される。なお、VoA、Zo、■oAVCついて
いる添え字1.2は、各々1,2回線の量であることを
意味している。また、−は回線間相互インピーダンスで
ある。(7)式も(5)式と同様に、”C’oBum)
−<’。B1(rn 1)  Z。1 (L−m+l 
)IOB1(m−1)−Zm(m 1 )IOB 2 
(” 1)と変形され、 また(6)式は、 ’0A1(”)=’0A1(”−1)  tωcal(
n)や0AI(”)−JaICm(”)Δ立。A(n) a< と変形される。こ\に、ΔVo A(n )は、A端よ
りnX(単位長ンの地点での回線間の零相電圧量の差、
すなわち(14)式については、 (l均 である。同様にして(8)式については、次式のように
なる。
In other words, equation (5) is: Ma. A1(n)-standing. A1(n-1)z. 1. c.
n 1) IoAl(n 1)”rn(” 1) ■O
A 2 (n-1)... It is transformed into 2. Note that the subscript 1.2 attached to VoA, Zo, and ■oAVC means the amount of 1 and 2 lines, respectively. Moreover, - is mutual impedance between lines. Similarly to equation (5), equation (7) also has "C'oBum"
−<'. B1 (rn 1) Z. 1 (L-m+l
)IOB1(m-1)-Zm(m1)IOB2
(''1), and equation (6) is '0A1('')='0A1(''-1) tωcal(
n) and 0AI('')-JaICm('')Δstanding. It is transformed as A(n) a<. Here, ΔVo A(n) is nX (difference in zero-sequence voltage between lines at a point of unit length,
That is, for equation (14), (l is equal.Similarly, for equation (8), it becomes as follows.

−j arcm(L−m)ΔVOB (m)・・・・・
・ α6) なお、ΔVoA、Δ■oBおよびCrrlが、各々Vo
A。
-j arcm(L-m)ΔVOB(m)・・・・・・
・α6) Note that ΔVoA, Δ■oB and Crrl are each Vo
A.

voBおよびCo項に比べ小さければ、(l(イ)、a
e式のCmのかかる環ft無視することができる。また
、以上は平行2回線時の1回線側についての処理を示し
ており、したがってα2〜α0式を2回線側についても
1回線側と平行して行なう。また、1回線側については
(1■、(1υ式の演算も行なう。
If it is smaller than the voB and Co terms, (l(a), a
Such a ring ft of Cm in the e-formula can be ignored. Furthermore, the above describes the processing for the first line side when there are two parallel lines, and therefore equations α2 to α0 are performed for the second line side in parallel with the first line side. Further, for the 1st line side, the calculations of the equations (1■, (1υ) are also performed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、標定区間両端の電圧・電流取り込みの
同期性を必要とせずに標定演算ができるので、同期信号
送受信回路が不要となる。また、演算が故障点抵抗・潮
流および充電電流の影響を受けないと云う利点もある。
According to the present invention, location calculations can be performed without requiring synchronization of voltage and current intake at both ends of the location section, so a synchronization signal transmitting/receiving circuit is not required. Another advantage is that calculations are not affected by fault point resistance, power flow, and charging current.

なお、演算の形式上、送電線各地点でのインピーダンス
・対地容量ツバらつきも単位長さ毎に設定できるように
なっている。
In addition, due to the calculation format, impedance and ground capacitance fluctuations at each point of the transmission line can also be set for each unit length.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すフローチャート、第2図
は本発明が適用される故障点標定システムの概要と本発
明による標定演算方法を説明するための説明図、第3図
は従来の故障点標定システムの一例と零相電圧分布の一
例を説明するための説明図である。 符号説明 IA、IB・・・・・・取込装ff(端末装置)、2・
・・・・・中実装置、voA、voB・・・・・・零相
電圧、VOA (n ) 。 Vo n (rn )・・・・・・単位長当たりの零相
電圧、’OA IIoB−・・・・・零相電流、1:0
A(n) l ’OB (ffl)−・間単位長当たり
の零相電流、Zo・・・・・・零相インピーダンス、C
o・・・・・・零相対地容量。
Fig. 1 is a flowchart showing an embodiment of the present invention, Fig. 2 is an explanatory diagram for explaining an overview of a fault point locating system to which the present invention is applied and a locating method according to the present invention, and Fig. 3 is an explanatory diagram for explaining a conventional fault location calculation method. It is an explanatory diagram for explaining an example of a failure point locating system and an example of zero-sequence voltage distribution. Code explanation IA, IB...Intake device ff (terminal device), 2.
...Solid device, voA, voB...Zero-sequence voltage, VOA (n). Vo n (rn)...Zero-sequence voltage per unit length, 'OA IIoB-...Zero-sequence current, 1:0
A(n) l 'OB (ffl) - Zero-sequence current per unit length, Zo...Zero-sequence impedance, C
o...Zero relative earth capacity.

Claims (1)

【特許請求の範囲】 標定の対象となる送電線の両端の零相電圧、零相電流を
取り込み、これらと既知の量である零相インピーダンス
、零相対地容量、送電線の線路亘長とから、下記(イ)
〜(ニ)の手順で地絡故障点の位置を算出する地絡故障
点標定方法。 (イ)標定対象区間両端を演算地点の基点とする。 (ロ)2つの演算地点の各零相電圧量を比較する。 (ハ)値の小さい方の演算地点を単位長分だけ相手端方
向へ移動させる。新しい演算地点での零相電圧量は、古
い演算地点での零相電圧量と、単位長当りの零相インピ
ーダンスと零相電流との積の和とする。また、新しい地
点の零相電圧量と零相対地容量から充電々流を算出し、
零相電流量を補正する。 (ニ)標定の対象となる送電線の両端から2つの演算地
点までの距離の和が送電線の線路亘長になるまで前記(
ロ)、(ハ)を繰り返し、距離の和が送電線の線路亘長
になつたところで、その演算地点を故障点とする。
[Claims] The zero-sequence voltage and zero-sequence current at both ends of the power transmission line to be located are taken in, and from these and the known quantities zero-sequence impedance, zero-to-earth capacity, and line span length of the power transmission line. , below (a)
A ground fault fault point location method that calculates the position of the ground fault fault point using the steps of ~(d). (b) Both ends of the orientation target section are used as the base points of the calculation point. (b) Compare each zero-sequence voltage amount at the two calculation points. (c) Move the calculation point with the smaller value toward the other end by the unit length. The zero-sequence voltage amount at the new calculation point is the sum of the zero-sequence voltage amount at the old calculation point, the product of the zero-sequence impedance per unit length, and the zero-sequence current. In addition, the charging current is calculated from the zero-sequence voltage and zero-relative ground capacity at the new point,
Correct the zero-sequence current amount. (d) Until the sum of the distances from both ends of the transmission line that is the target of orientation to the two calculation points becomes the track length of the transmission line (
Repeat b) and c), and when the sum of the distances reaches the length of the transmission line, the calculated point is determined to be the failure point.
JP18354388A 1988-07-25 1988-07-25 Locating method of ground fault point Pending JPH0235379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18354388A JPH0235379A (en) 1988-07-25 1988-07-25 Locating method of ground fault point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18354388A JPH0235379A (en) 1988-07-25 1988-07-25 Locating method of ground fault point

Publications (1)

Publication Number Publication Date
JPH0235379A true JPH0235379A (en) 1990-02-05

Family

ID=16137655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18354388A Pending JPH0235379A (en) 1988-07-25 1988-07-25 Locating method of ground fault point

Country Status (1)

Country Link
JP (1) JPH0235379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116114A (en) * 2013-01-23 2013-05-22 中国南方电网有限责任公司超高压输电公司检修试验中心 Fault location method and system under direct current deicing device earth wire deicing mode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116114A (en) * 2013-01-23 2013-05-22 中国南方电网有限责任公司超高压输电公司检修试验中心 Fault location method and system under direct current deicing device earth wire deicing mode

Similar Documents

Publication Publication Date Title
Novosel et al. Unsynchronized two-terminal fault location estimation
Han Generalized method of analysis of simultaneous faults in electric power system
WO2000050908A1 (en) Multi-ended fault location system
Jain et al. Fault classification of double circuit transmission line using artificial neural network
Purushothama et al. ANN applications in fault locators
CN106841899B (en) The device open-circuit fault diagnostic method and device of the synchronous series compensator of chain static
CN113281618B (en) Low-voltage distribution line fault positioning method and device
CN108732464A (en) Submarine observation network extra large cable on-line fault diagnosis and localization method
CN105425107A (en) Method and system for active power distribution network fault diagnosis and location
EP1342095B1 (en) Fault location method and device
JPH0235379A (en) Locating method of ground fault point
Yu et al. A fault location algorithm for transmission lines with tapped leg-PMU based approach
Liao Some algorithms for transmission line parameter estimation
Liao Algorithms for power system fault location and line parameter estimation
JPH02228574A (en) Locating method of ground fault point
Mills et al. Power monitoring beyond radial distribution networks
CN1106578C (en) Method of monitoring electrical wear on selector switch disconnectors in high voltage station
CN115561573A (en) Overhead line-cable hybrid line fault positioning method based on traveling wave image characteristics
JPH0225767A (en) Locating method for ground-fault point
JPH0345344B2 (en)
JP2609331B2 (en) Accident point locator for parallel two-circuit power system
JPH0345345B2 (en)
JPH0450672A (en) Fault detecting method for electric power system using two parallel circuits
Idris et al. Enhanced two-terminal impedance-based fault location using sequence values
JPS60164264A (en) Ground fault point locator